Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches
Abstract
:1. Introduction
- The fundamental principles underlying the EM38 and MK2 probes are described, offering thorough insight into their operational mechanisms, capabilities, and constraints.
- Subsequently, the modeling approaches that utilize the EM38 and the MK2 data, for the estimation, prediction, and interpretation of the ECe at different scales, are extensively discussed. The various models and methods that have been developed and convert the sensor’s ECa values into ECe are explored, highlighting the most noteworthy considerations regarding their accuracy and reliability.
- Finally, the fusion of the EM38, MK2, and remote sensing data for monitoring and mapping the saline soils is overviewed and followed by a brief summary of conclusions and future directions.
2. Materials and Methods
3. Results
3.1. Fundamental Principles and Considerations of the EM38 and MK2 Sensors
3.1.1. Basic Operational Features of EM38 and MK2 Sensors
3.1.2. Principles of the EM38 and MK2 Operation
3.1.3. Considerations in the EM38 and EMK2 Applications
3.2. Modeling Approaches for the Assessment and Mapping of ECe Using the EM38 and MK2 Data
3.2.1. Deterministic and Stochastic Conversion of ECa
3.2.2. Regression-Based Models (Linear, MLR, Simple Depth-Weighted Coefficients, Established Coefficients, Modeled Coefficients, Mathematical Coefficients)
3.2.3. Geostatistical Models
3.2.4. Inversion Models
3.2.5. Machine-Learning-Based Models
3.2.6. Hybrid Models
3.3. Fusion of the EM38, MK2, and Remote Sensing Data for Soil Salinity Monitoring and Mapping
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Besma, Z.; Christian, W.; Didier, M.; Pierre, M.J.; Mohamed, H. Soil Salinization Monitoring Method Evolution at Various Spatial and Temporal Scales in Arid Context: A Review. Arab. J. Geosci. 2021, 14, 283. [Google Scholar] [CrossRef]
- Scudiero, E.; Corwin, D.; Anderson, R.; Yemoto, K.; Clary, W.; Wang, Z.; Skaggs, T. Remote Sensing Is a Viable Tool for Mapping Soil Salinity in Agricultural Lands. Calif. Agric. 2017, 71, 231–238. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S.; Shi, Q.; Wei, Y.; Wang, F. Using Apparent Electrical Conductivity as Indicator for Investigating Potential Spatial Variation of Soil Salinity across Seven Oases along Tarim River in Southern Xinjiang, China. Remote Sens. 2020, 12, 2601. [Google Scholar] [CrossRef]
- Goldshleger, N.; Ben-Dor, E.; Lugassi, R.; Eshel, G. Soil Degradation Monitoring by Remote Sensing: Examples with Three Degradation Processes. Soil Sci. Soc. Am. J. 2010, 74, 1433–1445. [Google Scholar] [CrossRef]
- Rodrigues, H.M.; Vasques, G.M.; Oliveira, R.P.; Tavares, S.R.L.; Ceddia, M.B.; Hernani, L.C. Finding Suitable Transect Spacing and Sampling Designs for Accurate Soil ECa Mapping from EM38-MK2. Soil Syst. 2020, 4, 56. [Google Scholar] [CrossRef]
- Lesch, S.M.; Strauss, D.J.; Rhoades, J.D. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging. Water Resour. Res. 1995, 31, 373–386. [Google Scholar] [CrossRef]
- Triantafilis, J.; Odeh, I.O.A.; McBratney, A.B. Five Geostatistical Models to Predict Soil Salinity from Electromagnetic Induction Data Across Irrigated Cotton. Soil Sci. Soc. Am. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- Aboelsoud, H.; Abdel-Rahman, M. Rapid Field Technique for Soil Salinity Appraisal in North Nile Delta Using EM38 through Some Empirical Relations. Int. J. Plant Soil Sci. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-Algorithm Comparison for Predicting Soil Salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-scale Apparent Soil Electrical Conductivity. Soil Sci. Soc. Am. J. 2020, 84, 1405–1441. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef] [PubMed]
- Heil, K.; Schmidhalter, U. Theory and Guidelines for the Application of the Geophysical Sensor EM38. Sensors 2019, 19, 4293. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Baker, G. An Electromagnetic Induction Technique for Reconnaissance Surveys of Soil Salinity Hazards. Soil Res. 1982, 20, 107. [Google Scholar] [CrossRef]
- De Jong, E.; Ballantyne, A.K.; Cameron, D.R.; Read, D.W.L. Measurement of Apparent Electrical Conductivity of Soils by an Electromagnetic Induction Probe to Aid Salinity Surveys. Soil Sci. Soc. Am. J. 1979, 43, 810–812. [Google Scholar] [CrossRef]
- Nogués, J.; Robinson, D.A.; Herrero, J. Incorporating Electromagnetic Induction Methods into Regional Soil Salinity Survey of Irrigation Districts. Soil Sci. Soc. Am. J. 2006, 70, 2075–2085. [Google Scholar] [CrossRef]
- Abdu, H.; Robinson, D.A.; Jones, S.B. Comparing Bulk Soil Electrical Conductivity Determination Using the DUALEM-1S and EM38-DD Electromagnetic Induction Instruments. Soil Sci. Soc. Am. J. 2007, 71, 189–196. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignanò, A.; Rinaldi, M.; Ruggieri, S.; Santoro, F.; Figorito, B.; Gualano, S.; Diacono, M.; Tamborrino, R. An Approach for Delineating Homogeneous Zones by Using Multi-Sensor Data. Geoderma 2013, 199, 117–127. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.A.; Sotirakoglou, K. Evaluation of Soil Salinity Using the Dielectric Sensor WET-2. Soil Res. 2022, 61, 397–409. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy Issues in Electromagnetic Induction Sensing of Soil Electrical Conductivity for Precision Agriculture. Comput. Electron. Agric. 2001, 31, 239–264. [Google Scholar] [CrossRef]
- Krishan, G.; Kumar, R.; Suresh; Gopal, K.; Saha, S.K. Measuring Soil Salinity with WET Sensor and Characterization of Salt Affected Soils. Agropedology 2008, 18, 124–128. [Google Scholar]
- Kargas, G.; Persson, M.; Kanelis, G.; Markopoulou, I.; Kerkides, P. Prediction of Soil Solution Electrical Conductivity by the Permittivity Corrected Linear Model Using a Dielectric Sensor. J. Irrig. Drain. Eng. 2017, 143, 04017030. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P. Determination of Soil Salinity Based on WET Measurements Using the Concept of Salinity Index. J. Plant Nutr. Soil Sci. 2018, 181, 600–605. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. Field Comparison of Electrical Resistance, Electromagnetic Induction, and Frequency Domain Reflectometry for Soil Salinity Appraisal. Soil Syst. 2020, 4, 61. [Google Scholar] [CrossRef]
- Huang, J.; Koganti, T.; Santos, F.A.M.; Triantafilis, J. Mapping Soil Salinity and a Fresh-Water Intrusion in Three-Dimensions Using a Quasi-3d Joint-Inversion of DUALEM-421S and EM34 Data. Sci. Total Environ. 2017, 577, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Lück, E.; Dabas, M.; Domsch, H. Comparison of Instruments for Geoelectrical Soil Mapping at the Field Scale. Near Surf. Geophys. 2009, 7, 179–190. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Triantafilis, J. Comparing Electromagnetic Induction Instruments to Map Soil Salinity in Two-Dimensional Cross-Sections along the Kham-Rean Canal Using EM Inversion Software. Geoderma 2020, 377, 114611. [Google Scholar] [CrossRef]
- Rhoades, J.D. Electrical Conductivity Methods for Measuring and Mapping Soil Salinity. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1993; Volume 49, pp. 201–251. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Baerends, B.; Raza, Z.I.; Sadig, M.; Chaudhry, M.A. Soil Salinity Assessment by Electromagnetic Induction of Irrigated Land. Soil Sci. Soc. Am. J. 1992, 56, 1933–1941. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Brevik, E.C. The Use of Electromagnetic Induction Techniques in Soils Studies. Geoderma 2014, 223–225, 33–45. [Google Scholar] [CrossRef]
- Bennett, D.L.; George, R.J. Using the EM38 to Measure the Effect of Soil Salinity on Eucalyptus Globulus in South-Western Australia. Agric. Water Manag. 1995, 27, 69–85. [Google Scholar] [CrossRef]
- Domsch, H.; Giebel, A. Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38. Precis. Agric. 2004, 5, 389–409. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Comparison of the EM38 and EM38-MK2 Electromagnetic Induction-Based Sensors for Spatial Soil Analysis at Field Scale. Comput. Electron. Agric. 2015, 110, 267–280. [Google Scholar] [CrossRef]
- Saey, T.; Van Meirvenne, M.; Vermeersch, H.; Ameloot, N.; Cockx, L. A Pedotransfer Function to Evaluate the Soil Profile Textural Heterogeneity Using Proximally Sensed Apparent Electrical Conductivity. Geoderma 2009, 150, 389–395. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of Soil Electrical Conductivity to Precision Agriculture: Theory, Principles, and Guidelines. J. Agron. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- EM38-MK2-Operating-Manual.Pdf. Available online: https://geophysicalequipmentrental.com/files/2020/01/EM38-MK2-Operating-Manual.pdf (accessed on 30 August 2023).
- Catalano-Measuring Soil Conductivity with Geonics Limited E.Pdf. Available online: https://adamchukpa.mcgill.ca/gwpss/Presentations/GWPSS_2011_Catalano.pdf (accessed on 1 October 2023).
- Siddique, M.N.A. Potential of Soil Sensor (EM38) Measurements for Soil Fertility Mapping. Master’s Thesis, Ghent University, Brussel, Belgium, 2020. [Google Scholar]
- Doolittle, J.; Petersen, M.; Wheeler, T. Comparison of Two Electromagnetic Induction Tools in Salinity Appraisals. J. Soil Water Conserv. 2001, 56, 257–262. [Google Scholar]
- Urdanoz, V.; Aragüés, R. Comparison of Geonics EM38 and Dualem 1S Electromagnetic Induction Sensors for the Measurement of Salinity and Other Soil Properties: Comparison of Geonics EM38 and Dualem 1S Sensors. Soil Use Manag. 2012, 28, 108–112. [Google Scholar] [CrossRef]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers: Mississauga. Ontario, Canada; Technical Note TN-6; Geonics Ltd.: Mississauga, ON, Canada, 1980; Volume 6. [Google Scholar]
- Bonomi, E.; Manzi, C.; Pieroni, E.; Deidda, G.P. Inversion of EM38 Electrical Conductivity Data; II International Workshop on Geo-Electro-Magnetism (Proccedings), Lerici, Italy, 26–28 September 2001; Accademia Lunigianese di Scienze G. Capellini: La Spezia, Italy, 2001. [Google Scholar]
- Yao, R.-J.; Yang, J.-S.; Wu, D.-H.; Xie, W.-P.; Gao, P.; Wang, X.-P. Geostatistical Monitoring of Soil Salinity for Precision Management Using Proximally Sensed Electromagnetic Induction (EMI) Method. Environ. Earth Sci. 2016, 75, 1362. [Google Scholar] [CrossRef]
- Korsaeth, A. Height above Ground Corrections of EM38 Readings of Soil Apparent Electrical Conductivity. Acta Agric. Scand. B Soil Plant Sci. 2006, 56, 333–336. [Google Scholar] [CrossRef]
- Song, J.H. Assessment of the Accuracy of a Soil Salinity Model for Shallow Groundwater Areas in Xinjang Based on Electromagnetic Induction. Appl. Ecol. Environ. Res. 2019, 17, 10037–10057. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T. Mapping of Sand Deposition from 1993 Midwest Floods with Electromagnetic Induction. J. Soil Water Conserv. 1996, 51, 336–340. Available online: https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0111-kitchen.pdf (accessed on 31 August 2023).
- Urdanoz, V.; Amezketa Lizarraga, E.; Clavería, I.; Ochoa, V.; Aragües Lafarga, R. Mobile and Georeferenced Electromagnetic Sensors and Applications for Salinity Assessment. Span. J. Agric. Res. 2008, 6, 469. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Review of Soil Salinity Assessment for Agriculture across Multiple Scales Using Proximal and/or Remote Sensors. Adv. Agron. 2019, 158, 1–130. [Google Scholar] [CrossRef]
- Dalan, R.A. Defining Archaeological Features with Electromagnetic Surveys at the Cahokia Mounds State Historic Site. Geophysics 1991, 56, 1280–1287. [Google Scholar] [CrossRef]
- Grellier, S.; Florsch, N.; Camerlynck, C.; Janeau, J.L.; Podwojewski, P.; Lorentz, S. The Use of Slingram EM38 Data for Topsoil and Subsoil Geoelectrical Characterization with a Bayesian Inversion. Geoderma 2013, 200–201, 140–155. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Protocols and Guidelines for Field-Scale Measurement of Soil Salinity Distribution with EC a -Directed Soil Sampling. J. Environ. Eng. Geophys. 2013, 18, 1–25. [Google Scholar] [CrossRef]
- Zare, S.; Abtahi, A.; Fallah Shamsi, S.R.; Lagacherie, P. Combining Laboratory Measurements and Proximal Soil Sensing Data in Digital Soil Mapping Approaches. Catena 2021, 207, 105702. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil Electrical Conductivity as a Function of Soil Water Content and Implications for Soil Mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and Evaluating Spatial Variability of Soil Salinity in Dry and Wet Seasons in the Werigan–Kuqa Oasis, China, Using Remote Sensing and Electromagnetic Induction Instruments. Geoderma 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Corwin, D.L. Past, Present, and Future Trends of Soil Electrical Conductivity Measurement Using Geophysical Methods. In Handbook of Agricultural Geophysics; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing Spatiotemporal Characteristics of Soil Salinity in Arid Irrigated Agro-Ecosystems Using Integrated Approaches. Geoderma 2019, 356, 113935. [Google Scholar] [CrossRef]
- Moghadas, D.; Behroozmand, A.A.; Christiansen, A.V. Soil Electrical Conductivity Imaging Using a Neural Network-Based Forward Solver: Applied to Large-Scale Bayesian Electromagnetic Inversion. Appl. Geophys. 2020, 176, 104012. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil Properties Influencing Apparent Electrical Conductivity: A Review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent Soil Electrical Conductivity Measurements in Agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Raats, P.A.C.; Prather, R.J. Effects of Liquid-phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity. Soil Sci. Soc. Am. J. 1976, 40, 651–655. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E. Influence of Soil Water Content, Clay, Temperature, and Carbonate Minerals on Electrical Conductivity Readings Taken with an EM-38. Soil Horiz. 2002, 43, 9. [Google Scholar] [CrossRef]
- Kachanoski, R.G.; Wesenbeeck, I.J.V.; Gregorich, E.G. Estimating Spatial Variations of Soil Water Content Using Non-Contacting Electromagnetic Inductive Methods. Can. J. Soil Sci. 1988, 68, 715–722. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. Sensitivity of Soil Electromagnetic Induction Measurements to Salinity, Water Content, Clay, Organic Matter and Bulk Density. Precis. Agric. 2021, 22, 1559–1577. [Google Scholar] [CrossRef]
- Sheets, K.R.; Hendrickx, J.M.H. Noninvasive Soil Water Content Measurement Using Electromagnetic Induction. Water Resour. Res. 1995, 31, 2401–2409. [Google Scholar] [CrossRef]
- McCutcheon, M.C.; Farahani, H.J.; Stednick, J.D.; Buchleiter, G.W.; Green, T.R. Effect of Soil Water on Apparent Soil Electrical Conductivity and Texture Relationships in a Dryland Field. Biosyst. Eng. 2006, 94, 19–32. [Google Scholar] [CrossRef]
- Farahani, H.J.; Buchleiter, G.W.; Brodahl, M.K. Characterization of Apparent Soil Electrical Conductivity Variability in Irrigated Sandy And Non-Saline Fields In Colorado. Trans. ASABE 2005, 48, 155–168. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Manteghi, N.A.; Shouse, P.J.; Alves, W.J. Soil Electrical Conductivity and Soil Salinity: New Formulations and Calibrations. Soil Sci. Soc. Am. J. 1989, 53, 433–439. [Google Scholar] [CrossRef]
- McKenzie, R.C.; George, R.J.; Woods, S.A.; Cannon, M.E.; Bennett, D.L. Use of the Electromagnetic-Induction Meter (EM38) as a Tool in Managing Salinisation. Hydrogeol. J. 1997, 5, 37–50. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Characterisation of Soil Texture Variability Using the Apparent Electrical Conductivity at a Highly Variable Site. Comput. Geosci. 2012, 39, 98–110. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L.; Lesch, S.M. Geospatial Measurements of Soil Electrical Conductivity to Assess Soil Salinity and Diffuse Salt Loading from Irrigation. In Geophysical Monograph Series; Corwin, L., Loague, K., Ellsworth, R., Eds.; American Geophysical Union: Washington, DC, USA, 1999; Volume 108, pp. 197–215. [Google Scholar] [CrossRef]
- Amezketa Lizarraga, E. Soil Salinity Assessment Using Directed Soil Sampling from a Geophysical Survey with Electromagnetic Technology: A Case Study. Span. J. Agric. Res. 2007, 5, 91. [Google Scholar] [CrossRef]
- Huang, J.; Mokhtari, A.R.; Cohen, D.R.; Monteiro Santos, F.A.; Triantafilis, J. Modelling Soil Salinity across a Gilgai Landscape by Inversion of EM38 and EM31 Data: Modelling Salinity in Gilgai by EM Inversion. Eur. J. Soil Sci. 2015, 66, 951–960. [Google Scholar] [CrossRef]
- Nouri, H.; Chavoshi Borujeni, S.; Alaghmand, S.; Anderson, S.; Sutton, P.; Parvazian, S.; Beecham, S. Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands. Sustainability 2018, 10, 2826. [Google Scholar] [CrossRef]
- Lesch, S.M.; Corwin, D.L.; Robinson, D.A. Apparent Soil Electrical Conductivity Mapping as an Agricultural Management Tool in Arid Zone Soils. Comput. Electron. Agric. 2005, 46, 351–378. [Google Scholar] [CrossRef]
- Edeh, J.A. Quantifying Spatio-Temporal Soil Water Content Using Electromagnetic Induction. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2017. Available online: http://hdl.handle.net/11660/6471 (accessed on 22 July 2023).
- Herrero, J.; Pabuayon, I.L. The Problem with “Apparent Electrical Conductivity” in Soil Electromagnetic Induction Studies. Adv. Agron. 2021, 165, 161–173. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. Am. Inst. Min. 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Loveday, J. Salinity in Irrigated Agriculture. In American Society of Civil Engineers, Irrigation of Agricultural Crops; Stewart, B.A., Nielsen, D.R., Eds.; Monograph, American Society of Agronomists: Madison, WI, USA, 1990; Volume 30, pp. 1089–1142. [Google Scholar]
- Mualem, Y.; Friedman, S.P. Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil. Water Resour. Res. 1991, 27, 2771–2777. [Google Scholar] [CrossRef]
- Lesch, S.M.; Corwin, D.L. Using the Dual-Pathway Parallel Conductance Model to Determine How Different Soil Properties Influence Conductivity Survey Data. J. Agron. 2003, 95, 365–379. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting Long-Term Dynamics of Soil Salinity and Sodicity on a Global Scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Corwin, D.L.; Carrillo, M.L.K.; Vaughan, P.J.; Rhoades, J.D.; Cone, D.G. Evaluation of a GIS-Linked Model of Salt Loading to Groundwater. J. Environ. Qual. 1999, 28, 471–480. [Google Scholar] [CrossRef]
- McKenzie, R.C.; Chomistek, W.; Clark, N.F. Conversion of Electromagnetic Inductance Readings to Saturated Paste Extract Values In Soils For Different Temperature, Texture And Moisture Conditions. Can. J. Soil Sci. 1989, 69, 25–32. [Google Scholar] [CrossRef]
- Lesch, S.M.; Rhoades, J.D.; Lund, L.J.; Corwin, D.L. Mapping Soil Salinity Using Calibrated Electromagnetic Measurements. Soil Sci. Soc. Am. J. 1992, 56, 540–548. [Google Scholar] [CrossRef]
- Triantafilis, J.; Laslett, G.M.; McBratney, A.B. Calibrating an Electromagnetic Induction Instrument to Measure Salinity in Soil under Irrigated Cotton. Soil Sci. Soc. Am. J. 2000, 64, 1009–1017. [Google Scholar] [CrossRef]
- Bouksila, F.; Persson, M.; Bahri, A.; Berndtsson, R. Electromagnetic Induction Prediction of Soil Salinity and Groundwater Properties in a Tunisian Saharan Oasis. Hydrol. Sci. J. 2012, 57, 1473–1486. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Brus, D.J.; Walvoort, D.J.J. Geostatistical Monitoring of Soil Salinity in Uzbekistan by Repeated EMI Surveys. Geoderma 2014, 213, 600–607. [Google Scholar] [CrossRef]
- Harvey, O.R.; Morgan, C.L.S. Predicting Regional-Scale Soil Variability Using a Single Calibrated Apparent Soil Electrical Conductivity Model. Soil Sci. Soc. Am. J. 2009, 73, 164–169. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Validation of the ANOCOVA Model for Regional-scale ECa to ECe Calibration. Soil Use Manag. 2017, 33, 178–190. [Google Scholar] [CrossRef]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Application of Geostatistics to Spatial Studies of Soil Properties. Adv. Agron. 1986, 38, 45–94. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Characterizing Soil Spatial Variability with Apparent Soil Electrical Conductivity. Comput. Electron. Agric. 2005, 46, 103–133. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; SpringerBriefs in Agriculture; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- De Caires, S.A.; St Martin, C.; Wuddivira, M.N.; Farrick, K.K.; Zebarth, B.J. Predicting Soil Depth in a Humid Tropical Watershed: A Comparative Analysis of Best-Fit Regression and Geospatial Models. Catena 2023, 222, 106843. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Zhang, X.; Wang, X.; Lv, Z.; Yang, J.; Shao, H.; Yu, S. GIS-Mapping Spatial Distribution of Soil Salinity for Eco-Restoring the Yellow River Delta in Combination with Electromagnetic Induction. Ecol. Eng. 2016, 94, 306–314. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. A Simplified Regional-Scale Electromagnetic Induction—Salinity Calibration Model Using ANOCOVA Modeling Techniques. Geoderma 2014, 230–231, 288–295. [Google Scholar] [CrossRef]
- Lesch, S.M.; Rhoades, J.D.; Corwin, D.L. ESAP-95 Version 2.01R: User Manual and Tutorial Guide; USDA-ARS; George, E.B., Jr., Ed.; Salinity Laboratory: Riverside, CA, USA, 2000. [Google Scholar]
- Ganjegunte, G.; Leinauer, B.; Schiavon, M.; Serena, M. Using Electro-Magnetic Induction to Determine Soil Salinity and Sodicity in Turf Root Zones. J. Agron. 2013, 105, 836–844. [Google Scholar] [CrossRef]
- Narjary, B.; Meena, M.D.; Kumar, S.; Kamra, S.K.; Sharma, D.K.; Triantafilis, J. Digital Mapping of Soil Salinity at Various Depths Using an EM38. Soil Use Manag. 2019, 35, 232–244. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E.; Zaccaria, D. Modified Eca–ECe Protocols for Mapping Soil Salinity under Micro-Irrigation. Agric. Water Manag. 2022, 269, 107640. [Google Scholar] [CrossRef]
- Ben Slimane, A.; Bouksila, F.; Selim, T.; Joumada, F. Soil Salinity Assessment Using Electromagnetic Induction Method in a Semi-Arid Environment—A Case Study in Tunisia. Arab. J. Geosci. 2022, 15, 1031. [Google Scholar] [CrossRef]
- Kasim, N.; Tiyip, T.; Abliz, A.; Nurmemet, I.; Sawut, R.; Maihemuti, B. Mapping and Modeling of Soil Salinity Using WorldView-2 Data and EM38-KM2 in an Arid Region of the Keriya River, China. Photogramm. Eng. Remote Sens. 2018, 84, 43–52. [Google Scholar] [CrossRef]
- Corwin, D.L.; Rhoades, J.D. Establishing Soil Electrical Conductivity—Depth Relations from Electromagnetic Induction Measurements. Commun. Soil Sci. Plant Anal. 1990, 21, 861–901. [Google Scholar] [CrossRef]
- Slavich, P. Determining ECa-Depth Profiles from Electromagnetic Induction Measurements. Soil Res. 1990, 28, 443. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L. Determining Soil Electrical Conductivity-Depth Relations Using an Inductive Electromagnetic Soil Conductivity Meter. Soil Sci. Soc. Am. J. 1981, 45, 255–260. [Google Scholar] [CrossRef]
- Wollenhaupt, N.C.; Richardson, J.L.; Foss, J.E.; Doll, E.C. A Rapid Method For Estimating Weighted Soil Salinity from Apparent Soil Electrical Conductivity measured with An Aboveground Electromagnetic Induction Meter. Can. J. Soil Sci. 1986, 66, 315–321. [Google Scholar] [CrossRef]
- Vlotman, W.F.; Chaudhry, M.R.B.A. Electromagnetic Induction Device (EM38) Calibration and Monitoring Soil Salinity/Environment (Pakistan); ILRI: New Delhi, India, 2000; pp. 37–48. [Google Scholar]
- Slavich, P.; Petterson, G. Estimating Average Rootzone Salinity from Electromagnetic Induction (EM-38) Measurements. Soil Res. 1990, 28, 453. [Google Scholar] [CrossRef]
- Corwin, D.L.; Rhoades, J.D. An Improved Technique for Determining Soil Electrical Conductivity-Depth Relations from Above-Ground Electromagnetic Measurements. Soil Sci. Soc. Am. J. 1982, 46, 517–520. [Google Scholar] [CrossRef]
- Corwin, D.L.; Rhoades, J.D. Measurement of Inverted Electrical Conductivity Profiles Using Electromagnetic Induction. Soil Sci. Soc. Am. J. 1984, 48, 288–291. [Google Scholar] [CrossRef]
- Cook, P.G.; Walker, G.R. Depth Profiles of Electrical Conductivity from Linear Combinations of Electromagnetic Induction Measurements. Soil Sci. Soc. Am. J. 1992, 56, 1015–1022. [Google Scholar] [CrossRef]
- Johnston, M.A.; Savage, M.J.; Moolman, J.H.; Du Plessis, H.M. Evaluation of Calibration Methods for Interpreting Soil Salinity from Electromagnetic Induction Measurements. Soil Sci. Soc. Am. J. 1997, 61, 1627–1633. [Google Scholar] [CrossRef]
- Coppola, A.; Smettem, K.; Ajeel, A.; Saeed, A.; Dragonetti, G.; Comegna, A.; Lamaddalena, N.; Vacca, A. Calibration of an Electromagnetic Induction Sensor with Time-Domain Reflectometry Data to Monitor Rootzone Electrical Conductivity under Saline Water Irrigation: The EMI Sensor for Salinity Management of the Rootzone. Eur. J. Soil Sci. 2016, 67, 737–748. [Google Scholar] [CrossRef]
- Bennett, D.L.; George, R.J.; Whitfield, B. The Use of Ground EM Systems to Accurately Assess Salt Store and Help Define Land Management Options for Salinity Management. Explor. Geophys. 2000, 31, 249–254. [Google Scholar] [CrossRef]
- Lesch, S. Statistical Models for the Prediction of Field-Scale and Spatial Salinity Patterns from Soil Conductivity Survey Data. In Agricultural Salinity Assessment and Management, 2nd ed.; ASCE: Reston, VA, USA, 2011; pp. 461–482. [Google Scholar] [CrossRef]
- Corwin, D.L. Geospatial Measurements of Apparent Soil Electrical Conductivity for Characterizing Soil Spatial Variability. In Soil-Water-Solute Process Characterization—An Integrated Approach; Alvarez-Benedi, J., Munoz-Carpena, R., Eds.; CRC Press: Boca Raton, FL, USA, 1993; Volume 18, pp. 639–672. [Google Scholar]
- Lu, L.; Li, S.; Wu, R.; Shen, D. Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area. Land 2022, 11, 1697. [Google Scholar] [CrossRef]
- Killick, M. An Analysis of the Relationship of Apparent Electrical Conductivity to Soil Moisture in Alluvial Recent Soils, Lower North Island, New Zealand. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2013. Available online: http://hdl.handle.net/10179/4902 (accessed on 21 July 2023).
- Guo, Y.; Zhou, Y.; Zhou, L.; Liu, T.; Wang, L.; Cheng, Y.; He, J.; Zheng, G. Using Proximal Sensor Data for Soil Salinity Management and Mapping. J. Integr. Agric. 2019, 18, 340–349. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative Evaluation of Soil Salinity and Its Spatial Distribution Using Electromagnetic Induction Method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Jantaravikorn, Y.; Ongsomwang, S. Soil Salinity Prediction and Its Severity Mapping Using a Suitable Interpolation Method on Data Collected by Electromagnetic Induction Method. Appl. Sci. 2022, 12, 10550. [Google Scholar] [CrossRef]
- Islam, M.M.; Saey, T.; Meerschman, E.; De Smedt, P.; Meeuws, F.; Van De Vijver, E.; Meirvenne, M. Delineating Water Management Zones in a Paddy Rice Field Using a Floating Soil Sensing System. Agric. Water Manag. 2011, 102, 8–12. [Google Scholar] [CrossRef]
- Dakak, H.; Benmohammadi, A.; Soudi, B.; Douaik, A.; Badraoui, M.; Zouahri, A. Mapping the Risk of Soil Salinization Using Electromagnetic Induction and Non-Parametric Geostatistics. In Developments in Soil Salinity Assessment and Reclamation; Shahid, S.A., Abdelfattah, M.A., Taha, F.K., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 155–166. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using Electromagnetic Induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Gharsallah, M.E.; Aichi, H.; Stambouli, T.; Ben Rabah, Z.; Ben Hassine, H. Assessment and Mapping of Soil Salinity Using Electromagnetic Induction and Landsat 8 OLI Remote Sensing Data in an Irrigated Olive Orchard under Semi-Arid Conditions. Soil Water Res. 2022, 17, 15–28. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Farzamian, M.; Bouksila, F.; Paz, A.M.; Santos, F.M.; Zemni, N.; Slama, F.; Ben Slimane, A.; Selim, T.; Triantafilis, J. Landscape-Scale Mapping of Soil Salinity with Multi-Height Electromagnetic Induction and Quasi-3d Inversion in Saharan Oasis, Tunisia. Agric. Water Manag. 2023, 284, 108330. [Google Scholar] [CrossRef]
- Paz, M.C.; Farzamian, M.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Monteiro Santos, F. Assessing Soil Salinity Dynamics Using Time-Lapse Electromagnetic Conductivity Imaging. Soil 2020, 6, 499–511. [Google Scholar] [CrossRef]
- Farzamian, M.; Paz, M.C.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Monteiro Santos, F.A.; Triantafilis, J. Mapping Soil Salinity Using Electromagnetic Conductivity Imaging—A Comparison of Regional and Location-specific Calibrations. Land Degrad. Dev. 2019, 30, 1393–1406. [Google Scholar] [CrossRef]
- Dakak, H.; Huang, J.; Zouahri, A.; Douaik, A.; Triantafilis, J. Mapping Soil Salinity in 3-Dimensions Using an EM38 and EM4Soil Inversion Modelling at the Reconnaissance Scale in Central Morocco. Soil Use Manag. 2017, 33, 553–567. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital Soil Mapping of Soil Salinity Using EM38 and Quasi-3-d Modelling Software (EM4Soil). Soil Use Manag. 2021, 38, 277–291. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, Z.; Huang, J.; Wang, L.; Cheng, Y.; Zheng, G. Mapping Horizontal and Vertical Spatial Variability of Soil Salinity in Reclaimed Areas. In Digital Soil Mapping Across Paradigms, Scales and Boundaries; Zhang, G.-L., Brus, D., Liu, F., Song, X.-D., Lagacherie, P., Eds.; Springer Environmental Science and Engineering; Springer: Singapore, 2016; pp. 33–45. [Google Scholar] [CrossRef]
- Dragonetti, G.; Farzamian, M.; Basile, A.; Monteiro Santos, F.; Coppola, A. In Situ Estimation of Soil Hydraulic and Hydrodispersive Properties by Inversion of Electromagnetic Induction Measurements and Soil Hydrological Modeling. Hydrol. Earth Syst. Sci. 2022, 26, 5119–5136. [Google Scholar] [CrossRef]
- Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, G.P.; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A. Calibrating Electromagnetic Induction Conductivities with Time-Domain Reflectometry Measurements. Hydrol. Earth Syst. Sci. 2018, 22, 1509–1523. [Google Scholar] [CrossRef]
- Flores, J.G.; Rodríguez, M.R.; Jiménez, A.G.; Farzamian, M.; Herencia, J.F.; Galán, B.; Sacristan, P.C.; Vanderlinden, K. Monitoring Tridimensional Soil Salinity Patterns at the Field Scale Using Electromagnetic Induction Sensing and Inversion. Salt-Affect. Soils 2022, XV, 48. [Google Scholar]
- Borchers, B.; Uram, T.; Hendrickx, J.M.H. Tikhonov Regularization of Electrical Conductivity Depth Profiles in Field Soils. Soil Sci. Soc. Am. J. 1997, 61, 1004–1009. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Borchers, B.; Corwin, D.L.; Lesch, S.M.; Hilgendorf, A.C.; Schlue, J. Inversion of Soil Conductivity Profiles from Electromagnetic Induction Measurements: Theory and Experimental Verification. Soil Sci. Soc. Am. J. 2002, 66, 673–685. [Google Scholar] [CrossRef]
- Gebbers, R.; Lück, E.; Heil, K. Depth Sounding with the EM38-Detection of Soil Layering by Inversion of Apparent Electrical Conductivity Measurements. Precis. Agric. 2007, 7, 95–102. [Google Scholar] [CrossRef]
- Moghadas, D.; Jadoon, K.Z.; McCabe, M.F. Spatiotemporal Monitoring of Soil Moisture from EMI Data Using DCT-Based Bayesian Inference and Neural Network. Appl. Geophys. 2019, 169, 226–238. [Google Scholar] [CrossRef]
- Triantafilis, J.; Santos, F.A.M.; Triantafilis, J.; Santos, F.A.M. Resolving the Spatial Distribution of the True Electrical Conductivity with Depth Using EM38 and EM31 Signal Data and a Laterally Constrained Inversion Model. Soil Res. 2010, 48, 434–446. [Google Scholar] [CrossRef]
- Triantafilis, J.; Santos, F.A.M. 2-Dimensional Soil and Vadose-Zone Representation Using an EM38 and EM34 and a Laterally Constrained Inversion Model. Soil Res. 2009, 47, 809. [Google Scholar] [CrossRef]
- Moghadas, D.; Taghizadeh-Mehrjardi, R.; Triantafilis, J. Probabilistic Inversion of EM38 Data for 3D Soil Mapping in Central Iran. Geoderma Reg. 2016, 7, 230–238. [Google Scholar] [CrossRef]
- Paz, M.C.; Farzamian, M.; Santos, F.M.; Gonçalves, M.C.; Paz, A.M.; Castanheira, N.L.; Triantafilis, J. Potential to Map Soil Salinity Using Inversion Modelling of EM38 Sensor Data. First Break 2019, 37, 35–39. [Google Scholar] [CrossRef]
- Paz, A.M.; Castanheira, N.; Farzamian, M.; Paz, M.C.; Gonçalves, M.C.; Monteiro Santos, F.A.; Triantafilis, J. Prediction of Soil Salinity and Sodicity Using Electromagnetic Conductivity Imaging. Geoderma 2020, 361, 114086. [Google Scholar] [CrossRef]
- Jadoon, K.Z.; Moghadas, D.; Jadoon, A.; Missimer, T.M.; Al-Mashharawi, S.K.; McCabe, M.F. Estimation of Soil Salinity in a Drip Irrigation System by Using Joint Inversion of Multicoil Electromagnetic Induction Measurements. Water Resour. Res. 2015, 51, 3490–3504. [Google Scholar] [CrossRef]
- Farzamian, M.; Monteiro Santos, F.A.; Khalil, M.A. Application of EM38 and ERT Methods in Estimation of Saturated Hydraulic Conductivity in Unsaturated Soil. Appl. Geophys. 2015, 112, 175–189. [Google Scholar] [CrossRef]
- Martini, E.; Werban, U.; Zacharias, S.; Pohle, M.; Dietrich, P.; Wollschläger, U. Repeated Electromagnetic Induction Measurements for Mapping Soil Moisture at the Field Scale: Validation with Data from a Wireless Soil Moisture Monitoring Network. Hydrol. Earth Syst. Sci. 2017, 21, 495–513. [Google Scholar] [CrossRef]
- Farzamian, M.; Autovino, D.; Basile, A.; De Mascellis, R.; Dragonetti, G.; Monteiro Santos, F.; Binley, A.; Coppola, A. Assessing the Dynamics of Soil Salinity with Time-Lapse Inversion of Electromagnetic Data Guided by Hydrological Modelling. Hydrol. Earth Syst. Sci. 2021, 25, 1509–1527. [Google Scholar] [CrossRef]
- Von Hebel, C.; Rudolph, S.; Mester, A.; Huisman, J.A.; Kumbhar, P.; Vereecken, H.; Van Der Kruk, J. Three-Dimensional Imaging of Subsurface Structural Patterns Using Quantitative Large-Scale Multiconfiguration Electromagnetic Induction Data. Water Resour. Res. 2014, 50, 2732–2748. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B.P. Digital Mapping of Soil Salinity in Ardakan Region, Central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing Soil Salinity at Multiple Depth Using Electromagnetic Induction and Remote Sensing Data with Random Forests: A Case Study in Tarim River Basin of Southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef] [PubMed]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Rentschler, T. Explainable Machine Learning in Soil Mapping: Peeking into the Black Box. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2021. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Ayoubi, S.; Namazi, Z.; Malone, B.P.; Zolfaghari, A.A.; Sadrabadi, F.R. Prediction of Soil Surface Salinity in Arid Region of Central Iran Using Auxiliary Variables and Genetic Programming. Arid. Land Res. Manag. 2016, 30, 49–64. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Farifteh, J.; Farshad, A.; George, R.J. Assessing Salt-Affected Soils Using Remote Sensing, Solute Modelling, and Geophysics. Geoderma 2006, 130, 191–206. [Google Scholar] [CrossRef]
- Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of Proximal and Remote Sensing Methods for Rapid Soil Salinity Quantification. Geoderma 2015, 239–240, 34–46. [Google Scholar] [CrossRef]
- Casterad, M.A.; Herrero, J.; Betrán, J.A.; Ritchie, G. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation. Sensors 2018, 18, 616. [Google Scholar] [CrossRef] [PubMed]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote Sensing of Soil Salinity: Potentials and Constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative Regional-Scale Soil Salinity Assessment with near-Ground Apparent Electrical Conductivity and Remote Sensing Canopy Reflectance. Ecol. Indic. 2016, 70, 276–284. [Google Scholar] [CrossRef]
- Rao, B.R.M.; Sharma, R.C.; Ravi Sankar, T.; Das, S.N.; Dwivedi, R.S.; Thammappa, S.S.; Venkataratnam, L. Spectral Behaviour of Salt-Affected Soils. Int. J. Remote Sens. 1995, 16, 2125–2136. [Google Scholar] [CrossRef]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; De Pauw, E. Mapping Soil Salinity Changes Using Remote Sensing in Central Iraq. Geoderma Reg. 2014, 2–3, 21–31. [Google Scholar] [CrossRef]
- Sultanov, M.; Ibrakhimov, M.; Akramkhanov, A.; Bauer, C.; Conrad, C. Modelling End-of-Season Soil Salinity in Irrigated Agriculture Through Multi-Temporal Optical Remote Sensing, Environmental Parameters, and In Situ Information. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 221–233. [Google Scholar] [CrossRef]
Factor | Effect on ECa Values |
---|---|
Water Content | Higher moisture levels increase ECa Dry soils have lower ECa |
Soil Salinity | High salinity levels increase ECa |
Texture | Clay content: Higher proportion increases ECa Silt, Sand Content: Higher proportion decreases ECa |
Temperature | Increasing temperature increases ECa |
Cation Exchange Capacity (CEC) | Higher CEC increases ECa |
Organic Matter (OM) | Higher percentage increases ECa |
Model | Methods | Reference Studies |
---|---|---|
Regression-Based (Calibration Models) | Linear, multiple linear | [104,107] |
Simple depth-weighted coefficients | [105] | |
Established coefficients | [108,109] | |
Modeled coefficients | [103] | |
Mathematical coefficients | [110] | |
Geostatistical | Interpolation methods (OK 1, CO-K 2, OCK 3, universal kriging, indicator kriging, 3D kriging) | [8,94,98,120,122,123] |
Semi/variogram analysis | ||
Deterministic Spatial Interpolation | 3D IDW | [125] |
Inversion | Tikhonov regularization | [135,136] |
Joint inversion | [72,139,141] | |
2D algorithms | [128,142,143] | |
Quasi-3D algorithms | [126,129] | |
Machine-Learning-Based | Random forest | [4,150] |
Hybrid | Cubist (ML), regression kriging | [149] |
Partial least-squares regression, spectral index | [101] | |
Quantile random forest (ML), regression co-kriging | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petsetidi, P.A.; Kargas, G. Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land 2023, 12, 1932. https://doi.org/10.3390/land12101932
Petsetidi PA, Kargas G. Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land. 2023; 12(10):1932. https://doi.org/10.3390/land12101932
Chicago/Turabian StylePetsetidi, Panagiota Antonia, and George Kargas. 2023. "Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches" Land 12, no. 10: 1932. https://doi.org/10.3390/land12101932
APA StylePetsetidi, P. A., & Kargas, G. (2023). Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land, 12(10), 1932. https://doi.org/10.3390/land12101932