50-Year Urban Expansion Patterns in Shanghai: Analysis Using Impervious Surface Data and Simulation Models
Abstract
:1. Introduction
2. Methods
2.1. Modelling Urban Expansion Pattern
2.2. Measuring Urban Expansion Scale
2.3. Measuring Urban Expansion Distribution
2.4. Measuring Urban Expansion Intensity
2.5. Measuring Urban Expansion Structure
2.6. Quantifing Urban Expansion Drivers
3. Study Area and Data Sources
3.1. Study Area
3.2. Data Source
4. Results
4.1. Urban Patterns and Expansion 1985–2035
4.2. Annual Urban Expansion
4.2.1. The Size and Rate of Urban Expansion
4.2.2. The Intensity and Structure of Urban Expansion
4.3. Five-Year Interval of Urban Expansion
4.3.1. Gradient-Based Spatial Heterogeneity Analysis
4.3.2. Direction-Based Spatial Heterogeneity Analysis
4.4. Urban Expansion Drivers 1985–2020
4.4.1. The Socioeconomic Effects on Urban Expansion
4.4.2. The Effect of Transport Network on Urban Expansion
4.4.3. Quantifying Driver Contribution of Urban Expansion
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Talkhabi, H.; Ghalehteimouri, K.J.; Mehranjani, M.S.; Zanganeh, A.; Karami, T. Spatial and temporal population change in the Tehran Metropolitan Region and its consequences on urban decline and sprawl. Ecol. Inform. 2022, 70, 101731. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Li, J.; Lei, J.; Li, S.; Yang, Z.; Tong, Y.; Zhang, S.; Duan, Z. Spatiotemporal analysis of the relationship between urbanization and the eco-environment in the Kashgar metropolitan area, China. Ecol. Indic. 2022, 135, 108524. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Shen, S.; Yue, P.; Fan, C. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze River Delta, China. Sustain. Comput. Inform. Syst. 2019, 23, 111–119. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. AMBIO A J. Hum. Environ. 2005, 34, 450–455. [Google Scholar] [CrossRef]
- Doe, B.; Amoako, C.; Adamtey, R. Spatial expansion and patterns of land use/land cover changes around Accra, Ghana—Emerging insights from Awutu Senya East Municipal Area. Land Use Policy 2021, 112, 105796. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Sejati, A.W.; Buchori, I.; Rudiarto, I. The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain. Cities Soc. 2019, 46, 101432. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Zhang, J. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [Google Scholar] [CrossRef]
- Du, X.; Huang, Z. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou, China. Ecol. Indic. 2017, 81, 243–251. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef]
- Mahmoud, H.; Alfons, R.; Reffat, R.M. Analysis of the driving forces of urban expansion in luxor city by remote sensing monitoring. Int. J. Integr. Eng. 2019, 11, 296–307. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Jin, Y.; Liu, S.; Wu, P.; Ye, Z.; Gu, C. Modeling urban encroachment on ecological land using cellular automata and cross-entropy optimization rules. Sci. Total Environ. 2020, 744, 140996. [Google Scholar] [CrossRef]
- Hong, W.; Jiang, R.; Yang, C.; Zhang, F.; Su, M.; Liao, Q. Establishing an ecological vulnerability assessment indicator system for spatial recognition and management of ecologically vulnerable areas in highly urbanized regions: A case study of Shenzhen, China. Ecol. Indic. 2016, 69, 540–547. [Google Scholar] [CrossRef]
- Banzhaf, E.; Grescho, V.; Kindler, A. Monitoring urban to peri-urban development with integrated remote sensing and GIS information: A Leipzig, Germany case study. Int. J. Remote Sens. 2009, 30, 1675–1696. [Google Scholar] [CrossRef]
- Odindi, J.; Mhangara, P.; Kakembo, V. Remote sensing land-cover change in Port Elizabeth during South Africa’s democratic transition. South Afr. J. Sci. 2012, 108, 7. [Google Scholar] [CrossRef]
- Li, C.; Chen, F.; Wang, N.; Yu, B.; Wang, L. SDGSAT-1 nighttime light data improve village-scale built-up delineation. Remote Sens. Environ. 2023, 297, 113764. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Sharma, K. Urbanization induced land use-land cover changes in the Manipur valley and surrounding hills: A landscape metrics approach. In Environmental Change in the Himalayan Region; Springer: Berlin/Heidelberg, Germany, 2019; pp. 137–155. [Google Scholar]
- Jiao, L.; Gong, C.; Xu, G.; Dong, T.; Zhang, B.; Li, Z. Urban expansion dynamics and urban forms in three metropolitan areas—Tokyo, New York, and Shanghai. Prog. Geogr. 2019, 38, 675–685. [Google Scholar]
- Yu, S.; Zhang, Z.; Liu, F.; Wang, X.; Hu, S. Urban expansion in the megacity since 1970s: A case study in Mumbai. Geocarto Int. 2021, 36, 603–621. [Google Scholar] [CrossRef]
- Akintunde, J.; Adzandeh, E.; Fabiyi, O. Spatio-temporal pattern of urban growth in Jos Metropolis, Nigeria. Remote Sens. Appl. Soc. Environ. 2016, 4, 44–54. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Yao, L. Land use and cover change during the rapid economic growth period from 1990 to 2010: A case study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- You, H. Quantifying the coordinated degree of urbanization in Shanghai, China. Qual. Quant. 2015, 50, 1273–1283. [Google Scholar] [CrossRef]
- Cui, X.; Wang, X. Urban land use change and its effect on social metabolism: An empirical study in Shanghai. Habitat Int. 2015, 49, 251–259. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhu, F.; Song, C.; Wu, J. Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc. Ecol. 2013, 28, 1545–1565. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. Int. J. Geogr. Inf. Sci. 2019, 34, 74–97. [Google Scholar] [CrossRef]
- Wu, F.; Webster, C.J. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ. Plan. B Plan. Des. 1998, 25, 103–126. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Zhang, Z. Spatial pattern change of land use in China in recent 10 years. Acta Geogr. Sin. 2002, 57, 523–530. [Google Scholar]
- Li, F.; Zhou, T. Effects of urban form on air quality in China: An analysis based on the spatial autoregressive model. Cities 2019, 89, 130–140. [Google Scholar] [CrossRef]
- Xu, X.; Min, X. Quantifying spatiotemporal patterns of urban expansion in China using remote sensing data. Cities 2013, 35, 104–113. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.; Hu, Y.; Li, C.; Sun, F.; Chen, T. A Century of the evolution of the urban area in Shenyang, China. PLoS ONE 2014, 9, e98847. [Google Scholar] [CrossRef]
- Xu, C.; Liu, M.; Zhang, C.; An, S.; Yu, W.; Chen, J.M. The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc. Ecol. 2007, 22, 925–937. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, N.; Wang, X.; Liu, F.; Yang, L. A comparative study of urban expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sens. 2016, 8, 496. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Clarke, K.C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A Econ. Space 2002, 34, 1443–1458. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351.
- Gogtay, N.J.; Thatte, U.M. Principles of correlation analysis. J. Assoc. Physicians India 2017, 65, 78–81. [Google Scholar] [PubMed]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Dong, P.; Yang, C.; Rui, X.; Zhang, L.; Cheng, Q. An effective buffer generation method in GIS. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium; Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; IEEE: New York, NY, USA; Volume 6, pp. 3706–3708. [Google Scholar]
- Bakhshi, A.K.; Ahmed, M.M. Real-time crash prediction for a long low-traffic volume corridor using corrected-impurity importance and semi-parametric generalized additive model. J. Transp. Saf. Secur. 2021, 14, 1165–1200. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R.; Shen, C.; Da, L. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environ. Monit. Assess. 2010, 169, 101–112. [Google Scholar] [CrossRef]
- Chang, X.; Huang, X.; Jiang, X.; Xiao, R. Impacts of Transportation Networks on the Landscape Patterns—A Case Study of Shanghai. Remote Sens. 2022, 14, 4060. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Tian, S.; Wu, W.; Shen, Z.; Wang, J.; Liu, X.; Li, L.; Li, X.; Liu, X.; Chen, H. A cross-scale study on the relationship between urban expansion and ecosystem services in China. J. Environ. Manag. 2022, 319, 115774. [Google Scholar] [CrossRef]
- Shi, L.; Shao, G.; Cui, S.; Li, X.; Lin, T.; Yin, K.; Zhao, J. Urban three-dimensional expansion and its driving forces—A case study of Shanghai, China. Chin. Geogr. Sci. 2009, 19, 291–298. [Google Scholar] [CrossRef]
- Yue, W.; Fan, P.; Wei, Y.D.; Qi, J. Economic development, urban expansion, and sustainable development in Shanghai. Stoch. Environ. Res. Risk Assess. 2014, 28, 783–799. [Google Scholar] [CrossRef]
- Zhang, Q.; Ban, Y.; Liu, J.; Hu, Y. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput. Environ. Urban Syst. 2011, 35, 126–139. [Google Scholar] [CrossRef]
- Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat Int. 2010, 34, 236–243. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Bielsa, I.; Pons, X.; Bunce, B. Agricultural abandonment in the North Eastern Iberian Peninsula: The use of basic landscape metrics to support planning. J. Environ. Plan. Manag. 2005, 48, 85–102. [Google Scholar] [CrossRef]
- Mohammadreza, E.L.M.İ.; Rouhani, A.; Keshavarz, E. Landscape metrics for urbanization and urban land-use change monitoring from remote sensing images: A case of Shiraz Metropolis, Iran. Int. J. Earth Sci. Knowl. Appl. 2022, 4, 43–50. [Google Scholar]
- Pucher, J.; Peng, Z.R.; Mittal, N.; Zhu, Y.; Korattyswaroopam, N. Urban transport trends and policies in China and India: Impacts of rapid economic growth. Transp. Rev. 2007, 27, 379–410. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, S.K. Design and development of e-smart robotics-based underground solid waste storage and transportation system. J. Clean. Prod. 2022, 343, 130987. [Google Scholar] [CrossRef]
Category | Name | Description |
---|---|---|
Area edge | Percentage of landscape (PLAND) | The percent of the study area comprised of different land use types |
Edge density (ED) | The ratio of land use patch perimeters to its areas | |
Shape | Perimeter-area fractal dimension (PAFRAC) | The relationship between perimeter and area to reflect shape complexity |
Mean patch shape index (SHAPE_MN) | The average complexity of the patch shape in the study area | |
Aggregation | Largest patch index (LPI) | The percentage of the largest patch in the total landscape area |
Landscape shape index (LSI) | Total edge length adjusted by the study area size |
Datasets | Source | Scale | Used to |
---|---|---|---|
Administrative map | Geographical Information Monitoring Cloud Platform | 1:1,000,000 | Extract boundary and administration centers |
Road network map | OpenStreetMap | 1:1000 | Extract primary roads, highways, and railways |
Subway networks | OpenStreetMap | 1:1000 | Extract subway lines |
Category | UA vs. POP | UA vs. GDP | UEA vs. POP | UEA vs. GDP |
---|---|---|---|---|
Pearson correlation | 0.987 | 0.976 | 0.472 | 0.172 |
Significance | 0.01 | 0.01 | 0.004 | 0.323 |
N | 36 | 36 | 35 | 35 |
Transportation | UEA 1985–2020 (km2) | ||||
---|---|---|---|---|---|
0.0–0.3 km | 0.3–0.6 km | 0.6–0.9 km | 0.9–1.2 km | 1.2–1.5 km | |
Primary roads | 679.78 | 538.00 | 419.91 | 304.79 | 208.91 |
Highways | 283.16 | 255.82 | 242.89 | 224.64 | 204.04 |
Railways | 139.15 | 106.54 | 100.22 | 92.46 | 84.85 |
Subways | 239.87 | 213.69 | 190.90 | 173.34 | 160.13 |
Variable | GAM (1985–2020) | |||||
---|---|---|---|---|---|---|
Residual Deviance | Deviance Explained | ADE (%) | AIC | p-Value | Rank | |
Null | 1054.409 | 6130.017 | ||||
+Dcity | 881.2205 | 173.1885 | 16.43 | 5387.458 | <0.001 | 1 |
+Dpri | 864.2398 | 16.9807 | 18.04 | 5307.373 | <0.001 | 2 |
+Dhigh | 855.3613 | 8.8785 | 18.88 | 5270.959 | <0.001 | 3 |
+Ddis | 850.8679 | 4.4934 | 19.30 | 5250.595 | <0.001 | 4 |
+Dsub | 848.2171 | 2.6508 | 19.56 | 5249.177 | <0.05 | 5 |
+Drail | 847.8935 | 0.3236 | 19.59 | 5247.854 | 0.254 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Feng, Y.; Wang, R.; Lei, Z.; Chen, S.; Tang, X.; Xi, M. 50-Year Urban Expansion Patterns in Shanghai: Analysis Using Impervious Surface Data and Simulation Models. Land 2023, 12, 2065. https://doi.org/10.3390/land12112065
Gao C, Feng Y, Wang R, Lei Z, Chen S, Tang X, Xi M. 50-Year Urban Expansion Patterns in Shanghai: Analysis Using Impervious Surface Data and Simulation Models. Land. 2023; 12(11):2065. https://doi.org/10.3390/land12112065
Chicago/Turabian StyleGao, Chen, Yongjiu Feng, Rong Wang, Zhenkun Lei, Shurui Chen, Xiaoyan Tang, and Mengrong Xi. 2023. "50-Year Urban Expansion Patterns in Shanghai: Analysis Using Impervious Surface Data and Simulation Models" Land 12, no. 11: 2065. https://doi.org/10.3390/land12112065
APA StyleGao, C., Feng, Y., Wang, R., Lei, Z., Chen, S., Tang, X., & Xi, M. (2023). 50-Year Urban Expansion Patterns in Shanghai: Analysis Using Impervious Surface Data and Simulation Models. Land, 12(11), 2065. https://doi.org/10.3390/land12112065