Superabsorbent Polymer Use in Rangeland Restoration: Glasshouse Trials
Abstract
:1. Introduction
- SAP Rate and Depth: Evaluate the effect of SAP rates (0, 1500, or 3000 kg ha−1) and placement depths (0, 3, 8, or 15 cm depth bands, or mixed) to explore optimum management strategies.
- Reduced Seeding Rate: Assess the effect of seeding rates (2, 4, 8, or 16 kg ha−1) with SAP bands (0 or 3000 kg ha−1) at 8 cm depth to determine if excessive inter-species competition for soil moisture occurs as a function of increased germination with SAP.
- Low SAP Rate: Evaluate the efficacy of SAP rates (0, 11, 47, 190, 750, or 1500 kg ha−1) at 8 cm depth to determine if relatively low rates of SAPs would sufficiently increase soil moisture to positively impact seedling health while keeping the soil surface intact, which was a problem observed at high rates in field conditions.
- SAP Depth and Root Growth: Assess the effect of SAP rates (0 or 3000 kg ha−1) and placement depths (0, 3, or 8 cm, or mixed) to measure seedling root growth response to SAPs.
- Fertilizer and SAP Interaction: Evaluate the impact of fertilizer (with and without) used in conjunction with SAPs (0 or 3000 kg ha−1) placed at 8 cm depth in addition to measuring SAPs’ ability to reabsorb water.
2. Materials and Methods
2.1. Treatments
2.2. Soil and SAP Placement
Properties | Nutrients, mg kg−1 | ||
---|---|---|---|
pH *a | 7.8 | NO3-N d | 20 |
Salinity (dS m−1) a | 8.9 | P e | 12 |
Texture b | Loam | Ke | 1068 |
% Sand | 30 | Zn f | 0.2 |
% Silt | 49 | Fe f | 3.1 |
% Clay | 21 | Mn f | 2.1 |
% Organic Matter c | 1.3 | Cu f | 0.5 |
SAR a | 2.6 | Ca *g | 3903 |
Mg *g | 345 | ||
Na *h | 2230 |
2.3. Irrigation
2.4. Species
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. SAP Rate and Depth
3.1.1. Soil Moisture
3.1.2. Seedling Growth Parameters
3.2. Reduced Seeding Rate
Soil Moisture and Seedling Growth Parameters
3.3. Low SAP Rate
3.3.1. Soil Moisture
3.3.2. Seedling Growth Parameters
3.4. SAP Depth and Root Growth
3.4.1. Soil Moisture
3.4.2. Seedling Growth Parameters
3.5. Fertilizer and SAP Interaction
3.5.1. Soil Moisture
3.5.2. Seedling Growth Parameters
3.5.3. Soil Rewet
4. Discussion
4.1. Soil Moisture
4.2. Seedling Growth Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Bottlebrush Squirreltail | Siberian Wheatgrass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seeding Rate, kg ha−1 | ||||||||||||||||
----2---- | ----4---- | ----8---- | ----16---- | ----2---- | ----4---- | ----8---- | ----16---- | |||||||||
ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | |
Day | ||||||||||||||||
Gravimetric Water Content, % | ||||||||||||||||
0 | 41.0 | 44.6 | 42.0 | 44.9 | 41.3 | 44.2 | 41.2 | 44.0 | 42.2 | 44.5 | 41.2 | 43.0 | 39.6 | 45.3 | 42.1 | 42.9 |
2 | 36.4 | 40.5 | 37.7 | 40.9 | 36.2 | 39.9 | 37.0 | 40.2 | 38.0 | 40.0 | 36.3 | 38.8 | 35.5 | 41.0 | 36.6 | 39.3 |
5 | 31.2 | 34.8 | 32.9 | 35.5 | 30.6 | 34.5 | 31.8 | 34.3 | 32.8 | 34.6 | 30.9 | 33.4 | 29.3 | 35.3 | 31.5 | 33.8 |
7 | 28.7 | 32.5 | 30.6 | 33.3 | 28.4 | 32.1 | 29.3 | 31.9 | 30.4 | 32.1 | 28.4 | 31.0 | 26.9 | 32.8 | 29.2 | 31.6 |
9 | 26.4 | 30.3 | 28.4 | 31.0 | 26.1 | 29.7 | 26.8 | 29.7 | 28.2 | 29.9 | 26.1 | 28.6 | 24.8 | 30.2 | 26.7 | 29.2 |
14 | 18.4 | 22.1 | 19.4 | 22.4 | 17.3 | 21.5 | 17.5 | 21.3 | 20.2 | 20.4 | 17.7 | 20.3 | 16.2 | 22.3 | 18.6 | 20.6 |
16 | 15.6 | 19.2 | 16.2 | 19.5 | 14.5 | 18.3 | 14.5 | 18.3 | 17.2 | 17.2 | 14.8 | 17.5 | 13.5 | 19.4 | 15.5 | 17.6 |
19 | 13.1 | 16.8 | 14.0 | 17.0 | 12.5 | 15.8 | 12.5 | 16.0 | 14.6 | 15.1 | 12.7 | 15.1 | 11.7 | 16.8 | 13.3 | 15.2 |
21 | 9.7 | 13.2 | 10.6 | 13.2 | 9.6 | 11.9 | 9.4 | 12.6 | 10.7 | 12.0 | 9.6 | 11.6 | 9.0 | 12.7 | 9.8 | 11.7 |
23 | 8.3 | 11.1 | 8.9 | 10.8 | 7.8 | 10.0 | 7.9 | 10.6 | 9.0 | 10.0 | 8.1 | 9.6 | 7.5 | 10.6 | 8.2 | 9.8 |
26 | 7.2 | 9.6 | 7.7 | 9.3 | 6.6 | 8.8 | 7.0 | 9.2 | 7.7 | 8.7 | 7.1 | 8.3 | 6.5 | 9.1 | 7.1 | 8.5 |
28 | 6.8 | 9.0 | 7.2 | 8.5 | 6.0 | 8.2 | 6.5 | 8.5 | 7.1 | 8.1 | 6.6 | 7.7 | 6.1 | 8.5 | 6.5 | 7.9 |
30 | 6.5 | 8.5 | 6.9 | 8.2 | 6.2 | 7.8 | 6.3 | 8.2 | 6.8 | 7.7 | 6.4 | 7.4 | 5.9 | 7.9 | 6.3 | 7.5 |
33 | 5.8 | 7.7 | 6.3 | 7.4 | 5.6 | 7.2 | 5.7 | 7.4 | 6.1 | 7.0 | 5.7 | 6.7 | 5.4 | 7.0 | 5.6 | 6.8 |
35 | 4.9 | 6.5 | 5.3 | 6.2 | 4.8 | 5.9 | 4.8 | 6.2 | 5.1 | 5.9 | 4.9 | 5.7 | 4.6 | 5.9 | 4.8 | 5.6 |
37 | 4.7 | 6.2 | 5.1 | 5.9 | 4.5 | 5.7 | 4.7 | 5.9 | 4.9 | 5.6 | 4.6 | 5.5 | 4.3 | 5.6 | 4.5 | 5.4 |
40 | 4.0 | 5.4 | 4.3 | 5.1 | 3.9 | 4.5 | 4.0 | 5.1 | 4.2 | 4.9 | 4.2 | 4.7 | 3.7 | 4.9 | 3.9 | 4.6 |
42 | 3.7 | 4.9 | 3.9 | 4.7 | 3.5 | 4.0 | 3.6 | 4.7 | 3.8 | 4.4 | 3.6 | 4.3 | 3.4 | 4.4 | 3.6 | 4.2 |
44 | 3.4 | 4.6 | 3.7 | 4.4 | 3.3 | 3.7 | 3.4 | 4.4 | 3.5 | 4.2 | 3.4 | 4.0 | 3.2 | 4.1 | 3.4 | 4.0 |
49 | 2.8 | 3.6 | 2.9 | 3.4 | 2.6 | 2.7 | 2.7 | 3.4 | 2.8 | 3.2 | 2.7 | 3.2 | 2.6 | 3.2 | 2.8 | 3.1 |
51 | 2.7 | 3.4 | 2.8 | 3.2 | 2.5 | 2.6 | 2.7 | 3.2 | 2.7 | 3.1 | 2.6 | 3.0 | 2.5 | 3.1 | 2.6 | 3.0 |
54 | 2.5 | 3.0 | 2.5 | 2.9 | 2.3 | 2.3 | 2.5 | 2.9 | 2.4 | 2.7 | 2.4 | 2.7 | 2.3 | 2.8 | 2.4 | 2.7 |
56 | 2.4 | 2.9 | 2.5 | 2.8 | 2.3 | 2.2 | 2.4 | 2.8 | 2.4 | 2.7 | 2.4 | 2.6 | 2.2 | 2.7 | 2.4 | 2.6 |
Bottlebrush Squirreltail | Siberian Wheatgrass | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seeding Rate, kg ha−1 | ||||||||||||||||
----2---- | ----4---- | ----8---- | ----16---- | ----2---- | ----4---- | ----8---- | ----16---- | |||||||||
ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | ctrl | SAP | |
Persistence, % | ||||||||||||||||
Day | ||||||||||||||||
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 3 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 13 | 25 | 25 | 31 | 28 | 19 | 16 | 25 |
7 | 13 | 0 | 19 | 13 | 22 | 28 | 34 | 25 | 50 | 75 | 56 | 75 | 50 | 69 | 50 | 66 |
9 | 50 | 38 | 25 | 38 | 31 | 38 | 36 | 31 | 63 | 75 | 56 | 75 | 50 | 69 | 53 | 69 |
12 | 50 | 38 | 38 | 44 | 31 | 53 | 41 | 36 | 63 | 75 | 69 | 81 | 63 | 72 | 53 | 70 |
14 | 50 | 38 | 38 | 50 | 47 | 59 | 45 | 52 | 63 | 75 | 69 | 94 | 69 | 75 | 56 | 81 |
16 | 50 | 38 | 38 | 56 | 50 | 63 | 48 | 50 | 63 | 75 | 75 | 94 | 69 | 78 | 61 | 81 |
19 | 50 | 38 | 38 | 56 | 50 | 63 | 48 | 52 | 63 | 75 | 75 | 94 | 69 | 78 | 61 | 81 |
21 | 50 | 38 | 38 | 44 | 50 | 59 | 47 | 52 | 50 | 75 | 75 | 94 | 69 | 78 | 63 | 80 |
23 | 50 | 38 | 38 | 44 | 50 | 59 | 47 | 52 | 50 | 75 | 75 | 94 | 69 | 78 | 63 | 80 |
26 | 50 | 38 | 38 | 44 | 50 | 56 | 47 | 52 | 50 | 75 | 75 | 94 | 69 | 78 | 63 | 80 |
28 | 50 | 38 | 38 | 44 | 50 | 56 | 47 | 52 | 50 | 75 | 63 | 94 | 69 | 78 | 63 | 80 |
30 | 50 | 38 | 38 | 38 | 50 | 53 | 47 | 50 | 50 | 75 | 56 | 94 | 69 | 66 | 53 | 77 |
33 | 50 | 38 | 38 | 38 | 50 | 53 | 47 | 50 | 50 | 75 | 56 | 94 | 69 | 66 | 53 | 77 |
35 | 50 | 38 | 38 | 38 | 50 | 53 | 47 | 50 | 50 | 75 | 56 | 94 | 69 | 66 | 53 | 77 |
37 | 50 | 38 | 38 | 38 | 44 | 50 | 42 | 50 | 50 | 75 | 31 | 88 | 44 | 56 | 42 | 73 |
40 | 50 | 38 | 38 | 25 | 34 | 50 | 17 | 42 | 50 | 75 | 13 | 88 | 28 | 56 | 34 | 64 |
42 | 38 | 25 | 19 | 19 | 16 | 47 | 6 | 36 | 38 | 75 | 6 | 81 | 19 | 50 | 13 | 58 |
44 | 25 | 25 | 13 | 13 | 13 | 41 | 2 | 28 | 38 | 63 | 0 | 75 | 6 | 41 | 5 | 42 |
47 | 25 | 25 | 13 | 13 | 13 | 41 | 2 | 27 | 38 | 63 | 0 | 75 | 6 | 38 | 5 | 42 |
49 | 13 | 25 | 6 | 6 | 6 | 38 | 0 | 22 | 25 | 50 | 0 | 63 | 3 | 31 | 5 | 39 |
51 | 0 | 13 | 0 | 0 | 3 | 9 | 0 | 3 | 0 | 38 | 0 | 38 | 0 | 9 | 0 | 8 |
54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 2 |
56 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Days after Planting | 0 | 4 | 13 | 20 | 27 | 34 | 41 | 50 |
---|---|---|---|---|---|---|---|---|
SAP depth | ||||||||
3 cm measurement depth | ||||||||
control | 36.0 g | 31.9 | 22 | 9.4 | 4.6 | 20.6 | 15.5 | 13.4 |
3 cm | 35.9 g | 30.4 | 18.9 | 10.2 | 6.3 | 23 | 18.2 | 13.3 |
8 cm | 36.6 fg | 31.7 | 21.4 | 12.4 | 4.2 | 19.8 | 14.8 | 13.5 |
mixed | 34.8 g | 29.7 | 19.1 | 10.5 | 4.8 | 19.4 | 16.8 | 13.8 |
5 cm measurement depth | ||||||||
control | 38.3 ef | 36.4 | 30.1 | 19.2 | 13.5 | 17.4 | 12.8 | 10.6 |
3 cm | 38.3 ef | 34.8 | 27.9 | 19.1 | 15.2 | 20.9 | 16.4 | 11.4 |
8 cm | 38.4 def | 35.3 | 28.9 | 19.1 | 11 | 20.8 | 15.6 | 10.5 |
mixed | 39.2 cde | 36.5 | 29.5 | 19 | 12.8 | 20.5 | 15.5 | 9.9 |
8 cm measurement depth | ||||||||
control | 39.9 cde | 37.7 | 31.54 | 23.4 | 16.8 | 18.3 | 14.1 | 11.7 |
3 cm | 39.2 cde | 37 | 32.6 | 23.7 | 18.7 | 22.6 | 18.3 | 12.5 |
8 cm | 40.1 bcd | 37.7 | 31.7 | 20.7 | 13.3 | 20.4 | 15.4 | 11.8 |
mixed | 39.5 cde | 37.5 | 30.2 | 22.6 | 16.7 | 21.9 | 17.4 | 12.5 |
10 cm measurement depth | ||||||||
control | 42.6 a | 39.6 | 33.8 | 25.7 | 19.1 | 19.1 | 15.1 | 10.2 |
3 cm | 39.5 cde | 37.5 | 34.6 | 25.9 | 21.1 | 21.9 | 14.5 | 10.5 |
8 cm | 40.6 bc | 38.6 | 33.4 | 24.5 | 19.9 | 21.8 | 15.3 | 10.9 |
mixed | 41.7 ab | 38.9 | 32.2 | 24.9 | 17.8 | 20.6 | 16.3 | 13 |
p-values | <0.001 | 0.514 | 0.219 | 0.221 | 0.128 | 0.159 | 0.491 | 0.586 |
References
- Warren, S.D. Perceptions and History of Rangeland. In Northeastern California Plateaus Bioregion Science Synthesis; Gen. Tech. Rep RMRS-GTR-409; Dumroese, R., Moser, W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; pp. 45–47. [Google Scholar]
- Kennedy, J.J.; Fox, B.L.; Osen, T.D. Changing Social Values and Images of Public Rangeland Management. Rangelands 1995, 17, 127–132. [Google Scholar]
- Davies, K.W.; Johnson, D.D. Established Perennial Vegetation Provides High Resistance to Reinvasion by Exotic Annual Grasses. Rangel. Ecol. Manag. 2017, 70, 748–754. [Google Scholar] [CrossRef]
- Minnick, T.J.; Alward, R.D. Soil Moisture Enhancement Techniques Aid Shrub Transplant Success in an Arid Shrubland Restoration. Rangel. Ecol. Manag. 2012, 65, 232–240. [Google Scholar] [CrossRef]
- Ott, J.E.; Kilkenny, F.F.; Summers, D.D.; Thompson, T.W. Long-Term Vegetation Recovery and Invasive Annual Suppression in Native and Introduced Postfire Seeding Treatments. Rangel. Ecol. Manag. 2019, 72, 640–653. [Google Scholar] [CrossRef]
- Brown, V.S.; Erickson, T.E.; Merritt, D.J.; Madsen, M.D.; Hobbs, R.J.; Ritchie, A.L. A Global Review of Seed Enhancement Technology Use to Inform Improved Applications in Restoration. Sci. Total Environ. 2021, 798, 149096. [Google Scholar] [CrossRef]
- Madsen, M.D.; Davies, K.W.; Boyd, C.S.; Kerby, J.D.; Svejcar, T.J. Emerging Seed Enhancement Technologies for Overcoming Barriers to Restoration. Restor. Ecol. 2016, 24, S77–S84. [Google Scholar] [CrossRef]
- Jessop, B.D.; Anderson, V.J. Cheatgrass Invasion in Salt Desert Shrublands: Benefits of Postfire Reclamation. Rangel. Ecol. Manag. 2007, 60, 235–243. [Google Scholar] [CrossRef]
- Chambers, J.C. Invasive Plant Species and the Great Basin. In USDA Forest Service—General Technical Report RMRS-GTR; USDA Forest Service, Rocky Mountain Research Station: Reno, NV, USA, 2008; pp. 1–7. [Google Scholar]
- Litt, A.R.; Pearson, D.E. Non-Native Plants and Wildlife in the Intermountain West. Wildl. Soc. Bull. 2013, 37, 517–526. [Google Scholar] [CrossRef]
- Bradley, B.A.; Curtis, C.A.; Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Tuanmu, M.N. Cheatgrass (Bromus tectorum) Distribution in the Intermountain Western United States and Its Relationship to Fire Frequency, Seasonality, and Ignitions. Biol. Invasions 2018, 20, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Garbowski, M.; Johnston, D.B.; Baker, D.V.; Brown, C.S. Invasive Annual Grass Interacts with Drought to Influence Plant Communities and Soil Moisture in Dryland Restoration. Ecosphere 2021, 12, e03417. [Google Scholar] [CrossRef]
- Simberloff, D. The Role of Propagule Pressure in Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Zouhar, K. Bromus Tectorum; Fire Effects Information System [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Porducer). 2003. Available online: https://www.fs.usda.gov/database/feis/plants/graminoid/brotec/all.html (accessed on 1 October 2020).
- Hirsch-Schantz, M.C.; Monaco, T.A.; Call, C.A.; Sheley, R.L. Large-Scale Downy Brome Treatments Alter Plant-Soil Relationships and Promote Perennial Grasses in Salt Desert Shrublands. Rangel. Ecol. Manag. 2014, 67, 255–265. [Google Scholar] [CrossRef]
- McGlone, C.M.; Sieg, C.H.; Kolb, T.E.; Nietupsky, T. Established Native Perennial Grasses Out-Compete an Invasive Annual Grass Regardless of Soil Water and Nutrient Availability. Plant Ecol. 2012, 213, 445–457. [Google Scholar] [CrossRef]
- Rau, B.M.; Chambers, J.C.; Pyke, D.A.; Roundy, B.A.; Schupp, E.W.; Doescher, P.; Caldwell, T.G. Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems. Rangel. Ecol. Manag. 2014, 67, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Ryel, R.J.; Leffler, A.J.; Ivans, C.; Peek, M.S.; Caldwell, M.M. Functional Differences in Water-Use Patterns of Contrasting Life Forms in Great Basin Steppelands. Vadose Zone J. 2010, 9, 548–560. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.C.; Miller, R.F.; Board, D.I.; Pyke, D.A.; Roundy, B.A.; Grace, J.B.; Schupp, E.W.; Tausch, R.J. Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangel. Ecol. Manag. 2014, 67, 440–454. [Google Scholar] [CrossRef] [Green Version]
- Monaco, T.A.; Mangold, J.M.; Mealor, B.A.; Mealor, R.D.; Brown, C.S. Downy Brome Control and Impacts on Perennial Grass Abundance: A Systematic Review Spanning 64 Years. Rangel. Ecol. Manag. 2017, 70, 396–404. [Google Scholar] [CrossRef]
- Roundy, B.A.; Hardegree, S.P.; Chambers, J.C.; Whittaker, A. Prediction of Cheatgrass Field Germination Potential Using Wet Thermal Accumulation. Rangel. Ecol. Manag. 2007, 60, 613–623. [Google Scholar] [CrossRef]
- Chambers, J.C.; Roundy, B.A.; Blank, R.R.; Meyer, S.E.; Whittaker, A. What Makes Great Basin Sagebrush Ecosystems Invasible by Bromus Tectorum? Ecol. Monogr. 2007, 77, 117–145. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, V.R.; Smanis, A.; Chirino, E.; Fuentes, D.; Valdecantos, A.; Vilagrosa, A. Perspectives in Dryland Restoration: Approaches for Climate Change Adaptation. New For. 2012, 43, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Cline, N.; Roundy, B.; Gill, R.A.; Hopkins, B. Wet—Thermal Time and Plant Available Water in the Seedbeds and Root Zones Across the Sagebrush Steppe Ecosystem of the Great Basin; Brigham Young University: Provo, UT, USA, 2014. [Google Scholar]
- Rezashateri, M.; Khajeddin, S.J.; Abedi-Koupai, J.; Majidi, M.M.; Matinkhah, S.H. Growth Characteristics of Artemisia sieberi Influenced by Super Absorbent Polymers in Texturally Different Soils under Water Stress Condition. Arch. Agron. Soil. Sci. 2017, 63, 984–997. [Google Scholar] [CrossRef]
- Ferguson, S.D.; Leger, E.A.; Li, J.; Nowak, R.S. Natural Selection Favors Root Investment in Native Grasses during Restoration of Invaded Fields. J. Arid. Environ. 2015, 116, 11–17. [Google Scholar] [CrossRef]
- Zohuriaan-Mehr, M.J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Evonik Industries STOCKOSORB® 660—Evonik Industries. Available online: https://www.break-thru.com/en/products/STOCKOSORB (accessed on 8 December 2021).
- Abdallah, A.M. The Effect of Hydrogel Particle Size on Water Retention Properties and Availability under Water Stress. Int. Soil Water Conserv. Res. 2019, 7, 275–285. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, S.; Jain, A.; Khan, S. 3-Dimensional Cross Linked Hydrophilic Polymeric Network “Hydrogels”: An Agriculture Boom. Agric. Water Manag. 2021, 253, 106939. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Mashaheet, A.M.; Burkey, K.O. Super Absorbent Polymers Mitigate Drought Stress in Corn (Zea mays L.) Grown under Rainfed Conditions. Agric. Water Manag. 2021, 254, 106946. [Google Scholar] [CrossRef]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C 2017, 79, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Evonik. Stockosorb_660 Tech Data; Evonik Industries: Krefeld, Germany, 2005. [Google Scholar]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef] [Green Version]
- El-Asmar, J.; Jaafar, H.; Bashour, I.; Farran, M.T.; Saoud, I.P. Hydrogel Banding Improves Plant Growth, Survival, and Water Use Efficiency in Two Calcareous Soils. CLEAN–Soil Air Water 2017, 45, 1700251. [Google Scholar] [CrossRef]
- Chirino, E.; Vilagrosa, A.; Vallejo, V.R. Using Hydrogel and Clay to Improve the Water Status of Seedlings for Dryland Restoration. Plant Soil 2011, 344, 99–110. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Sun, B.; Song, S.; Guo, H.; Shen, H.; Wu, Y. Effects of Biofertilizers and Super Absorbent Polymers on Plant Growth and Soil Fertility in the Arid Mining Area of Inner Mongolia, China. J. Mt. Sci. 2018, 15, 1920–1935. [Google Scholar] [CrossRef]
- Bai, W.; Song, J.; Zhang, H. Repeated Water Absorbency of Super-Absorbent Polymers in Agricultural Field Applications: A Simulation Study. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 433–441. [Google Scholar] [CrossRef]
- Holliman, P.J.; Clark, J.A.; Williamson, J.C.; Jones, D.L. Model and Field Studies of the Degradation of Cross-Linked Polyacrylamide Gels Used during the Revegetation of Slate Waste. Sci. Total Environ. 2005, 336, 13–24. [Google Scholar] [CrossRef]
- Banedjschafie, S.; Durner, W. Water Retention Properties of a Sandy Soil with Superabsorbent Polymers as Affected by Aging and Water Quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806. [Google Scholar] [CrossRef]
- Abu-Zreig, M. Control of Rainfall-Induced Soil Erosion with Various Types of Polyacrylamide. J. Soils Sediments 2006, 6, 137–144. [Google Scholar] [CrossRef]
- Hüttermann, A.; Zommorodi, M.; Reise, K. Addition of Hydrogels to Soil for Prolonging the Survival of Pinus halepensis Seedlings Subjected to Drought. Soil Tillage Res. 1999, 50, 295–304. [Google Scholar] [CrossRef]
- Lucero, M.E.; Dreesen, D.R.; VanLeeuwen, D.M. Using Hydrogel Filled, Embedded Tubes to Sustain Grass Transplants for Arid Land Restoration. J. Arid Environ. 2010, 74, 987–990. [Google Scholar] [CrossRef]
- Evonik. STOCKOSORB®—BREAK-THRU®—Technology for Agriculture. Available online: https://www.break-thru.com/product/break-thru/en/products/STOCKOSORB/ (accessed on 30 June 2020).
- Evonik. STOCKOSORB® for Water and Soil Management in Agriculture and Horticulture. Evonik Industries: Krefeld, Germany, 2008. [Google Scholar]
- Evonik. Stockosorb 660 Label; Evonik Corporation: Greensboro, NC, USA, 2015. [Google Scholar]
- Whitlock, M.C.; Schluter, D. The Analysis of Biological Data; Roberts and Company Publishers: Greenwood Village, CO, USA, 2009; ISBN 978-0-9815194-0-1. [Google Scholar]
- Soil Survey Staff Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed on 30 January 2020).
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, Plant and Water Reference Methods for the Western Region, 4th Edition; Colorado State University: Fort Collins, CO, USA, 2013. [Google Scholar]
- Plumb, H. NRCS Bottlebrush Squirreltail Elymus Elymoides Plant Fact Sheet; USDA-National Resources Conservation Service, Upper Colorado Environmental Plant Center: Meeker, CO, USA, 2010.
- USDA-NRCS-Aberdeen Plant Materials Center. Release Brochure for Vavilov II Siberian Wheatgrass (Agropyron Fragile); USDA-National Resources Conservation Service, Aberdeen Plant Materials Center: Aberdeen, ID, USA, 2012.
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water Availability in Different Soils in Relation to Hydrogel Application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Smagina, M.V. Biodestruction of Strongly Swelling Polymer Hydrogels and Its Effect on the Water Retention Capacity of Soils. Eurasian Soil Sci. 2014, 47, 591–597. [Google Scholar] [CrossRef]
- Koupai, J.A.; Eslamian, S.S.; Kazemi, J.A. Enhancing the Available Water Content in Unsaturated Soil Zone Using Hydrogel, to Improve Plant Growth Indices. Ecohydrol. Hydrobiol. 2008, 8, 67–75. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent Hydrogel (SAH) as a Soil Amendment for Drought Management: A Review. Soil Tillage Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Yu, J.; Shainberg, I.; Yan, Y.L.; Shi, J.G.; Levy, G.J.; Mamedov, A.I. Superabsorbents and Semiarid Soil Properties Affecting Water Absorption. Soil Sci. Soc. Am. J. 2011, 75, 2305–2313. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. In Irrigation and Drainage Paper No. 56; FAO: Italy, Rome, 1998; Volume 300. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, H.; Liu, B.; Wu, Y.; Song, J.Q. Effects of Super-Absorbent Polymers on the Physical and Chemical Properties of Soil Following Different Wetting and Drying Cycles. Soil Use Manag. 2010, 26, 253–260. [Google Scholar] [CrossRef]
- Han, Y.G.; Yang, P.L.; Luo, Y.P.; Ren, S.M.; Zhang, L.X.; Xu, L. Porosity Change Model for Watered Super Absorbent Polymer-Treated Soil. Environ. Earth Sci. 2010, 61, 1197–1205. [Google Scholar] [CrossRef]
- Sarvaš, M.; Pavlenda, P.; Takácová, E. Effect of Hydrogel Application on Survival and Growth of Pine Seedlings in Reclamations. J. For. Sci. 2007, 53, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Bakass, M.; Mokhlisse, A.; Lallemant, M. Absorption and Desorption of Liquid Water by a Superabsorbent Polymer: Effect of Polymer in the Drying of the Soil and the Quality of Certain Plants. J. Appl. Polym. Sci. 2002, 83, 234–243. [Google Scholar] [CrossRef]
- Bandak, S.; Naeini, S.A.R.M.; Zeinali, E.; Bandak, I. Effects of Superabsorbent Polymer A200 on Soil Characteristics and Rainfed Winter Wheat Growth (Triticum aestivum L.). Arab. J. Geosci. 2021, 14, 712. [Google Scholar] [CrossRef]
- Do Nascimento, C.D.V.; Feitosa, J.P.D.A.; Simmons, R.; Dias, C.T.D.S.; do Nascimento, Í.V.; Mota, J.C.A.; Costa, M.C.G. Durability Indicatives of Hydrogel for Agricultural and Forestry Use in Saline Conditions. J. Arid Environ. 2021, 195, 104622. [Google Scholar] [CrossRef]
- Evonik. Stockosorb 660 Material Safety Data Sheet; Evonik Corporation: Garyville, LA, USA, 2014. [Google Scholar]
- Lentz, R.D. Long-Term Water Retention Increases in Degraded Soils Amended with Cross-Linked Polyacrylamide. Agron. J. 2020, 112, 2569–2580. [Google Scholar] [CrossRef]
- Zhou, B.; Liao, R.; Li, Y.; Gu, T.; Yang, P.; Feng, J.; Xing, W.; Zou, Z. Water-Absorption Characteristics of Organic-Inorganic Composite Superabsorbent Polymers and Its Effect on Summer Maize Root Growth. J. Appl. Polym. Sci. 2012, 126, 423–435. [Google Scholar] [CrossRef]
- He, M.; Lv, L.; Li, H.; Meng, W.; Zhao, N. Analysis on Soil Seed Bank Diversity Characteristics and Its Relation with Soil Physical and Chemical Properties after Substrate Addition. PLoS ONE 2016, 11, e0147439. [Google Scholar] [CrossRef]
- Coello, J.; Ameztegui, A.; Rovira, P.; Fuentes, C.; Piqué, M. Innovative Soil Conditioners and Mulches for Forest Restoration in Semiarid Conditions in Northeast Spain. Ecol. Eng. 2018, 118, 52–65. [Google Scholar] [CrossRef]
- Yang, W.; Guo, S.; Li, P.; Song, R.; Yu, J. Foliar Antitranspirant and Soil Superabsorbent Hydrogel Affect Photosynthetic Gas Exchange and Water Use Efficiency of Maize Grown under Low Rainfall Conditions. J. Sci. Food Agric. 2019, 99, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.B.; Garbowski, M. Responses of Native Plants and Downy Brome to a Water-Conserving Soil Amendment. Rangel Ecol. Manag. 2020, 73, 19–29. [Google Scholar] [CrossRef]
- Ovalle, J.F.; Arellano, E.C.; Ginocchio, R. Trade-Offs between Drought Survival and Rooting Strategy of Two South American Mediterranean Tree Species: Implications for Dryland Forests Restoration. Forests 2015, 6, 3733–3747. [Google Scholar] [CrossRef] [Green Version]
- Garbowski, M.; Brown, C.S.; Johnston, D.B. Soil Amendment Interacts with Invasive Grass and Drought to Uniquely Influence Aboveground vs. Belowground Biomass in Aridland Restoration. Restor. Ecol. 2019, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Ren, C.; Zeng, Z.; Jia, P.; Eneji, E.; Hu, Y. Fertilizer Use Efficiency of Drought-Stressed Oat (Avena sativa L.) Following Soil Amendment with a Water-Saving Superabsorbent Polymer. Acta Agric. Scand. B Soil Plant Sci. 2011, 61, 721–729. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Rose, R.; Haase, D.L.; Alzugaray, P.O. Fertilization at Planting Impairs Root System Development and Drought Avoidance of Douglas-Fir (Pseudotsuga menziesii) Seedlings. Ann. For. Sci. 2004, 61, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Fehmi, J.S.; Kong, T.M. Effects of Soil Type, Rainfall, Straw Mulch, and Fertilizer on Semi-Arid Vegetation Establishment, Growth and Diversity. Ecol. Eng. 2012, 44, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, A.D.; Hermoso, J.; Flors, J.; Lidón, A.; Navarro-Cerrillo, R.M. Nursery Location and Potassium Enrichment in Aleppo Pine Stock 2. Performance under Real and Hydrogel-Mediated Drought Conditions. Forestry 2011, 84, 235–245. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Treatments | |||||
SAP, kg ha−1 | 0, 1500, 3000 | 0, 3000 | 0, 11, 47, 190, 750, 1500 | 0, 3000 | 0, 3000 |
SAP Depth, cm | 0, 3, 8, 15, mixed (top 15) | 8 | 8 | 3, 8, mixed (top 8) | 8 |
Fertilizer | no | no | no | no | with/without |
Species * | BB | BB and SW | BB and SW | BB and SW | BB and SW |
Seeding Rate, kg ha−1 | 24 | 2, 4, 8, 16 | 8 | 4 | 6 |
Study Parameters | |||||
Study length, d | 107 | 76 | 78 | 70 | 76/133 ** |
Dates | 14 February to 1 June 2017 | 7 September to 22 November 2018 | 8 February to 27 April 2019 | 19 July to 27 September 2019 | 16 December to 28 April 2018 |
Replicates | 4 | 4 | 3 | 4 | 6 |
Dimensions, cm | 10 (each side) | 10 (each side) | 30 × 21.5 | 10 (diameter) | 10 (each side) |
Depth, cm | 23 | 23 | 15 | 25 | 10 |
Thinned, number@DAP | 3@14 & 1@29 | no | 1@19 | 1@13 | no |
Saturation time, d | 2 | 15 | 16 | 18 | 16 |
Measurements | |||||
Soil Moisture | 3x/wk | 3x/wk | 3x/wk until 36 DAP then 57 & 78 DAP | weekly @4 depths | 3x/wk |
Seedling emergence and total alive *** | 8, 25, 29, 70, 72, 76, 81, 84, 86, 105, and 107 DAP | 3x/wk | ~3x/wk | weekly | weekly |
Seedling length and Blade number | 76 DAP | weekly | no | weekly | weekly |
Root length/branching | no | no | no | weekly | no |
Root/shoot biomass | no | no | no | yes | no |
Soil Moisture | Longevity | Shoot Length | Blade Count | ||||||
---|---|---|---|---|---|---|---|---|---|
Effect | DF | F Ratio | Prob > F | F Ratio | Prob > F | F Ratio | Prob > F | F Ratio | Prob. F |
D | 4 | 33.6114 | <0.0001 | 1.8968 | 0.137 | 2.3625 | 0.076 | 1.7452 | 0.172 |
R | 1 | 146.3037 | <0.0001 | 4.3468 | 0.046 | 4.848 | 0.036 | 6.9231 | 0.014 |
T | 41 | 21.6824 | <0.0001 | ||||||
D*R | 4 | 28.3439 | <0.0001 | 2.8533 | 0.041 | 3.5722 | 0.017 | 1.6961 | 0.182 |
D*T | 164 | 2.9596 | <0.0001 | ||||||
R*T | 41 | 4.977 | <0.0001 | ||||||
D*R*T | 164 | 0.6947 | 0.998 |
Superabsorbent Polymer Rate | ||||
---|---|---|---|---|
1500 kg ha−1 | 3000 kg ha−1 | |||
SAP Placement Depth | Seedling Length Relative to Control (cm) | p-Value | Seedling Length Relative to Control (cm) | p-Value |
surface | −0.8 | 0.722 | 2.8 | 0.232 |
3 cm | 4.7 | 0.052 | −0.6 | 0.787 |
8 cm | −3.3 | 0.155 | 8.0 | 0.002 |
15 cm | −5.9 | 0.032 | −0.2 | 0.931 |
blended | −2.8 | 0.220 | −2.1 | 0.362 |
Soil Moisture (Mixed Model) | Persistence (Anova) | ||||||
---|---|---|---|---|---|---|---|
Effect | DF | DF Den | F Ratio | Prob > F | DF | F Ratio | Prob > F |
S | 1 | 48 | 0.0107 | 0.722 | 1 | 316.8774 | <0.0001 |
R | 3 | 48 | 5.5306 | 0.012 | 3 | 1.0705 | 0.361 |
SAP | 1 | 48 | 211.2814 | <0.0001 | 1 | 122.6885 | <0.0001 |
T | 22 | 1056 | 32,415.25 | <0.0001 | 23 | 70.231 | <0.0001 |
S*R | 3 | 48 | 3.2271 | 0.022 | 3 | 12.3834 | <0.0001 |
S*SAP | 1 | 48 | 3.1131 | 0.139 | 1 | 60.0828 | <0.0001 |
S*T | 22 | 1056 | 0.4209 | 0.995 | 23 | 3.404 | <0.0001 |
R*SAP | 3 | 48 | 3.1285 | 0.031 | 3 | 5.3187 | 0.001 |
R*T | 66 | 1056 | 1.4408 | 0.005 | 69 | 0.6621 | 0.985 |
SAP*T | 22 | 1056 | 63.6763 | <0.0001 | 23 | 2.7546 | <0.0001 |
S*R*SAP | 3 | 48 | 3.5213 | 0.041 | 3 | 8.2626 | <0.0001 |
S*R*T | 66 | 1056 | 2.5588 | <0.0001 | 69 | 0.3022 | 1 |
S*SAP*T | 22 | 1056 | 2.6144 | <0.0001 | 23 | 1.0073 | 0.452 |
R*SAP*T | 66 | 1056 | 2.21 | <0.0001 | 69 | 0.2722 | 1 |
S*R*SAP*T | 66 | 66 | 2.8337 | <0.0001 | 69 | 0.4985 | 1 |
Days to Emerge (Anova) | % Emerged (Anova) | |||||
---|---|---|---|---|---|---|
Effect | DF | F Ratio | Prob > F | DF | F Ratio | Prob > F |
S | 1 | 10.0268 | 0.002 | 1 | 24.2163 | <0.0001 |
R | 3 | 0.335 | 0.800 | 3 | 0.6647 | 0.578 |
SAP | 1 | 0.0462 | 0.830 | 1 | 1.6028 | 0.212 |
S*R | 3 | 0.3258 | 0.807 | 3 | 0.7814 | 0.510 |
S*SAP | 1 | 1.7208 | 0.191 | 1 | 0.0098 | 0.922 |
R*SAP | 3 | 0.2373 | 0.870 | 3 | 0.6838 | 0.566 |
S*R*SAP | 3 | 0.4244 | 0.736 | 3 | 0.537 | 0.659 |
Soil Moisture | Longevity | ||||
---|---|---|---|---|---|
Effect | DF | F Ratio | Prob > F | F Ratio | Prob > F |
L | 2 | 18.8207 | <0.0001 | ||
S | 1 | 0.2055 | 0.658 | 7.1565 | 0.008 |
R | 5 | 0.9274 | 0.497 | 3.9492 | 0.002 |
T | 16 | 7467.511 | <0.0001 | ||
L*S | 2 | 7.9641 | 0.0004 | ||
L*R | 10 | 4.7621 | <0.0001 | ||
L*T | 32 | 3.7136 | <0.0001 | ||
S*R | 5 | 1.141 | 0.391 | 0.3532 | 0.880 |
R*T | 80 | 4.7752 | <0.0001 |
Soil Moisture | ||||
---|---|---|---|---|
Effect | DF | DF Den | F Ratio | Prob > F |
S | 1 | 27 | 0.0082 | 0.929 |
P | 3 | 27 | 0.9046 | 0.452 |
M | 3 | 84 | 347.4975 | <0.0001 |
T | 7 | 189 | 1741.724 | <0.0001 |
S*T | 7 | 189 | 0.6996 | 0.672 |
P*M | 9 | 84 | 0.7963 | 0.621 |
P*T | 21 | 189 | 2.5507 | 0.0004 |
M*T | 21 | 588 | 26.6123 | <0.0001 |
P*M*T | 63 | 588 | 1.864 | 0.0001 |
Metric | DF | F Ratio | Prob > F |
---|---|---|---|
Total emergence | 7 | 4.6899 | <0.0001 |
S | 1 | 4.9145 | 0.028 |
D | 3 | 5.4387 | 0.001 |
S*D | 3 | 3.8661 | 0.010 |
Total emergence orthogonal | 3 | 3.9670 | 0.009 |
S | 1 | 10.2095 | 0.002 |
P | 1 | 0.0604 | 0.806 |
S*P | 1 | 7.3098 | 0.008 |
Days to emerge | 7 | 6.4688 | <0.0001 |
S | 1 | 27.2552 | <0.0001 |
D | 3 | 3.4673 | 0.018 |
S*D | 3 | 3.4673 | 0.018 |
Days to emerge orthogonal | 3 | 8.9142 | <0.0001 |
S | 1 | 22.2726 | <0.0001 |
P | 1 | 1.9267 | 0.167 |
S*P | 1 | 1.9267 | 0.167 |
Shoot biomass | 7 | 1.3774 | 0.266 |
Shoot biomass orthogonal | 3 | 1.8039 | 0.172 |
Root biomass | 7 | 3.0537 | 0.022 |
S | 1 | 7.5978 | 0.012 |
D | 3 | 2.3923 | 0.097 |
S*D | 3 | 1.8964 | 0.161 |
Root biomass orthogonal | 3 | 2.5516 | 0.078 |
shoot:root ratio | 7 | 0.3117 | 0.941 |
Shoot:Root ratio orthogonal | 3 | 0.119 | 0.948 |
Time | 7 | 1.7013 | 0.166 |
Root length 21 DAP | 7 | 0.8454 | 0.563 |
Root length 21 DAP orthogonal | 3 | 1.4936 | 0.241 |
Effect | Nparm | DF Den | F Ratio | Prob > F |
---|---|---|---|---|
S | 1 | 59.79 | 0.0309 | 0.861 |
F | 2 | 59.79 | 0.1003 | 0.905 |
SAP | 1 | 59.79 | 84.938 | <0.0001 |
T | 29 | 1715 | 12,268.02 | <0.0001 |
S*F | 2 | 59.79 | 501,227 | 0.009 |
S*SAP | 1 | 59.79 | 1.2507 | 0.268 |
S*T | 29 | 1715 | 2.325 | <0.0001 |
F*SAP | 2 | 59.79 | 2.2206 | 0.117 |
F*T | 58 | 1715 | 4.0967 | <0.0001 |
SAP*T | 29 | 1715 | 78.2095 | <0.0001 |
S*F*SAP | 2 | 59.79 | 0.9599 | 0.389 |
S*F*T | 58 | 1715 | 3.5676 | <0.0001 |
S*SAP*T | 29 | 1715 | 4.0605 | <0.0001 |
F*SAP*T | 58 | 1715 | 2.2783 | <0.0001 |
S*F*SAP*T | 58 | 1715 | 1.2506 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, S.V.; Hansen, N.C.; Madsen, M.D.; Anderson, V.J.; Eggett, D.L.; Hopkins, B.G. Superabsorbent Polymer Use in Rangeland Restoration: Glasshouse Trials. Land 2023, 12, 232. https://doi.org/10.3390/land12010232
Nelson SV, Hansen NC, Madsen MD, Anderson VJ, Eggett DL, Hopkins BG. Superabsorbent Polymer Use in Rangeland Restoration: Glasshouse Trials. Land. 2023; 12(1):232. https://doi.org/10.3390/land12010232
Chicago/Turabian StyleNelson, Shannon V., Neil C. Hansen, Matthew D. Madsen, Val Jo Anderson, Dennis L. Eggett, and Bryan G. Hopkins. 2023. "Superabsorbent Polymer Use in Rangeland Restoration: Glasshouse Trials" Land 12, no. 1: 232. https://doi.org/10.3390/land12010232
APA StyleNelson, S. V., Hansen, N. C., Madsen, M. D., Anderson, V. J., Eggett, D. L., & Hopkins, B. G. (2023). Superabsorbent Polymer Use in Rangeland Restoration: Glasshouse Trials. Land, 12(1), 232. https://doi.org/10.3390/land12010232