Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parent Material
- -
- Monghidoro formation (MOH): Cretacic–Paleogene (External Ligurian Domain) thick-bedded turbidite sandstones, with microconglomerates at the base and alternating shales and siltstones;
- -
- Loiano formation (LOI): Paleogene (Epiligurian succession) thick-bedded, weakly cemented sandstones;
- -
- Castiglione dei Pepoli sandstones (GRA), dormant landslide deposits: Miocene (Cervarola–Falterona succession) turbiditic sandstones in shallow to medium-thick beds;
- -
- Mount Cervarola sandstones, Dardagna member (CEV): Neogene (Cervarola–Falterona succession) alternating arenaceous and pelitic turbidite deposits, with intercalations of marly-calcareous turbidites, silty marls, calcarenites, and black clays. In the investigated area, there is a thick bed of black pelites and black and grey sandstones;
- -
- Mount Modino sandstones (MOD): Paleogene–Neogene (Modino succession) arenaceous layers intercalated with thinly layered turbidites made of fine sandstones, siltstones, marls, or, rarely, shales;
- -
- Macigno sandstones (MAC): late Oligocene (Tuscan succession) thick turbidite arenaceous sandstones and siltstones with rare thin carbonate beds and chaotic beds.
- -
- Mount Adone formation (ADO): post-lower Pliocene (Pliocene and Pleistocene marine succession) prevailing sandstones, generally lightly cemented, with abundant silty-clay matrix and subordinate conglomerates, in medium layers to banks, alternating with pelitic sand with thin to thick stratifications.
2.2. Climate
2.3. Soil Profiles
2.4. Laboratory Analyses
2.5. Soil Organic Matter Stock Calculation
2.6. Statistical Method
3. Results
3.1. Pedodiversity and Physicochemical Properties at Lower and Higher Altitude Range
3.1.1. Lower Altitude Range
3.1.2. Higher Altitude Range
3.2. Cluster Analysis (CA) and Principal Component Analysis (PCA)
3.2.1. Lower Altitude Range
3.2.2. Higher Altitude Range
3.3. Organic C and Total N Stocks
4. Discussion
4.1. Factors Affecting Pedodiversity
4.2. Properties of Soils at 400–1000 m a.s.l.
4.3. Properties of Soils at the 1000–2134 m a.s.l. Altitudinal Range
4.4. Organic C and Total N Stocks within 0–30 CM Soil Depth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MAC | MOD | CEV | GRA | MOH | LOI | ADO | |
---|---|---|---|---|---|---|---|
SiO2 (%) | 67.1 | 62.27 | 60.57 | 63.46 | 70.33 | 72.43 | 58.46 |
TiO2 (%) | 0.49 | 0.5 | 0.5 | 0.71 | 0.3 | 0.23 | 0.69 |
Al2O3 (%) | 12.94 | 11.25 | 12.50 | 16.57 | 13.79 | 14.01 | 13.11 |
Fe2O3 (%) | 4.2 | 4.11 | 3.91 | 4.87 | 2.02 | 1.43 | 5.27 |
MnO (%) | 0.07 | 0.07 | 0.1 | 0.13 | 0.05 | 0.02 | 0.13 |
MgO (%) | 3.46 | 3.43 | 3.08 | 4.63 | 1.09 | 1.07 | 2.12 |
CaO (%) | 2.33 | 5.08 | 7.09 | 0.35 | 0.73 | 0.21 | 7.78 |
Na2O (%) | 2.76 | 2.68 | 2.7 | 2.38 | 2.27 | 3.02 | 2.59 |
K2O (%) | 2.19 | 2.29 | 2.07 | 2.48 | 3.6 | 4.31 | 2.64 |
P2O5 (%) | 0.13 | 0.14 | 0.13 | 0.22 | 0.09 | 0.05 | 0.15 |
References
- Schneider, F.D.; Brose, U.; Rall, B.C.; Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 2016, 7, 12718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanz, D.M.; Cutts, V.; Barajas-Barbosa, M.P.; Algar, A.C.; Beierkuhnlein, C.; Fernández-Palacios, J.M.; Field, R.; Kreft, H.; Steinbauer, M.J.; Weigelt, P.; et al. Climatic and biogeographical drivers of functional diversity in the flora of the Canary Islands. Glob. Ecol. Biogeogr. 2022, 31, 1313–1331. [Google Scholar] [CrossRef]
- Inkotte, J.; Bomfim, B.; da Silva, S.C.; Valadão, M.B.X.; da Rosa, M.G.; Viana, R.B.; D’Ângelo Rios, P.; Gatto, A.; Pereira, R.S. Linking soil biodiversity and ecosystem function in a Neotropical savanna. Appl. Soil Ecol. 2022, 169, 104209. [Google Scholar] [CrossRef]
- Peng, Y.; Holmstrup, M.; Schmidt, I.K.; De Schrijver, A.; Schelfhout, S.; Heděnec, P.; Zheng, H.; Bachega, L.R.; Yue, K.; Vesterdal, L. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 2022, 407, 115570. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Dazzi, C. The Soils of Italy; Springer: New York, NY, USA, 2013; pp. 295–302. ISBN 978-94-007-5641-0. [Google Scholar]
- Guo, Y.; Gong, P.; Amundson, R. Pedodiversity in the United States of America. Geoderma 2003, 117, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Toomanian, N.; Jalalian, A.; Khademi, H.; Eghbal, M.K.; Papritz, A. Pedodiversity and pedogenesis in Zayandeh-rud Valley, Central Iran. Geomorphology 2006, 81, 376–393. [Google Scholar] [CrossRef]
- Sokołowska, J.; Józefowska, A.; Woźnica, K.; Zaleski, T. Interrelationship between soil depth and soil properties of Pieniny National Park forest (Poland). J. Mt. Sci. 2019, 16, 1534–1545. [Google Scholar] [CrossRef]
- Casalini, A.I.; Bouza, P.J.; Bisigato, A.J. Geomorphology, soil and vegetation patterns in an arid ecotone. Catena 2019, 174, 353–361. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Bockheim, J.G.; Gennadiyev, A.N.; Hartemink, A.E.; Brevik, E.C. Soil-forming factors and Soil Taxonomy. Geoderma 2014, 226–227, 231–237. [Google Scholar] [CrossRef]
- Sorokin, A.; Owens, P.; Láng, V.; Jiang, Z.D.; Michéli, E.; Krasilnikov, P. “Black soils” in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: Quantitative correlation and implications for pedodiversity assessment. Catena 2021, 196, 104824. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; Almendros, G. Influence of soil forming factors on the molecular structure of soil organic matter and carbon levels. Catena 2020, 189, 104501. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilson, B.R. Factors controlling soil organic carbon stocks with depth in Eastern Australia. Soil Sci. Soc. Am. J. 2015, 79, 1741–1751. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, J.G.; Clark, M.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; et al. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 2011, 167–168, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Adiyah, F.; Michéli, E.; Csorba, A.; Gebremeskel Weldmichael, T.; Gyuricza, C.; Ocansey, C.M.; Dawoe, E.; Owusu, S.; Fuchs, M. Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena 2022, 216, 106366. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W. Soil organic matter in major pedogenic soil groups. Geoderma 2021, 384, 114785. [Google Scholar] [CrossRef]
- Weissert, L.F.; Salmond, J.A.; Schwendenmann, L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma 2016, 271, 80–90. [Google Scholar] [CrossRef]
- Boudjabi, S.; Chenchouni, H. Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena 2022, 210, 105910. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Gonçalves, D.R.P.; Sá, J.C.d.M.; Mishra, U.; Cerri, C.E.P.; Ferreira, L.A.; Furlan, F.J.F. Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma 2017, 286, 88–97. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Agnelli, A.; Vittori Antisari, L. Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What’s the best one? Land Degrad. Dev. 2022, 33, 1446–1458. [Google Scholar] [CrossRef]
- Philippis, J.D.; Marion, D.A. Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma 2004, 124, 73–89. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Feoli, E. Global Relationships of Pedodiversity and Biodiversity. Vadose Zone J. 2013, 12, vzj2012.0186. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; L’Abate, G. Beyond the concept of dominant soil: Preserving pedodiversity in upscaling soil maps. Geoderma 2016, 271, 243–253. [Google Scholar] [CrossRef]
- Gutiérrez-Girón, A.; Díaz-Pinés, E.; Rubio, A.; Gavilán, R.G. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma 2015, 237–238, 1–8. [Google Scholar] [CrossRef]
- Djukic, I.; Zehetner, F.; Tatzber, M.; Gerzabek, M.H. Soil organic-matter stocks and characteristics along an alpine elevation gradient. J. Plant Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
- Britton, A.J.; Helliwell, R.C.; Lilly, A.; Dawson, L.; Fisher, J.M.; Coull, M.; Ross, J. An integrated assessment of ecosystem carbon pools and fluxes across an oceanic alpine toposequence. Plant Soil 2011, 345, 287–302. [Google Scholar] [CrossRef]
- Masseroli, A.; Bollati, I.M.; Proverbio, S.S.; Pelfini, M.; Trombino, L. Soils as a useful tool for reconstructing geomorphic dynamics in high mountain environments: The case of the Buscagna stream hydrographic basin (Lepontine Alps). Geomorphology 2020, 371, 107442. [Google Scholar] [CrossRef]
- Egli, M.; Poulenard, J. Soils of Mountainous Landscapes. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Wiley: Hoboken, NJ, USA, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps-A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Hagedorn, F.; Gavazov, K.; Alexander, J.M. Above- And belowground linkages shape responses of mountain vegetation to climate change. Science 2019, 365, 1119–1123. [Google Scholar] [CrossRef]
- Romeo, R.; Vita, A.; Manuelli, S.; Zanini, E.; Freppaz, M.; Stanchi, S. Understanding Mountain Soils: A contribution from Mountain Areas to the International Year of Soils 2015; The Food and Agriculture Organization (FAO): Rome, Italy, 2015; pp. 1–169. ISBN 978-92-5-108804-3. [Google Scholar]
- Prietzel, J.; Christophel, D. Organic carbon stocks in forest soils of the German alps. Geoderma 2014, 221–222, 28–39. [Google Scholar] [CrossRef]
- Szewczyk, A.; Kaniuczak, J.; Hajduk, E.; Knap, R. Physical and chemical properties of selected soils from the surroundings of the Magura National Park (southern Poland). Soil Sci. Annu. 2015, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastià, M.T.; Thompson, R.; Romanyà, J. Soil organic carbon storage in mountain grasslands of the Pyrenees: Effects of climate and topography. Biogeochemistry 2007, 82, 279–289. [Google Scholar] [CrossRef]
- Gutman, G.; Ohring, G.; Joseph, J.H. Interaction between the geobotanic state and climate: A suggested approach and a test with a zonal model. J. Atmos. Sci. 1984, 41, 2663–2678. [Google Scholar] [CrossRef]
- Ma, H.-P.; Yang, X.-L.; Guo, Q.-Q.; Zhang, X.-J.; Zhou, C.-N. Soil organic carbon pool along different altitudinal level in the Sygera Mountains, Tibetan Plateau. J. Mt. Sci. 2016, 13, 476–483. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Sharma, N.K.; Alam, N.M.; Singh, R.J.; Juyal, G.P. Elevation, slope aspect and integrated nutrient management effects on crop productivity and soil quality in North-west Himalayas, India. J. Mt. Sci. 2014, 11, 1208–1217. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423. [Google Scholar] [CrossRef]
- Józefowska, A.; Miechówka, A. Enzymatic activity and enchytraeids abundance in agricultural mountain soils. Soil Sci. Annu. 2015, 66, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. Geodiversity: A significant, multi-faceted and evolving, geoscientific paradigm rather than a redundant term. Proc. Geol. Assoc. 2021, 132, 605–619. [Google Scholar] [CrossRef]
- Slaymaker, O.; Spencer, T.; Embleton-Hamann, C. Geomorphology and Global Environmental Change; Cambridge University Press: Cambridge, UK, 2015; ISBN 9780511627057. [Google Scholar]
- Johnstone, J. Alpine plant life: Functional plant ecology of high mountain ecosystems. By Christian Körner. Mt. Res. Dev. 2021, 41, M1–M2. [Google Scholar] [CrossRef]
- Bargali, V.K.; Bargali, S.S. Effect of size and altitude on soil organic carbon stock in homegarden agroforestry system in Central Himalaya, India. Acta Ecol. Sin. 2020, 40, 483–491. [Google Scholar] [CrossRef]
- Bangroo, S.A.; Najar, G.R.; Achin, E.; Truong, P.N. Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena 2020, 193, 104632. [Google Scholar] [CrossRef]
- Massaccesi, L.; De Feudis, M.; Leccese, A.; Agnelli, A. Altitude and vegetation affect soil organic carbon, basal respiration and microbial biomass in apennine forest soils. Forests 2020, 11, 710. [Google Scholar] [CrossRef]
- Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric. Ecosyst. Environ. 2005, 105, 255–266. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Gebrehiwot, K.; Desalegn, T.; Woldu, Z.; Demissew, S.; Teferi, E. Soil organic carbon stock in Abune Yosef afroalpine and sub-afroalpine vegetation, northern Ethiopia. Ecol. Process. 2018, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Soil survey staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Brombin, V.; Mistri, E.; De Feudis, M.; Forti, C.; Salani, G.M.; Natali, C.; Falsone, G.; Vittori Antisari, L.; Bianchini, G. Soil carbon investigation in three pedoclimatic and agronomic settings of northern Italy. Sustainability 2020, 12, 539. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Vianello, G.; Pontalti, F.; Lorito, S.; Gherardi, M. Land use effects on organic matter in brown soils of the emilian apennines. In The Soils of Tomorrow: Soils Changing in a Changing World; CAB International: Wallingford, UK, 2008; pp. 311–328. [Google Scholar]
- Falsone, G.; Marinari, S.; Vittori Antisari, L.; Vianello, G. Soil processes related to organic matter modifications following Douglas-fir mature reforestation. Biol. Fertil. Soils 2015, 51, 277–287. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Vittori Antisari, L. The conversion of abandoned chestnut forests to managed ones does not affect the soil chemical properties and improves the soil microbial biomass activity. Forests 2020, 11, 786. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vianello, G.; Vittori Antisari, L. Stable organic carbon pool rises in soil under chestnut (Castanea sativa Mill.) forest for timber production after 15 years since grafting onto satin-cut stumps. EQA—Int. J. Environ. Qual. 2020, 40, 1–10. [Google Scholar]
- De Feudis, M.; Selmi, C.; Falsone, G.; Missere, D.; Di Bonito, M.; Vittori Antisari, L. The importance of incorporating soil in the life cycle assessment procedure to improve the sustainability of agricultural management. Catena 2022, 218, 106563. [Google Scholar] [CrossRef]
- Dell’Abate, M.T.; Giovannini, C.; Pontalti, F.; Vianello, G.; Vittori Antisari, L. Caratterizzazione quali-quantitativa della sostanza organica degli epipedon di suoli bruni acidi dell’appennino emiliano sotto bosco di latifoglie e di conifere. In Atti Convegno Nazionale Società Italiana di Scienze del Suolo “Suolo Ambiente Paesaggio”; Gessa, C., Lorito, S., Vianello, G., Vittori Antisari, L., Eds.; Società Italiana di Scienza del Suolo: Palermo, Italy, 2007; Volume 1, pp. 332–342. ISBN 978.88.902831-1-6. [Google Scholar]
- Vittori Antisari, L.; Dell’Abate, M.T.; Buscaroli, A.; Gherardi, M.; Nisini, L.; Vianello, G. Role of soil organic matter characteristics in a pedological survey: “Bosco Frattona” natural reserve (Site of Community Importance, Italy) case study. Geoderma 2010, 156, 302–315. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Marinari, S.; Dell’Abate, M.T.; Baffi, C.; Vianello, G. Plant cover and epipedon SOM stability as factors affecting brown soil profile development and microbial activity. Geoderma 2011, 161, 212–224. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Falsone, G.; Carbone, S.; Vianello, G. Short-term effects of forest recovery on soil carbon and nutrient availability in an experimental chestnut stand. Biol. Fertil. Soils 2013, 49, 165–173. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Falsone, G.; Carbone, S.; Marinari, S.; Vianello, G. Douglas-fir reforestation in North Apennine (Italy): Performance on soil carbon sequestration, nutrients stock and microbial activity. Appl. Soil Ecol. 2015, 86, 82–90. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Agnelli, A.; Corti, G.; Falsone, G.; Ferronato, C.; Marinari, S.; Vianello, G. Modern and ancient pedogenesis as revealed by Holocene fire—Northern Apennines, Italy. Quat. Int. 2018, 467, 264–276. [Google Scholar] [CrossRef]
- Vittori Antisari, L.; Trenti, W.; De Feudis, M.; Bianchini, G.; Falsone, G. Soil quality and organic matter pools in a temperate climate (Northern italy) under different land uses. Agronomy 2021, 11, 1815. [Google Scholar] [CrossRef]
- Marinari, S.; Bonifacio, E.; Moscatelli, M.C.; Falsone, G.; Vittori Antisari, L.; Vianello, G. Soil development and microbial functional diversity: Proposal for a methodological approach. Geoderma 2013, 192, 437–445. [Google Scholar] [CrossRef]
- Marinari, S.; Vittori Antisari, L. Effect of lithological substrate on microbial biomass and enzyme activity in brown soil profiles in the northern Apennines (Italy). Pedobiologia 2010, 53, 313–320. [Google Scholar] [CrossRef]
- Dinelli, E.; Lucchini, F.; Mordenti, A.; Paganelli, L. Geochemistry of Oligocene-Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. Sediment. Geol. 1999, 127, 193–207. [Google Scholar] [CrossRef]
- van de Kamp, P.C.; Leake, B.E. Petrology and geochemistry of siliciclastic rocks of mixed feldspathic and ophiolitic provenance in the Northern Apennines, Italy. Chem. Geol. 1995, 122, 1–20. [Google Scholar] [CrossRef]
- Gazzi, P. Ordine di apparizione dei minerali pesanti nella formazione di Monghidoro e nella serie di Loiano (Appennino Bolognese). Mineral. Petrogr. Acta 1963, 9, 79–95. [Google Scholar]
- Gazzi, P. Le arenarie del flysch sopracretaceo dell’Appennino modenese; correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar]
- Van Wambeke, A.; Hastings, P.; Tolomeo, M. Newhall Simulation Model: A BASIC Program for the IBM PC; Dept. of Agronomy, Cornell University: Ithaca, NY, USA, 1986. [Google Scholar]
- De Philippis, A. Forest ecology and phytoclimatology. Unasylva 1951, 5, 1. [Google Scholar]
- De Philippis, A. Classificazioni ed eindici del clima, in rapporto alla vegetazione forestale italiana. Plant Biosyst. 1937, 44, 1–169. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; Volume sssabookse, ISBN 978-0-89118-864-3. [Google Scholar]
- Soil Survey Laboratory Staff. Soil Survey Laboratory Staff. Soil survey laboratory methods manual. In Soil Survey Investigations Report; USDA-SCS: Washington, DC, USA, 2004; Volume 42, p. 700. [Google Scholar]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- FAO. Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (version 1). In Livestock Environmental Assessment and Performance (LEAP) Partnership; FAO: Rome, Italy, 2019; 170p. [Google Scholar]
- Hollis, J.M.; Hannam, J.; Bellamy, P.H. Empirically-derived pedotransfer functions for predicting bulk density in European soils. Eur. J. Soil Sci. 2012, 63, 96–109. [Google Scholar] [CrossRef]
- Garlato, A.; Obber, S.; Vinci, I.; Sartori, G.; Manni, G. Stock attuale di carbonio organico nei suoli di montagna del Veneto. In Studi Trentini di Scienze Naturali; Museo Tridentino di Scienze Naturali: Trento, Italy, 2009; Volume 85, pp. 69–81. [Google Scholar]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve ‘Marchesale’ (Calabria region, southern Italy). J. Maps 2016, 13, 92–99. [Google Scholar] [CrossRef]
- Brenna, S.; Stolbovoy, V.; Rocca, R.; Sciaccaluga, M. Potential carbon sequestration of Lombardy soils (Italy). In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 70–73. [Google Scholar]
- Ungaro, F.; Staffilani, F.; Tarocco, P. Assessing and mapping topsoil organic carbon stock at regional scale: A scorpan kriging approach conditional on soil map delineations and land use. Land Degrad. Dev. 2010, 21, 565–581. [Google Scholar] [CrossRef]
- Faggian, V.; Bini, C.; Zilioli, D.M. Carbon stock evaluation from topsoil of forest stands in ne Italy. Int. J. Phytoremediat. 2012, 14, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- RStudio. Rstudio Team Rstudio: Integrated Development Environment for R 2021. 2021. Available online: https://www.rstudio.com/products/rstudio/ (accessed on 18 October 2022).
- Evans, D.L.; Quinton, J.N.; Tye, A.M.; Rodés; Rushton, J.C.; Davies, J.A.C.; Mudd, S.M. How the composition of sandstone matrices affects rates of soil formation. Geoderma 2021, 401, 115337. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Sartori, G.; Kolb, E.; Gobat, J.M.; Le Bayon, R.C.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 4: Terrestrial humus systems and forms—Specific terms and diagnostic horizons. Appl. Soil Ecol. 2018, 122, 56–74. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, M.E.; Freppaz, M.; Filippa, G.; Zanini, E. Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena 2014, 113, 122–137. [Google Scholar] [CrossRef]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, D.L.; Nater, E.A. Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material. Sci. Rep. 2017, 7, 17575. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, B.; Vega, F.A.; Silva, L.F.O.; Andrade, L. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 2012, 421–422, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Bruun, H.H.; Moen, J.; Virtanen, R.; Grytnes, J.-A.; Oksanen, L.; Angerbjörn, A. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 2006, 17, 37. [Google Scholar] [CrossRef]
- Gastauer, M.; Thiele, J.; Porembski, S.; Neri, A.V. How do altitude and soil properties influence the taxonomic and phylogenetic structure and diversity of Brazilian páramo vegetation? J. Mt. Sci. 2020, 17, 1045–1057. [Google Scholar] [CrossRef]
- Pintaldi, E.; Viglietti, D.; D’Amico, M.E.; Magnani, A.; Freppaz, M. Abiotic parameters and pedogenesis as controlling factors for soil C and N cycling along an elevational gradient in a subalpine Larch forest (NW Italy). Forests 2019, 10, 614. [Google Scholar] [CrossRef]
- Egli, M.; Mirabella, A.; Mancabelli, A.; Sartori, G. Weathering of soils in Alpine areas as influenced by climate and parent material. Clays Clay Miner. 2004, 52, 287–303. [Google Scholar] [CrossRef]
- De Feudis, M.; Cardelli, V.; Massaccesi, L.; Bol, R.; Willbold, S.; Cocco, S.; Corti, G.; Agnelli, A. Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy). Geoderma 2016, 276, 53–63. [Google Scholar] [CrossRef]
- Pezzi, G.; Maresi, G.; Conedera, M.; Ferrari, C. Woody species composition of chestnut stands in the Northern Apennines: The result of 200 years of changes in land use. Landsc. Ecol. 2011, 26, 1463–1476. [Google Scholar] [CrossRef]
- Pereira, M.G.; Caramelo, L.; Gouveia, C.; Gomes-Laranjo, J.; Magalhães, M. Assessment of weather-related risk on chestnut productivity. Nat. Hazards Earth Syst. Sci. 2011, 11, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- De Feudis, M.; Falsone, G.; Vittori Antisari, L. Mid-term (30 years) changes of soil properties under chestnut stands due to organic residues management: An integrated study. Catena 2021, 198, 105021. [Google Scholar] [CrossRef]
- Melicharová, L.; Vizoso-Arribe, O. Situation of sweet chestnut (Castanea sativa Mill.) in Spain, galicia: A review. Sci. Agric. Bohem. 2012, 2012, 78–84. [Google Scholar]
- Papaioannou, E.; Kostopoulou, S.; Stefanou, S. The effect of the conversion of chestnut (Castanea sativa Mill.) forests to orchards on soil fertility and nutrient content in leaves. Catena 2022, 211, 105948. [Google Scholar] [CrossRef]
- Mellano, M.G.; Beccaro, G.L.; Donno, D.; Marinoni, D.T.; Boccacci, P.; Canterino, S.; Cerutti, A.K.; Bounous, G. Castanea spp. biodiversity conservation: Collection and characterization of the genetic diversity of an endangered species. Genet. Resour. Crop. Evol. 2012, 59, 1727–1741. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Zhou, Y.; Zheng, H.; Xu, Z.; Tan, B.; You, C.; Zhang, L.; Li, H.; Guo, L.; et al. Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. Sci. Total Environ. 2021, 753, 142287. [Google Scholar] [CrossRef] [PubMed]
- Gruba, P.; Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 2015, 511, 655–662. [Google Scholar] [CrossRef]
- Ramos, F.T.; Dores, E.F.d.C.; Weber, O.L.d.S.; Beber, D.C.; Campelo, J.H.; Maia, J.C.d.S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S. The climax vegetation above timberline in the northern and central Apennines. Fitosociologia 1994, 26, 5–17. [Google Scholar]
- Tomaselli, M.; Carbognani, M.; Foggi, B.; Petraglia, A.; Rossi, G.; Lombardi, L.; Gennai, M. The primary grasslands of the northern Apennine summits (N-Italy): A phytosociological and ecological survey. Tuexenia 2019, 39, 181–213. [Google Scholar] [CrossRef]
- Benatti, A.; Bal, M.; Allée, P.; Bosi, G.; Mercuri, A.M. Plant landscape reconstruction above the current timberline at the Monte Cimone and Corno alle Scale mountain areas (Northern Apennines, Italy) during the Late Holocene: The evidence from soil charcoal. Holocene 2019, 29, 1767–1781. [Google Scholar] [CrossRef]
- Tomaselli, M.; Del Prete, C.; Manzini, M.L. Parco Regionale Dell’alto Appennino Modenese: L’ambiente Vegetale; Regione Emilia-Romagna: Bologna, Italy, 1996. [Google Scholar]
- Alessandrini, A.; Foggi, B.; Rossi, G.; Tomaselli, M. La Flora di Altitudine dell’Appennino Tosco-Emiliano; Regione Emilia-Romagna: Bologna, Italy, 2003; p. 329. [Google Scholar]
- Lorenz, M.; Derrien, D.; Zeller, B.; Udelhoven, T.; Werner, W.; Thiele-Bruhn, S. The linkage of 13C and 15N soil depth gradients with C:N and O:C stoichiometry reveals tree species effects on organic matter turnover in soil. Biogeochemistry 2020, 151, 203–220. [Google Scholar] [CrossRef]
- Spohn, M.; Chodak, M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biol. Biochem. 2015, 81, 128–133. [Google Scholar] [CrossRef]
- Osei, R.; Titeux, H.; Bielak, K.; Bravo, F.; Collet, C.; Cools, C.; Cornelis, J.T.; Heym, M.; Korboulewsky, N.; Löf, M.; et al. Tree species identity drives soil organic carbon storage more than species mixing in major two-species mixtures (pine, oak, beech) in Europe. For. Ecol. Manage. 2021, 481, 118752. [Google Scholar] [CrossRef]
- Mora, J.L.; Molina-Clerencia, M.; Girona-García, A.; Martí-Dalmau, C.; Badía-Villas, D. Factors controlling the buildup of humus and particulate organic matter in European beech and Scots pine stands at their southernmost distribution limits (Moncayo Massif, Spain). Geoderma 2021, 401, 115211. [Google Scholar] [CrossRef]
- Tashi, S.; Singh, B.; Keitel, C.; Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 2016, 22, 2255–2268. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, I.; Allamano, P.; Bonifacio, E.; Claps, P. Vegetation and topographic control on spatial variability of soil organic carbon. Pedosphere 2013, 23, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pinés, E.; Rubio, A.; Van Miegroet, H.; Montes, F.; Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P.; Taxak, A.K. Effect of vegetation communities and altitudes on the soil organic carbon stock in Kotli Bhel-1A catchment, India. Clean—Soil Air Water 2017, 45, 1600650. [Google Scholar] [CrossRef]
- Tewksbury, C.E.; Van Miegroet, H. Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest. Can. J. For. Res. 2007, 37, 1161–1172. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Clark, K.E.; Stallard, R.F.; Murphy, S.F.; Scholl, M.A.; González, G.; Plante, A.F.; McDowell, W.H. Extreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico. Nat. Commun. 2022, 13, 2058. [Google Scholar] [CrossRef]
- Angst, G.; Pokorný, J.; Mueller, C.W.; Prater, I.; Preusser, S.; Kandeler, E.; Meador, T.; Straková, P.; Hájek, T.; van Buiten, G.; et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 2021, 159, 108302. [Google Scholar] [CrossRef]
- La Manna, L.; Tarabini, M.; Gomez, F.; Rostagno, C.M. Changes in soil organic matter associated with afforestation affect erosion processes: The case of erodible volcanic soils from Patagonia. Geoderma 2021, 403, 115265. [Google Scholar] [CrossRef]
- Heger, A.; Becker, J.N.; Vásconez Navas, L.K.; Eschenbach, A. Factors controlling soil organic carbon stocks in hardwood floodplain forests of the lower middle Elbe River. Geoderma 2021, 404, 115389. [Google Scholar] [CrossRef]
Phytoclimatic a | Altitude Range a | Soil Temperature Regime b | Soil Moisture Regime b | Soil Profile | Soil Profile Altitude range | |
---|---|---|---|---|---|---|
Zone | Subzone | (m a.s.l.) | Number | |||
Alpinetum | >2000 | Cryic | Perudic | 3 | ||
Picetum | cold | 1800–2000 | Frigid | Perudic | 6 | |
warm | 1500–1800 | Frigid | Udic | 43 | ||
Fagetum | cold | 1300–1500 | Frigid | Udic | 16 | |
warm | 1000–1300 | Mesic | Udic | 11 | ||
Castanetum | cold | 600–1000 | Mesic | Udic | 13 | |
warm | 400–600 | Mesic | Udic | 57 |
400–1000 m Altitudinal Range | 1000–2134 m Altitudinal Range | ||||||
---|---|---|---|---|---|---|---|
CHE | MF | BEF | BLB | CON | GS | ||
pH | 5.1 ± 0.7 b | 5.8 ± 1.2 a | 4.6 ± 0.5 b | 4.5 ± 0.3 b | 4.8 ± 0.6 b | 5.4 ± 0.8 a | |
TOC (g kg−1) | 28.9 ± 28.1 | 30.7 ± 28.8 | 47.4 ± 30.0 a | 52.1 ± 24.1 a | 45.8 ± 24.4 a | 45.8 ± 21.8 a | |
TN (g kg−1) | 1.7 ± 1.5 | 1.8 ± 1.4 | 2.8 ± 1.7 b | 3.5 ± 1.7 a | 3.2 ± 1.3 a | 3.9 ± 1.6 a | |
Caexch (cmol(+) kg−1) | 5.1 ± 7.6 b | 9.1 ± 6.0 a | 5.7 ± 6.2 a | 2.3 ± 2.7 b | 7.8 ± 7.1 a | 6.3 ± 5.2 a | |
BS (%) | 31.3 ± 27.3 b | 59.7 ± 29.4 a | 37.3 ± 27.9 b | 21.9 ± 16.2 c | 46.4 ± 32.3 b | 61.6 ± 33.5 a | |
C:N ratio | 16.2 ± 6.3 | 17.1 ± 5.6 | 17.2 5.3 a | 15.4 ± 4.8 b | 14.1 ± 4.8 b | 11.7 ± 1.8 c | |
Sand (%) | 49.0 ± 15.0 b | 57.0 ± 15.0 a | 61.0 ± 13.8 ab | 61.0 ± 15.0 ab | 53.0 ± 20.8 b | 63.0 ± 16.2 a | |
Silt (%) | 40.0 ± 15.0 a | 27.0 ± 12.0 b | 30.0 ± 11.1 a | 31.0 ± 11.9 a | 36.0 ± 19.5 a | 28.0 ± 12.4 a | |
Clay (%) | 10.0 ± 4.9 b | 16.0 ± 8.4 a | 10.0 ± 6.9 ab | 8.0 ± 5.4 b | 11.0 ± 5.7 a | 9.0 ± 6.8 ab | |
Soil Taxonomy [52] | Orders | Subgroups | Subgroups | ||||
Entisols | Lithic Udorthents Typic Udorthents | Lithic Udorthents Typic Udorthents | Lithic Udorthents Typic Udorthents | Typic Udorthents | Lithic Udorthents Typic Udorthents | Lithic Cryorthents Typic Udorthents | |
Mollisols | Lithic Hapludolls | ||||||
Inceptisols | Lithic Dystrudepts Oxyaquic Dystrudepts Typic Dystrudepts | Lithic Eutrudepts Typic Eutrudepts Lithic Dystrudepts Oxyaquic Dystrudepts Typic Dystrudepts | Humic Lithic Dystrudepts Humic Lithic Eutrudepts Humic Dystrudepts Oxyaquic Dystrudepts Typic Dystrudepts (Spodic) Lithic Dystrudepts | Lithic Dystrudepts Humic Lithic Dystrudepts Humic Dystrudepts Typic Dystrudepts | Lithic Dystrudepts Lithic Eutrudepts Humic Lithic Dystrudepts Humic Lithic Eutrudepts Typic Dystrudepts Typic Eutrudepts | Lithic Dystrudepts | |
Spodosols | Lithic Haplohumods | Typic Haplorthods | Lithic Haplorthods |
Soil Order | Soil Subgroup | Sand | Silt | Clay | Texture | TOC | TN | C/N | Caexch | BS | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | g kg−1 | g kg−1 | cmol(+) kg−1 | % | |||||
Entisol | Lithic Udorthents (5) | 65 ± 10 a | 21 ± 8 c | 14 ± 7 ab | SL | 31.1 ± 27.7 | 2.0 ± 1.7 | 16.2 ± 6.0 bc | 9.4 ± 9.4 ab | 65.7 ± 22.8 a | 5.7 ± 1.0 ab |
Typic Udorthents (8) | 51 ± 16 cd | 40 ± 17 b | 10 ± 4 b | L | 18.6 ± 18.5 | 1.2 ± 1.2 | 15.1 ± 6.3 ab | 11.3 ± 10.4 ab | 45.8 ± 27.8 b | 5.7 ± 1.3 ab | |
Inceptisol | Lithic Dystrudepts (9) | 36 ± 18 e | 50 ± 19 a | 14 ± 6 ab | SiL | 27.6 ± 28.6 | 2.1 ± 1.9 | 12.4 ± 2.8 c | 5.4 ± 3.8 bc | 31.3 ± 17.6 bc | 5.1 ± 0.4 bc |
Lithic Eutrudepts (5) | 57 ± 14 bc | 28 ± 10 c | 15 ± 11 ab | SL | 29.9 ± 26.9 | 1.9 ± 1.5 | 15.5 ± 4.2 ab | 18.8 ± 12.4 a | 77.4 ± 20.4 a | 6.7 ± 1.2 a | |
Oxyaquic Dystrudepts (4) | 52 ± 13 cd | 29 ± 10 c | 19 ± 7 a | L | 35.6 ± 40.1 | 2.1 ± 2.1 | 15.4 ± 3.8 ab | 5.1 ± 6.6 bc | 39.9 ± 28.9 bc | 5.1 ± 0.6 c | |
Typic Dystrudepts (39) | 52 ± 13 cd | 39 ± 11 b | 9 ± 4 b | L | 30.9 ± 28.4 | 1.6 ± 1.4 | 18.1 ± 7.0 a | 3.3 ± 4.4 c | 26.6 ± 21.5 c | 4.9 ± 0.5 c | |
Typic Eutrudepts (2) | 52 ± 7 ce | 27 ± 4 c | 21 ± 6 a | SCL | 29.9 ± 30.9 | 1.7 ± 1.6 | 15.8 ± 3.6 ab | 9.2 ± 6.1 ab | 72.1 ± 21.4 ab | 6.3 ± 1.2 ab |
Soil Order | Soil Subgroup | Sand | Silt | Clay | Texture | TOC | TN | C/N | Caexch | BS | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | g kg−1 | g kg−1 | cmol(+) kg−1 | % | |||||
Entisol | Lithic Cryorthent (3) | 54 ± 18 d | 32 ± 11 ad | 14 ± 9 ab | SL | 41.5 ± 14.0 | 3.6 ± 1.1 | 11.5 ± 2.1 d | 8.2 ± 6.0 ab | 71.5 ± 23.2 a | 5.6 ± 1.0 ab |
Lithic Udorthent (6) | 58 ± 13 d | 27 ± 11 bc | 14 ± 7 a | SL | 40.9 ± 27.1 | 2.6 ± 1.6 | 16.8 ± 7.1 ab | 6.4 ± 5.6 bc | 51.7 ± 20.1 bc | 4.7 ± 0.4 cd | |
Typic Udorthent (7) | 56 ± 23 d | 36 ± 21 ab | 8 ± 4 bd | SL | 54.2 ± 21.2 | 3.9 ± 1.5 | 14.1 ± 4.1 bd | 5.2 ± 6.2 cd | 46.5 ± 31.4 bc | 5.0 ± 0.5 bc | |
Inceptisol | (Spodic) Lithic Dystrudepts (2) | 77 ± 6 a | 19 ± 4 d | 4 ± 3 d | LS | 59.3 ± 31.7 | 3.6 ± 2.5 | 16.9 ± 3.9 ab | 2.6 ± 2.3 d | 37.6 ± 18.8 ce | 4.9 ± 0.3 bc |
Humic Dystrudepts (4) | 52 ± 13 d | 38 ± 11 a | 10 ± 5 ab | L | 42.3 ± 27.0 | 2.5 ± 1.3 | 16.7 ± 7.0 ab | 1.5 ± 0.8 d | 17.2 ± 6.2 fg | 4.6 ± 0.3 cd | |
Humic Lithic Dystrudepts (9) | 60 ± 15 d | 31 ± 11 ac | 9 ± 7 bd | SL | 47.5 ± 22.1 | 3.3 ± 1.4 | 14.3 ± 2.1 ac | 2.0 ± 2.7 d | 25.8 ± 18.8 eg | 4.6 ± 0.3 cd | |
Humic Lithic Eutrudepts (4) | 70 ± 13 ac | 23 ± 10 cd | 7 ± 4 cd | SL | 34.3 ± 22.5 | 2.5 ± 1.3 | 13.2 ± 4.7 cd | 10.3 ± 8.9 ab | 69.1 ± 30.6 ab | 5.4 ± 0.7 ab | |
Lithic Dystrudepts (5) | 73 ± 8 ab | 20 ± 8 d | 6 ± 4 d | SL | 39.5 ± 20.5 | 3.2 ± 1.8 | 12.7 ± 2.1 cd | 3.5 ± 4.7 d | 39.5 ± 35.3 df | 5.0 ± 0.5 b | |
Lithic Eutrudepts (3) | 42 ± 24 d | 45 ± 26 ac | 14 ± 6 a | L | 47.9 ± 23.2 | 3.4 ± 1.4 | 14.7 ± 7.2 bd | 12.6 ± 5.2 a | 73.9 ± 16.9 a | 5.3 ± 0.7 ab | |
Typic Dystrudepts (19) | 59 ± 13 d | 32 ± 10 ab | 8 ± 5 bd | SL | 52.1 ± 29.3 | 3.1 ± 1.8 | 16.8 ± 4.1 ab | 6.3 ± 6.4 bc | 24.3 ± 20.8 eg | 4.4 ± 0.3 e | |
Spodosol | Typic Haplorthod (4) | 62 ± 11 cd | 28 ± 9 ac | 10 ± 4 ac | SL | 57.1 ± 36.5 | 3.8 ± 2.5 | 15.4 ± 5.2 ac | 2.4 ± 1.7 d | 19.1 ± 16.1 g | 4.5 ± 0.4 de |
Lithic Haplohumod (2) | 58 ± 15 d | 37 ± 10 ab | 4 ± 3 d | SL | 64.1 ± 31.2 | 3.5 ± 1.8 | 17.7 ± 5.7 a | 3.6 ± 3.0 cd | 39.9 ± 20.6 ce | 4.4 ± 0.3 de | |
Mollisol | Lithic Hapludoll (3) | 57 ± 25 bd | 36 ± 20 ac | 6 ± 6 d | SL | 46.4 ± 22.3 | 3.8 ± 1.2 | 11.6 ± 2.3 cd | 9.0 ± 4.9 ab | 93.5 ± 6.3 a | 6.2 ± 0.2 a |
Cluster | Sand | Silt | Clay | TOC | TN | Caexch | BS | C:N | pH |
---|---|---|---|---|---|---|---|---|---|
% | % | % | g kg−1 | Cmol (+) kg−1 | % | ||||
1 (45) | 54 a | 31 b | 15 a | 58.3 a | 3.7 a | 13.6 a | 66.4 a | 16.3 | 5.9 a |
2 (145) | 55 a | 35 a | 10 b | 19.1 c | 1.2 c | 3.4 b | 29.8 b | 15.5 | 5.0 b |
3 (23) | 25 b | 65 c | 10 b | 38.9 b | 1.3 b | 8.4 b | 31.5 b | 21.7 | 5.3 b |
Cluster | Sand | Silt | Clay | TOC | TN | Caexch | BS | C:N | pH |
---|---|---|---|---|---|---|---|---|---|
% | % | % | g kg−1 | cmol(+) kg−1 | % | ||||
I (33) | 60 a | 34 a | 6 b | 44.2 b | 3.4 b | 13.2 a | 88.3 a | 12.7 | 5.7 a |
II (130) | 57 b | 32 ab | 11 a | 35.6 c | 2.3 c | 3.0 c | 26.6 c | 16.0 | 4.7 b |
III (54) | 65 a | 28 b | 7 b | 81.4 a | 5.4 a | 6.1 b | 37.0 b | 15.4 | 4.3 c |
SOC Stock | TN Stock | ||
---|---|---|---|
Mg ha−1 | |||
Vegetation | BEF | 118.4 ± 30.0 a | 7.2 ± 2.5 b |
type | BLB | 141.1 ± 42.2 a | 9.6 ± 2.2 a |
CHE | 73.3 ± 36.1 b | 4.6 ± 1.7 c | |
CON | 117.9 ± 24.7 a | 9.3 ± 2.5 a | |
GS | 128.7 ± 46.5 a | 11.4 ± 3.9 a | |
MF | 70.8 ± 25.9 b | 4.7 ± 1.9 c | |
Altitudinal | ≤1000 | 72.7 ± 33.9 b | 4.6 ± 1.7 b |
range (m a.s.l.) | >1000 | 125.3 ± 38.5 a | 8.8 ± 3.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittori Antisari, L.; Trenti, W.; Buscaroli, A.; Falsone, G.; Vianello, G.; De Feudis, M. Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy). Land 2023, 12, 79. https://doi.org/10.3390/land12010079
Vittori Antisari L, Trenti W, Buscaroli A, Falsone G, Vianello G, De Feudis M. Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy). Land. 2023; 12(1):79. https://doi.org/10.3390/land12010079
Chicago/Turabian StyleVittori Antisari, Livia, William Trenti, Alessandro Buscaroli, Gloria Falsone, Gilmo Vianello, and Mauro De Feudis. 2023. "Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy)" Land 12, no. 1: 79. https://doi.org/10.3390/land12010079
APA StyleVittori Antisari, L., Trenti, W., Buscaroli, A., Falsone, G., Vianello, G., & De Feudis, M. (2023). Pedodiversity and Organic Matter Stock of Soils Developed on Sandstone Formations in the Northern Apennines (Italy). Land, 12(1), 79. https://doi.org/10.3390/land12010079