Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection
2.2.1. Measurement of the Canopy Spectrum
2.2.2. Determination of the Leaf Area Index
2.3. Statistical Analysis
2.4. Establishment of the Models
3. Results
3.1. Statistical Analysis of LAI of Cotton in Different Growth Stages
3.2. Trend of Variation of the Leaf Area Index (LAI) of Cotton in Different Growth Periods under Different Nitrogen Treatments
3.3. Changes in the Canopy Spectrum of Cotton at Various Growth Stages under Different Nitrogen Treatments
3.4. Correlation Analysis between the Cotton Canopy Spectral Reflectance and LAI
3.4.1. Correlation Analysis between the Original Canopy Spectrum and LAI
3.4.2. Correlation Analysis between the Original Canopy Spectrum and LAI
3.4.3. Correlation Analysis between the Original Canopy Spectrum and LAI
3.5. Construction and Validation of the Canopy Spectral Parameters and the Leaf Area Index Model
3.5.1. Model Establishment
3.5.2. Model Verification
4. Discussion
4.1. Trends in the Change of Cotton LAI and Canopy Spectra in Different Periods under Varying Nitrogen Treatments
4.2. Correlation Analysis between Cotton Canopy Spectral Reflectance and LAI
4.3. Construction and Verification of the LAI Model Based on Canopy Spectrum and Spectral Indices
5. Conclusions
- Different nitrogen treatments led to differences in the LAI of cotton in each growth stage. The changes in the cotton canopy spectral reflectance and the LAI differed in each period. The canopy spectral reflectance and the LAI showed an overall single-peak change of low and high. In the visible light range, the canopy spectral reflectance decreased with increasing fertilization in all the growth stages. In the near-infrared band, the canopy spectral reflectance increased with an increase in the rate of application of nitrogen in the bud stage, early boll stage, and full boll stage. However, the spectral reflectance was the maximum for the second-highest fertilization amount (N3) in the flowering stage, and the canopy spectral reflectance was low for the severe fertilizer shortage (N0) and excessive application of fertilizer (N4). These results suggest that spectral remote sensing can be used to determine optimal amounts of fertilization and achieve the real-time monitoring of agricultural conditions.
- The sensitive bands of LAI varied in different growth stages of cotton. The bands of the original spectral reflectance that were the most sensitive to the cotton LAI were 675 and 1067 nm, and the bands at which the logarithm of the reciprocal of the spectrum were the most sensitive to the cotton LAI were 675 and 1072 nm. The distribution diagrams of the two are opposite. For the first-order differential spectrum, the bands that were the most sensitive to the cotton LAI were 796 and 1142 nm.
- The vegetation index monitoring models constructed by cotton LAI in different growth stages differed. The TVI model was the highest during the bud stage and early boll stage, and its R2 values were 0.8137 and 0.8725. The NDVI model was the highest during the flowering stage with an R2 of 0.7991, and the DVI model was the highest in the full boll stage with an R2 of 0.8633. The RVI model constructed by cotton LAI during the entire growth period was the most accurate. The model has minimal error and is sensitive to the change of cotton LAI during the entire growth period. It can serve as one of the best models to monitor the change in cotton LAI.
Author Contributions
Funding
Conflicts of Interest
References
- Kaplan, G.; Rozenstein, O. Spaceborne estimation of leaf area index in cotton, tomato, and wheat using sentinel-2. Land 2021, 10, 5. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Wang, J.; Li, Q. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Sensors 2021, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, R.; Liu, T.; Xu, K. Crop Yield Prediction Based on Agrometeorological Indexes and Remote Sensing Data. Remote Sens. 2021, 13, 10. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Bartold, M.; Gurdak, R.; Gatkowska, M.; Kiryla, W.; Bochenek, Z.; Malinska, A. Crop Yield Modelling Applying Leaf Area Index Estimated from Sentinel-2 and Proba-V Data at JECAM site in Poland. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2018, Valencia, Spain, 22–27 July 2018; pp. 5382–5385. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Vazifedoust, M. Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agric. For. Meteorol. 2018, 250–251, 159–170. [Google Scholar] [CrossRef]
- Peng, J.; Yang, F.; Dan, L.; Tang, X. Estimation of China’s Contribution to Global Greening over the Past Three Decades. Land 2022, 11, 3. [Google Scholar] [CrossRef]
- Liu, J.; Pang, X.; Li, Y.R.; Du, L.T. Remote sensing inversion of summer maize leaf area index. J. Agric. Mach. 2016, 47, 309–317. [Google Scholar]
- Rasul, A.; Ibrahim, S.; Onojeghuo, A.R.; Balzter, H. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. [Google Scholar] [CrossRef]
- Li, H.; Gan, Y.; Wu, Y.; Guo, L. EAGNet: A method for automatic extraction of agricultural greenhouses from high spatial resolution remote sensing images based on hybrid multi-attention. Comput. Electron. Agric. 2022, 202, 107431. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Sang, L.; Wang, J. Characterizing Forest Cover and Landscape Pattern Using Multi-Source Remote Sensing Data with Ensemble Learning. Remote Sens. 2022, 14, 5470. [Google Scholar] [CrossRef]
- Fradley, M.; Gyngell, S. Landscapes of Mobility and Movement in North-West Arabia: A Remote Sensing Study of the Neom Impact Zone. Land 2022, 11, 1941. [Google Scholar] [CrossRef]
- Liang, F.C.; Cheng, H.X.; Hu, L.Q.; Li, S.; Ma, L.Y. Calculation method of monitoring cotton growth season based on FY-3/MERSI data. Xinjiang Agric. Sci. 2014, 51, 1381–1387. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2015, 71, 158–182. [Google Scholar] [CrossRef]
- Tian, M.L.; Ban, S.T.; Chang, Q.R.; You, M.M.; Luo, D.; Wang, L.; Wang, S. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. J. Agric. Eng. 2016, 32, 102–108. [Google Scholar]
- Ma, Y.; Zhang, Q.; Yi, X.; Ma, L.; Zhang, L.; Huang, C.; Zhang, Z.; Lv, X. Estimation of Cotton Leaf Area Index (LAI) Based on Spectral Transformation and Vegetation Index. Remote Sens. 2022, 14, 136. [Google Scholar] [CrossRef]
- Kaplan, G.; Fine, L.; Lukyanov, V.; Malachy, N.; Tanny, J.; Rozenstein, O. Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index. Agr. Water. Manag. 2023, 276, 108056. [Google Scholar] [CrossRef]
- Nie, C.; Shi, L.; Li, Z.; Xu, X.; Yin, D.; Li, S.; Jin, X. A comparison of methods to estimate leaf area index using either crop-specific or generic proximal hyperspectral datasets. Eur. J. Agron. 2023, 142, 126664. [Google Scholar] [CrossRef]
- Li, X.G.; Xiang, F.L.; Wu, S.Y.; Liu, X.J.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Cao, Q. Diagnosis methods for nitrogen status based on the time-series vegetation index in winter wheat. J. Triticeae. Crops. 2022, 42, 109–119. [Google Scholar]
- Li, Y.D.; Cao, Z.S.; Shu, S.F.; Sun, B.F.; Ye, C.; Huang, J.B.; Zhu, Y.; Tian, Y.C. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus. J. Crops 2021, 47, 2028–2035. [Google Scholar]
- Huang, Q.; Yang, W.C.; Wei, X.Y.; Mao, X.M. Hyperspectral estimation of leaf area index of spring maize under different film mulching treatments. J. Agric. Mach. 2021, 52, 184–194. [Google Scholar]
- Lambert, M.J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, N.; Wang, D.; Zhi, J.; Zhang, X. Monitoring and Analysis of Cotton Planting Parameters in Multiareas Based on Multisensor. Math. Probl. Eng. 2022, 2022, e7013745. [Google Scholar] [CrossRef]
- Yi, Q.X. Estimation of cotton leaf area index based on sentinel-2 multispectral data. J. Agric. Eng. 2019, 35, 189–197. [Google Scholar]
- Zhang, S.Y.; Wang, Y.W.; Bai, T.C.; Liu, X.W. Cotton leaf area index monitoring model and yield analysis in Alar Reclamation Area. South Agr. 2016, 10, 9–10. [Google Scholar]
- Shu, M.Y.; Gu, X.H.; Sun, L.; Zhu, J.S.; Yang, G.J.; Wang, Y.C.; Zhang, L.Y. Winter wheat LAI hyperspectral inversion based on new vegetation index. China Agric. Sci. 2018, 51, 3486–3496. [Google Scholar]
- Jia, Y.Q.; Wang, Z.X.; Li, Y.; Qu, Y.H.; Liu, Y.X. Estimation model of jujube leaf area index in Aksu City Based on hyperspectral data. Xinjiang Agric. Sci. 2016, 53, 2175–2186. [Google Scholar]
- Zhang, L.; Qiao, N.; Baig, M.H.A.; Huang, C.; Lv, X.; Sun, X.; Zhang, Z. Monitoring vegetation dynamics using the universal normalized vegetation index (UNVI): An optimized vegetation index-VIUPD. Remote Sens. Lett. 2019, 10, 629–638. [Google Scholar] [CrossRef]
- Moroni, M.; Porti, M.; Piro, P. Design of a Remote-Controlled Platform for Green Roof Plants Monitoring via Hyperspectral Sensors. Water 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- George, J.P.; Yang, W.; Kobayashi, H.; Biermann, T.; Carrara, A.; Cremonese, E.; Cuntz, M.; Fares, S.; Gerosa, G.; Grünwald, T.; et al. Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe. Ecol. Indic. 2021, 128, 107841. [Google Scholar] [CrossRef]
- Hossard, L.; Bregaglio, S.; Philibert, A.; Ruget, F.; Resmond, R.; Cappelli, G.; Delmotte, S. A web application to facilitate crop model comparison in ensemble studies. Environ. Modell. Softw. 2017, 97, 259–270. [Google Scholar] [CrossRef]
- Dong, R.; Miao, Y.; Wang, X.; Chen, Z.; Yuan, F.; Zhang, W.; Li, H. Estimating Plant Nitrogen Concentration of Maize Using a Leaf Fluorescence Sensor across Growth Stages. Remote Sens. 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Fu, B.; Burgher, I. Riparian Vegetation NDVI Dynamics and Its Relationship with Climate, Surface Water and Groundwater. J. Arid. Environ. 2015, 113, 59–68. [Google Scholar] [CrossRef]
- Wilson, N.R.; Norman, L.M. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI). Int. J. Remote Sens. 2018, 39, 3243–3274. [Google Scholar] [CrossRef] [Green Version]
- Szigarski, C.; Jagdhuber, T.; Baur, M.; Thiel, C.; Parrens, M.; Wigneron, J.P.; Piles, M.; Entekhabi, D. Analysis of the Radar Vegetation Index and Potential Improvements. Remote Sens. 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Mõttus, M. Sensitivity of Common Vegetation Indices to the Canopy Structure of Field Crops. Remote Sens. 2017, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, J.; Liu, G.; Cheng, F. Forest Leaf Area Index Inversion Based on Landsat OLI Data in the Shangri-La City. J. Indian Soc. Remote Sens. 2019, 47, 967–976. [Google Scholar] [CrossRef]
- Yan, K.; Gao, S.; Chi, H.; Qi, J.; Song, W.; Tong, Y.; Mu, X.; Yan, G. Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Trans. Geosci. Remote 2022, 60, 4400514. [Google Scholar] [CrossRef]
- Sawuti, J. Hyperspectral Estimation of chlorophyll content in spring wheat based on fractional differentiation. J. Wheat Crops 2019, 39, 738–746. [Google Scholar]
- Ba, J.L. Estimation of Crop Canopy LAI and F (APAR) Based on Hyperspectral Data; Huazhong Agricultural University: Wuhan, China, 2013. [Google Scholar]
- Sun, H.; Feng, M.S.; Li, G.X.; Wang, C.; Xiao, L.J.; Yang, W.D. Hyperspectral monitoring of winter wheat leaf area index under different irrigation conditions. Shanxi Agric. Sci. 2019, 47, 315–318. [Google Scholar]
- Agberien, A.V.; Örmeci, B. Monitoring of Cyanobacteria in Water Using Spectrophotometry and First Derivative of Absorbance. Water 2020, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Zhou, K.; Ding, R.; Cheng, Y.; Jiang, G. Estimation of soil copper content based on fractional-order derivative spectroscopy and spectral characteristic band selection. Spectrochim. Acta A 2022, 275, 121190. [Google Scholar] [CrossRef] [PubMed]
- Egidi, N.; Giacomini, J.; Maponi, P. A Fredholm integral operator for the differentiation problem. Comput. Appl. Math. 2022, 41, 220. [Google Scholar] [CrossRef]
- Jo, W.J.; Shin, J.H. Effect of leaf-area management on tomato plant growth in greenhouses. Hortic. Environ. Biotechnol. 2020, 61, 981–988. [Google Scholar] [CrossRef]
- Sasi, J.M.; Gupta, S.; Singh, A.; Kujur, A.; Agarwal, M.; Katiyar-Agarwal, S. Know when and how to die: Gaining insights into the molecular regulation of leaf senescence. Physiol. Mol. Biol. Plant 2022, 28, 1515–1534. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.F. Study on the Spectral Estimation Model and Diagnosis System of Cotton Nitrogen Nutrition; Shi He Zi University: Shihezi, China, 2016. [Google Scholar]
- Read, J.J.; Tarpley, L.; McKinion, J.M.; Reddy, K.R. Narrow-Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton. J. Environ. Qual. 2002, 31, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.X.; Wang, J.; Ren, G.; Zhao, J.R.; Bai, L.; Bai, S.J. Study on the reflection characteristics of cotton canopy based on hyperspectral technology. Agric. Technol. 2008, 4, 56–60. [Google Scholar]
- Wu, H.B.; Zhu, Y.; Tian, Y.C.; Yao, X.; Liu, X.J.; Zhou, Z.G.; Cao, W.X. Quantitative relationship between Cotton Canopy Hyperspectral parameters and leaf nitrogen content. Acta. Phytoecol. 2007, 5, 903–909. [Google Scholar]
- Wang, J.; Li, X.J.; Bai, L.; Du, H.; Xiang, D.; Bai, S.J. Hyperspectral reflectance characteristics of cotton canopy in arid areas. Agrometeorol. China 2012, 33, 114–116. [Google Scholar]
- Neale, C.M.U.; Gonzalez-Dugo, M.P.; Serrano-Perez, A.; Campos, I.; Mateos, L. Cotton canopy reflectance under variable solar zenith angles: Implications of use in evapotranspiration models. Hydrol. Process. 2021, 35, e14162. [Google Scholar] [CrossRef]
- Bai, J.H.; Li, S.K.; Wang, K.R.; Zhang, X.J.; Xiao, C.H.; Sui, X.Y. Spectral response and inversion of canopy reflectance of cotton leaf area index. Chin. Agric. Sci. 2007, 1, 63–69. [Google Scholar]
- Qi, Y.B.; Chu, W.L.; Xie, F.; Chen, Y.; Chang, Q.R. Estimation of cotton canopy leaf area index based on hyperspectral data. Agric. Res. Arid. Areas 2017, 35, 114–121. [Google Scholar]
- Wang, H.B.; Zhao, Z.Q.; Lin, Y.; Feng, R.; Li, L.G.; Zhao, X.L.; Wen, R.H.; Wei, N.; Yao, X.; Zhang, Y.S. Canopy hyperspectral inversion of spring maize leaf area index based on linear regression algorithm. Spectrosc. Spect. Anal. 2017, 37, 1489–1496. [Google Scholar]
- Jin, X.L.; Li, S.K.; Wang, K.R.; Xiao, C.H.; Wang, F.Y.; Chen, B.; Chen, J.L.; Lv, Y.L.; Diao, W.Y.; Wang, Q.; et al. Cotton growth parameter monitoring based on Hyperspectral characteristic parameters. J. Northwest Agric. 2011, 20, 73–77. [Google Scholar]
- Tůma, L.; Kumhálová, J.; Kumhála, F.; Krepl, V. The noise-reduction potential of Radar Vegetation Index for crop management in the Czech Republic. Precis. Agric. 2022, 23, 450–469. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Cui, J.; Chen, J.; Shi, X.; Zhao, X.; Jiang, M.; Zhang, Y.; Wang, W.; Wang, H. Monitoring of leaf nitrogen content of winter wheat using multi-angle hyperspectral data. Int. J. Remote Sens. 2021, 42, 4672–4692. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R.; Barr, S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sens. Environ. 2019, 223, 229–242. [Google Scholar] [CrossRef]
- Maestri, T.; Cossich, W.; Sbrolli, I. Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared. Atmos. Meas. Tech. 2019, 12, 3521–3540. [Google Scholar] [CrossRef]
Index | Formula |
---|---|
NDVI | (Rnir − Rred)/(Rnir + Rred) |
RVI | Rnir/Rred |
EVI2 | 2.5 × (Rnir − Rred)/(Rnir + 2.4 × Rred + 1) |
DVI | Rnir − Rred |
TVI | 0.5 × [120 × (Rnir − R550) − 200 × (Rred − R550)] |
Growth Period | Different Nitrogen Fertilization Treatments | Mean | Min | Max | Standard Deviations | Coefficient of Variation |
---|---|---|---|---|---|---|
N0 | 0.87 | 0.39 | 1.61 | 0.531 | 0.612 | |
N1 | 0.93 | 0.45 | 1.75 | 0.58 | 0.621 | |
Bud stage | N2 | 0.96 | 0.45 | 1.72 | 0.55 | 0.571 |
N3 | 1.02 | 0.48 | 1.72 | 0.515 | 0.505 | |
N4 | 0.98 | 0.46 | 1.88 | 0.625 | 0.64 | |
N0 | 3.31 | 2.15 | 4.05 | 0.823 | 0.249 | |
N1 | 3.53 | 2.61 | 4.26 | 0.687 | 0.195 | |
Flowering | N2 | 3.59 | 2.71 | 4.34 | 0.67 | 0.187 |
N3 | 3.78 | 2.59 | 4.82 | 0.919 | 0.243 | |
N4 | 3.58 | 2.38 | 4.63 | 0.936 | 0.262 | |
N0 | 2.86 | 2.68 | 3.06 | 0.169 | 0.059 | |
N1 | 3.4 | 2.53 | 3.78 | 0.435 | 0.128 | |
Early boll | N2 | 2.99 | 2.58 | 3.41 | 0.395 | 0.132 |
N3 | 3.33 | 3.11 | 3.55 | 0.203 | 0.061 | |
N4 | 3.14 | 2.82 | 3.47 | 0.312 | 0.099 | |
N0 | 2.13 | 2.07 | 2.2 | 0.059 | 0.028 | |
N1 | 2.34 | 2.31 | 2.37 | 0.023 | 0.01 | |
Bolling stage | N2 | 2.42 | 2.4 | 2.44 | 0.016 | 0.006 |
N3 | 2.72 | 2.69 | 2.74 | 0.019 | 0.007 | |
N4 | 2.39 | 2.34 | 2.44 | 0.044 | 0.018 |
Parameter Name | Parameter Description | Estimation Model | Coefficient of Determination | |
---|---|---|---|---|
Original spectrum | NDVI (1067,675) | (R1067 − R675)/(R1067 + R675) | y = 30.47x2 − 26.70x + 3.542 | 0.8152 |
RVI (1067,675) | R1067/R675 | y = −0.025x2 + 0.966x − 4.782 | 0.8611 | |
EVI2 (1067,675) | 2.5 × (R1067 − R675)/(R1067 + 2.4 × R675 + 1) | y = −68.19x2 + 116.8x − 45.73 | 0.8441 | |
DVI (1067,675) | R1067 − R675 | y = −120.4x2 + 140.9x − 36.98 | 0.8354 | |
TVI (1067,675) | 0.5 × [120 × (R1067 − R550) − 200 × (R675 − R550)] | y = −0.009x2 − 1.087x − 27.48 | 0.5272 | |
First-order differential spectrum | NDVI (1142,796) | (R1142 − R796)/(R1142 + R796) | y = −8.224x2 + 1.362x + 4.182 | 0.7113 |
RVI (1142,796) | R1142/R796 | y = 0.001x2 − 0.116x + 4.245 | 0.8165 | |
EVI2 (1142,796) | 2.5 × (R1142 − R 796)/(R1142 + 2.4 × R796 + 1) | y = 12150x2 + 742.3x + 5.938 | 0.6712 | |
DVI (1142,796) | R1142 − R796 | y = −1E+06x2 − 6291.x − 2.678 | 0.5882 | |
TVI (1142,796) | 0.5 × [120 × (R1142 − R550) − 200 × (R796 − R550)] | y = −67.10x2 + 43.47x − 2.764 | 0.7695 | |
Logarithm of the reciprocal of the spectrum | NDVI (1072,675) | (R1072 − R675)/(R1067 + R675) | y = −107.8x2 − 163.7x − 58.00 | 0.7376 |
RVI (1072,675) | R1072/R675 | y = −247.9x2 + 73.58x − 1.124 | 0.8291 | |
EVI2 (1072,675) | 2.5 × (R1072 − R675)/(R1067 + 2.4 × R675 + 1) | y = −140.9x2 − 213.7x − 76.93 | 0.7826 | |
DVI (1072,675) | R1072 − R675 | y = −1.700x2 − 11.41x − 15.05 | 0.6165 | |
TVI (1072,675) | 0.5 × [120 × (R1072 − R550) − 200 × (R675 − R550)] | y = −0.001x2 + 0.270x − 14.32 | 0.6133 |
Parameter Name | Growing Period | Vegetation Index | Estimation Model | Coefficient of Determination |
---|---|---|---|---|
Original spectrum | Bud stage | TVI (1365, 779) | y = −0.0005x2 − 0.0503x + 0.6039 | 0.8979 |
Flowering | NDVI (1396, 716) | y = 6.5415x2 + 6.9377x + 5.0152 | 0.8161 | |
Initial boll period | TVI (1427, 679) | y = −0.0002x2 + 0.511x + 1.2569 | 0.7798 | |
Bolling stage | DVI (1399, 697) | y = 0.013x2 − 0.1985x + 0.6913 | 0.8841 | |
First-order differential spectrum | Bud stage | TVI (1363, 634) | y = −0.0034x2 + 0.0768x + 1.4632 | 0.8816 |
Flowering | RVI (1239, 648) | y = −0.0655x2 + 0.3474x − 1.4449 | 0.8017 | |
Initial boll period | RVI (1239, 648) | y = −0.0655x2 + 0.3474x − 1.4449 | 0.7017 | |
Bolling stage | TVI (1133, 688) | y = 47.595x2 + 16.774x + 4.599 | 0.7363 | |
Logarithm of the reciprocal of the spectrum | Bud stage | EVI2 (1365, 781) | y = −1.5303x2 + 1.6553x + 1.3882 | 0.8815 |
Flowering | NDVI (1402, 699) | y = 0.0112x2 − 0.1532x + 0.3088 | 0.8746 | |
Initial boll period | TVI (1427, 679) | y = −0.0014x2 + 0.1157x + 8.2838 | 0.8503 | |
Bolling stage | NDVI (1377, 777) | y = 0.5334x2 − 1.4809x + 3.6649 | 0.8371 |
Parameter Name | RMSE | RE | Correlation Coefficient | |
---|---|---|---|---|
Original spectrum | NDVI (1067, 675) | 0.0824 | 13.2 | 0.8211 |
RVI (1067, 675) | 0.0797 | 8.9 | 0.8483 | |
EVI2 (1067, 675) | 0.2533 | 15.7 | 0.7352 | |
DVI (1067, 675) | 0.2461 | 14.6 | 0.7742 | |
TVI (1067, 675) | 0.1774 | 13.6 | 0.8052 | |
First-order differential spectrum | NDVI (1142, 796) | 0.2532 | 18.9 | 0.7932 |
RVI (1142, 796) | 0.1942 | 14.2 | 0.8545 | |
EVI2 (1142, 796) | 0.2212 | 14.8 | 0.8359 | |
DVI (1142, 796) | 0.1864 | 12.4 | 0.8772 | |
TVI (1142, 796) | 0.2824 | 19.9 | 0.7874 | |
Logarithm of the reciprocal of the spectrum | NDVI (1072, 675) | 0.1556 | 10.7 | 0.8431 |
RVI (1072, 675) | 0.1214 | 9.29 | 0.8657 | |
EVI2 (1072, 675) | 0.2271 | 13.5 | 0.7574 | |
DVI (1072, 675) | 0.1865 | 11.9 | 0.8366 | |
TVI (1072, 675) | 0.3475 | 15.9 | 0.7253 |
Parameter | Growth Stage | Vegetation Index | RMSE | RE | Correlation Coefficient |
---|---|---|---|---|---|
Original spectrum | Bud stage | TVI (1365, 779) | 0.3127 | 11.29 | 0.8137 |
Flowering | NDVI (1396, 716) | 0.4736 | 16.72 | 0.7021 | |
Initial boll period | TVI (1427, 679) | 0.2835 | 5.49 | 0.8425 | |
Bolling stage | DVI (1399, 697) | 0.2932 | 7.07 | 0.8633 | |
First-order differential spectrum | Bud stage | TVI (1363, 634) | 0.3584 | 19.55 | 0.7277 |
Flowering | RVI (1239, 648) | 0.3925 | 11.25 | 0.7378 | |
Initial boll period | RVI (1239, 648) | 0.3455 | 10.64 | 0.7917 | |
Bolling stage | TVI (1133, 688) | 0.3466 | 11.14 | 0.7857 | |
Logarithm of the reciprocal of the spectrum | Bud stage | EVI2 (1365, 781) | 0.3132 | 12.65 | 0.7869 |
Flowering | NDVI (1402, 699) | 0.3214 | 5.89 | 0.7991 | |
Initial boll period | TVI (1427, 679) | 0.3235 | 8.10 | 0.8069 | |
Bolling stage | NDVI (1377, 777) | 0.3202 | 9.19 | 0.8277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Lv, X.; Gao, P.; Zhang, L.; Zhang, Z.; Zhang, Q.; Ma, Y.; Yi, X.; Yin, C.; Ma, L. Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum. Land 2023, 12, 78. https://doi.org/10.3390/land12010078
Fan X, Lv X, Gao P, Zhang L, Zhang Z, Zhang Q, Ma Y, Yi X, Yin C, Ma L. Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum. Land. 2023; 12(1):78. https://doi.org/10.3390/land12010078
Chicago/Turabian StyleFan, Xianglong, Xin Lv, Pan Gao, Lifu Zhang, Ze Zhang, Qiang Zhang, Yiru Ma, Xiang Yi, Caixia Yin, and Lulu Ma. 2023. "Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum" Land 12, no. 1: 78. https://doi.org/10.3390/land12010078
APA StyleFan, X., Lv, X., Gao, P., Zhang, L., Zhang, Z., Zhang, Q., Ma, Y., Yi, X., Yin, C., & Ma, L. (2023). Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum. Land, 12(1), 78. https://doi.org/10.3390/land12010078