Morphometric Indicators for the Definition of New Territorial Units in the Periurban Space: Application to the Metropolitan Area of Valencia (Spain)
Abstract
:1. Introduction
2. Area of Study
3. State of the Art
3.1. Dispersion Processes and the Delimitation of Urban Areas
3.2. Dimensions and Indicators
- Density is defined by the number of dwellings per Ha of developable land.
- Continuity is the degree to which developable land has been built over urban densities in an uninterrupted manner (“leapfrog development” according to [55]).
- Concentration measures the degree to which urban development is disproportionately located on relatively little of the total urban area.
- Clustering is the degree to which growth has been grouped to minimize the total amount of developable land occupied by residential uses.
- Centrality is the degree to which urban development is located close to the CBD of the urban area.
- Nuclearity is the extent to which an urban area is defined by a mononuclear (as opposed to polynuclear) pattern of development.
- Mix of uses is the degree to which two different land uses exist in the same area.
- Proximity is the degree to which a particular type of use or pair of uses are close to each other.
- Low density puts pressure on the economic efficiency of technical infrastructure and increases transport demand and car dependency. Public transport is less effective and less cost efficient, infrastructures have higher development costs, and the needs of energy consumption are also higher (heating). There are negative health effects due to a lower level of physical activity, as residents walk less and suffer more from obesity and chronic diseases.
- A pattern characterized by an irregular, discontinuous form, with a highly fragmented mosaic of different land uses, has as its main negative consequences the loss of efficiency of urban services such as road infrastructure or sewage systems, longer commutes, and the fragmentation of the landscape, with the consequent separation and isolation of habitat areas and natural or semi-natural ecosystems.
- Finally, changes in the land uses affect the natural or agricultural land, which transform into built-up areas. Impermeable land has complex effects on ecological systems and the scarcity of open space, the loss or degradation of quality agricultural land, increased pollution, and the contribution to the urban heat island, and negative impacts on aquatic systems.
- Density, i.e., the degree to which urban space has been intensively developed, as measured by the number of dwellings or jobs per floor area.
- Continuity: The degree to which built space has been developed without interruption throughout the urban area.
- Concentration: The degree to which housing and jobs are disproportionately located in a small area of urban space.
- Centrality: The extent to which housing and jobs are located near the center of the urban area.
- Proximity: The degree to which dwellings or jobs are close to each other in the urban area.
- Mixed use: The degree to which housing and employment are located in the same area throughout the urban area.
- Nuclearity: The degree to which jobs are disproportionately located in the center of the urban area, as opposed to a multicentric model.
4. Materials and Methods
4.1. Data Sources
4.2. Delimitation of Morphological Units
4.3. Morphometric Analysis
- −
- To collect information on the main dimensions of urban sprawl identified by the literature, namely density, pattern, centrality, and mix of uses, avoiding redundant information that may be provided by a very large battery of indicators, which hinders comparability, interpretation, and meaningful conclusions [28,64].
- −
- Within each of these dimensions, indicators are selected that are considered appropriate to characterize the delimited intra-metropolitan territorial units. Thus, global indicators of metropolitan structure are not applied, as they are not considered appropriate for the present analysis, which focuses on the comparability of intra-metropolitan spaces, and not between MAs.
- −
- Finally, and with the aim of making them an instrument applicable in different contexts and useful for planners, indicators are selected that are based on easily accessible information, identifiable by the planner and interested agents, because of their relative accessibility and because they are directly associated with planning problems and instruments.
- Density: Density indicators are the most widely used in the literature and are considered indispensable in the investigation of urban sprawl. Positive values of this factor are associated with high values of net density, which describes the capacities of urban settlements to sustain more population within less dispersed urban areas.
- 1.
- The first density indicator (Dens1) is obtained according to [62,67] taking into account the percentage of developed land per total area. Developed land is considered as the “footprint” of the built-up space, which is obtained from cadastral databases, while the total area is that corresponding to the morphological unit.Dens 1 = (Developed land)/(Morphological Unit Area)
- 2.
- The second density indicator (Dens2) refers to net building density as defined by [68]. In this case, built-up volumes are taken instead of the built-up surfaces of the previous indicator. The volume is obtained by multiplying the built-up areas by the heights of the buildings.Dens 2 = (Built volumes)/(Morphological Unit Area)
- 3.
- The third density indicator (Dens3) takes into account the population within built-up land [62]. The population within each morphological unit has been estimated from the information provided by the National Institute of Statistics for the 1 km2 side grid of the 2011 Population Census. The calculation has taken into account only the residential polygons from the urban planning and the volume of urbanized areas. The population is distributed over the volume of built-up residential space.Dens 3 = (Population of morphological unit)/(Built volumes)
- Pattern: Among the different indicators of the pattern, those related to the continuity and compactness of the urbanized space, as well as the proximity to other urbanized spaces, have been selected as the most relevant. The shape index (Comp1) measures the level of deviation of an urban area from the ideal compact form of a circle. These urban forms are more difficult to supply with urban services (e.g., public transport) than compact areas. The openness index or contiguity (Cont1) reflects the integration of the morphological unit into the existing infrastructure.
- 4.
- Compactness ratio (Comp1) provides a compactness measure to compare the area of a shape (A) with the area of the smallest circle that circumscribes the shape (Ac) [69]. It shows the irregularity of the areas.Comp 1 = A/Ac
- 5.
- Continuity (Cont1) is derived from the openness index [62]. It is obtained as the percentage of non-urban land in a 1 km buffer from each unit. It allows measurement of the level of integration of new urban areas into the existing urban mix.Cont 1 = (Non-urban land in the buffer)/(Buffer’s area) ×100
- Centrality: The degree to which the urban development is located close to the CBD of the urban area. Due to the importance of the municipal level in the planning and management of infrastructures, the distance to the head or heads of the municipalities over which the morphological unit extends has also been considered.
- 6.
- The first centrality indicator used (Centr1) is calculated from the distance from the centroid of each morphological unit to the CBD of the area, located in Valencia City Council [68].
- 7.
- The second centrality indicator (Centr2) is obtained from the distance from each morphological unit to the municipal capitals in which it is included. The morphological unit may be within a single municipality or several municipalities, in which case the average distance to the corresponding municipal centers is obtained.
- Mix of uses: The proximity of non-residential uses minimizes travel and improves the quality of life of the population.
- 8.
- The mix of uses indicator (Mix1) is calculated as the percentage of uses other than residential within the morphological unit [56]. In this case we add up all the areas corresponding to industrial, commercial, and tertiary uses.
4.4. Typology of Spaces
5. Results
5.1. Morphological Units
5.2. Morphometric Characterisation
5.3. Typology
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rolheiser, L.A.; Dai, C. Beyond density: Municipal expenditures and the shape and location of development. Urban Geogr. 2019, 40, 1097–1123. [Google Scholar] [CrossRef]
- Mouratidis, K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction. Urban Stud. 2018, 55, 2408–2430. [Google Scholar] [CrossRef]
- Zornoza-Gallego, C.; Pitarch-Garrido, M.D.; Romero-González, J. Governance in the metropolitan area of Valencia (Spain): An unfinished business. Front. Politi. Sci. 2023, 5, 1150537. [Google Scholar] [CrossRef]
- Heubeck, S. Competitive sprawl. Econ. Theory 2008, 39, 443–460. [Google Scholar] [CrossRef]
- Gómez-Antonio, M.; Hortas-Rico, M.; Li, L. The Causes of Urban Sprawl in Spanish Urban Areas: A Spatial Approach. Spat. Econ. Anal. 2016, 11, 219–247. [Google Scholar] [CrossRef]
- Muñoz, F. Estrategies vers la Ciutat de Baixa Densitat: De la Contenció a la Gestió; Diputació de Barcelona: Barcelona, Spain, 2011.
- Artmann, M.; Inostroza, L.; Fan, P. From urban sprawl to compact green cities—advancing multi-scale and multi-dimensional analysis. Ecol. Indic. 2019, 96, 1–2. [Google Scholar] [CrossRef]
- Altieri, L.; Cocchi, D.; Pezzi, G.; Scott, E.M.; Ventrucci, M. Urban sprawl scatterplots for Urban Morphological Zones data. Ecol. Indic. 2014, 36, 315–323. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Wolman, H.; Galster, G.; Hanson, R.; Ratcliffe, M.; Furdell, K.; Sarzynski, A. The Fundamental Challenge in Measuring Sprawl: Which Land Should Be Considered? Prof. Geogr. 2005, 57, 94–105. [Google Scholar] [CrossRef]
- Sarzynski, A.; Galster, G.; Stack, L. Evolving United States metropolitan land use patterns. Urban Geogr. 2013, 35, 25–47. [Google Scholar] [CrossRef]
- Gielen, E.; Riutort-Mayol, G.; Miralles i Garcia, J.L.; Palencia Jiménez, J.S. Cost assessment of urban sprawl on municipal services using hierarchical regression. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 280–297. [Google Scholar] [CrossRef]
- Salom-Carrasco, J.; Thomas, I.; Montero, G. Delimitación y caracterización morfométrica del área metropolitana de Valencia. Cybergeo 2021, 1001. [Google Scholar] [CrossRef]
- Zornoza-Gallego, C. Crecimiento Urbanístico en la Zona Costera de la Comunidad Valenciana (1987–2009): Análisis y Perspectivas de Future; Universitat de València: Valencia, Spain, 2013. [Google Scholar]
- Nello, O. Els confins de la ciutat sense confins. Estructura urbana i limits administratius de la ciutat difusa. In La Ciutat Difusa i les Periferies: Experiences de Planificació i Gestió; Castañer, A., Falgueras, M., Vicente, J., Eds.; Universitat de Girona: Girona, Spain, 1996; pp. 55–71. [Google Scholar]
- Indovina, F. Algunes consideracions sobre la ‘ciutat difusa’. Doc. D’analisi Geogràfica 1998, 33, 21–32. Available online: https://ddd.uab.cat/pub/dag/02121573n33/02121573n33p21.pdf (accessed on 25 September 2023).
- Indovina, F.; Nello, O. Del Análisis del Territorio al Gobierno de la Ciudad; Icaria: Barcelona, Spain, 2012. [Google Scholar]
- Zornoza-Gallego, C. Means of Transport and Population Distribution in Metropolitan Areas: An Evolutionary Analysis of the Valencia Metropolitan Area. Land 2022, 11, 657. [Google Scholar] [CrossRef]
- Romero, J.; Salom-Carrasco, J.; Albertos Puebla, J.M.; Pitarch-Garrido, M.D.; Melo Escrihuela, C. Trayectoria y recomposición metropolitana post-crisis en Valencia: ¿a la búsqueda de nuevos modelos? Ciudad y Territorio. Estud. Territ. 2018, 198, 679–696. [Google Scholar]
- Burriel, E. La planificación territorial en la Comunidad Valenciana (1986–2009). Scripta Nova. Rev. Electrónica De Geogr. Y Cienc. Soc. 2009, 13, n306. Available online: http://www.ub.edu/geocrit/sn/sn-306.htm (accessed on 2 July 2023).
- Rullán, O. La regulación del crecimiento urbanístico en el litoral mediterráneo español. Ciudad Y Territorio. Estud. Territ. 2011, 43, 279–297. [Google Scholar]
- Farinós, D.J.; Peiró Sánchez-Manjavacas, E.; Zornoza Gallego, C. Análisis del suelo y del planeamiento urbano y territorial en la Comunitat Valenciana en el periodo 2006–2017. In Informe Sobre la Evolución y la Situación Territorial de la Comunitat Valenciana; Universitat de València: Valencia, Spain, 2019; pp. 269–354. [Google Scholar]
- Valenciana, G.; Conselleria d’Habitatge; del Territori, O.P.I.V.; Plan de Acción Territorial Metropolitano de Valencia (PATEVAL). Documento de Inicio del Proceso de Evaluación Ambiental y Territorial Estratégica del Plan de Acción Territorial Metropolitano de Valencia; Generalita Valenciana: Valencia, Spain, 2016.
- Feria Toribio, J.M.; De Oliveira Neves, G.; Hurtado Rodríguez, C. Une méthode pour la délimitation des aires métropolitaines en Espagne. Cybergéo Eur. J. Geogr. 2018, 852. [Google Scholar] [CrossRef]
- European Environment Agency. Urban sprawl in Europe. In Joint EEA-FOEN report, EEA Report No 11/2016; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Sass, K.S.; Porsse, A.A. Urban sprawl and the cost of providing local public services: Empirical evidence for Brazilian municipalities. Reg. Sci. Policy Pract. 2021, 13, 1371–1387. [Google Scholar] [CrossRef]
- Rienow, A.; Stenger, D.; Menz, G. Sprawling cities and shrinking regions—forecasting urban growth in the Ruhr for 2025 by coupling cells and agents. Erdkunde 2014, 68, 85–107. Available online: https://www.jstor.org/stable/24365196 (accessed on 3 October 2023). [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban sprawl measurement from remote sensing data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
- Zhang, W.; Wrenn, D.H.; Irwin, E.G. Spatial Heterogeneity, Accessibility, and Zoning: An Empirical Investigation of Leapfrog Development. J. Econ. Geogr. 2017, 17, 547–570. [Google Scholar] [CrossRef]
- Cheshire, P.; Gornostaeva, G. Cities and regions: Comparable measures require comparable territories. Cah. L’iaurif 2002, 135, 13–32. [Google Scholar]
- Parr, J.B. Spatial Definitions of the City: Four Perspectives. Urban Stud. 2007, 44, 381–392. [Google Scholar] [CrossRef]
- Redfearn, C.L. The topography of metropolitan employment: Identifying centers of employment in a polycentric urban area. J. Urban Econ. 2007, 61, 519–541. [Google Scholar] [CrossRef]
- Bode, E. Delineating Metropolitan Areas Using Land Prices. J. Reg. Sci. 2008, 48, 131–168. [Google Scholar] [CrossRef]
- Cörvers, F.; Hensen, M.; Bongaerts, D. Delimitation and Coherence of Functional and Administrative Regions. Reg. Stud. 2009, 43, 19–31. [Google Scholar] [CrossRef]
- Peeters, D. Delineation of the European Urban Areas as used in ESPON 2013. In Proceedings of the Functional Urban Areas Database, ISI Conference, Dublin, Ireland, 21–26 August 2011. [Google Scholar]
- Bretagnolle, A.; Guerois, M.; Averlant, G.; Mathian, H.; Delisle, F.; Lizzi, L.; Giraud, T. Naming UMZ: A Database Now Operational for Urban Studies; Espon Technical Report; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Guérois, M.; Bretagnolle, A.; Mathian, H.; Pavard, A. Functional Urban Areas (FUA) and European harmonization. In A feasibility Study from the Comparison of Two Approaches: Commuting Flows and Accessibility Isochrones; Technical Report, Espon 2013 Database, Paris; Union Européenne: Brussels, Belgium, 2013. [Google Scholar]
- Guérois, M.; Bretagnolle, A.; Pavard, A.; Gourdon, P.; Zdanowska, N. Following the population of European urban areas in the last half century (1961–2011): The TRADEVE database. Cybergéo Eur. J. Geogr. 2019, 891. [Google Scholar] [CrossRef]
- Blondel, V.; Krings, G.; Thomas, I. Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone. Bruss. Stud. 2010, 42. [Google Scholar] [CrossRef]
- Kauffmann, A. Delineation of City Regions Based on Commuting Interrelations: The Example of Large Cities in Germany. IWH Discuss. Pap. 2012, 4. Available online: https://nbn-resolving.de/urn:nbn:de:101:1-201212176768 (accessed on 3 September 2023).
- Sotomayor-Gómez, B.; Samaniego, H. City limits in the age of smartphones and urban scaling. Comput. Environ. Urban Syst. 2020, 79, 101423. [Google Scholar] [CrossRef]
- Medda, F.; Nijkamp, P.; Rietveld, P. Recognition and Classification of Urban Shapes. Geogr. Anal. 1998, 30, 304–314. [Google Scholar] [CrossRef]
- Thomas, I.; Jones, J.; Caruso, G.; Gerber, P. City delineation in European applications of LUTI models: Review and tests. Transp. Rev. 2018, 38, 6–32. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I.; Vuidel, G.; Frankhauser, P. A Fractal Approach to Identifying Urban Boundaries. Geogr. Anal. 2011, 43, 211–227. [Google Scholar] [CrossRef]
- Montero, G.; Tannier, C.; Thomas, I. Delineation of cities based on scaling properties of urban patterns: A comparison of three methods. Int. J. Geogr. Inf. Sci. 2021, 35, 919–947. [Google Scholar] [CrossRef]
- Arcaute, E.; Hatna, E.; Ferguson, P.; Youn, H.; Johansson, A.; Batty, M.; Elsa, A.; Erez, H.; Peter, F.; Hyejin, Y.; et al. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface 2014, 12, 20140745. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Jia, T. Zipf’s law for all the natural cities in the United States: A geospatial perspective. Int. J. Geogr. Inf. Sci. 2011, 25, 1269–1281. [Google Scholar] [CrossRef]
- Long, Y. Redefining Chinese city system with emerging new data. Appl. Geogr. 2016, 75, 36–48. [Google Scholar] [CrossRef]
- Masucci, A.P.; Arcaute, E.; Hatna, E.; Stanilov, K.; Batty, M.; Paolo, M.A.; Elsa, A.; Erez, H.; Kiril, S.; Michael, B.; et al. On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface 2015, 12, 20150763. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I. Defining and characterizing urban boundaries: A fractal analysis of theoretical cities and Belgian cities. Comput. Environ. Urban Syst. 2013, 41, 234–248. [Google Scholar] [CrossRef]
- Tannier, C.; Pumain, D. Fractales et géographie urbaine: Aperçu théorique et application pratique. Cybergéo Eur. J. Geogr. 2005, 307. [Google Scholar]
- Minkowski, H. Vorlumen und Oberflache. Math. Ann. 1903, 57, 447–495. [Google Scholar] [CrossRef]
- Boulingard, G. Notions sur la Géometrie Réglée et la Théorie du Complexe Quadratique. Math. Gaz. 1930, 1, 174–175. [Google Scholar] [CrossRef]
- Frankhauser, P.; Tannier, C. A multi-scale morphological approach for delimiting urban areas. In Proceedings of the CUPUM 05: Computers in Urban Planning and Urban Management, University College of London, London, UK, 29 June–1 July 2005. [Google Scholar]
- Torrens, M.A.; Alberti, M. Measuring Sprawl; Working Paper No. 27; Centre for Advanced Spatial Analysis, University College: London, UK; Available online: https://discovery.ucl.ac.uk/id/eprint/1370/1/paper27.pdf (accessed on 11 October 2023).
- Frenkel, A.; Ashkenazi, M. Measuring Urban Sprawl: How can we deal with it? Environ. Plan. B Plan. Des. 2008, 35, 56–79. [Google Scholar] [CrossRef]
- Batty, M.; Kim, K.S. Form Follows Function: Reformulating Urban Population Density Functions. Urban Stud. 1992, 29, 1043–1069. [Google Scholar] [CrossRef]
- Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press Inc.: London, UK, 1994. [Google Scholar]
- Herold, M.; Menz, G. Landscape Metric Signatures (LMS) to Improve Urban Land Use Information derived from Remotely Sensed Data. In Proceedings of the A Decade of Trans-European Remote Sensing Cooperation, the 20th EARSEL Symposium, Dresden, Germany, 14–16 June 2000; pp. 251–256. [Google Scholar]
- Ma, L.; Seipel, S.; Brandt, S.A.; Ma, D. A New Graph-Based Fractality Index to Characterize Complexity of Urban Form. ISPRS Int. J. Geo-Inf. 2022, 11, 287. [Google Scholar] [CrossRef]
- Thomas, I.; Frankhauser, P.; Biernacki, C. The morphology of built-up landscapes in Wallonia (Belgium): A classification using fractal indices. Landsc. Urban Plan. 2008, 84, 99–115. [Google Scholar] [CrossRef]
- Siedentop, S.; Fina, S. Monitoring urban sprawl in Germany: Towards a GIS-based measurement and assessment approach. J. Land Use Sci. 2010, 5, 73–104. [Google Scholar] [CrossRef]
- Cutsinger, J.; Galster, G.; Wolman, H.; Hanson, R.; Towns, D. Verifying the multi-dimensional nature of metropolitan land use: Advancing the understanding and measurement of sprawl. J. Urban Aff. 2004, 27, 235–259. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-five Global Cities using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Cutsinger, J.; Galster, G. There is No Sprawl Syndrome: A New Typology of Metropolitan Land Use Patterns. Urban Geogr. 2006, 27, 228–252. [Google Scholar] [CrossRef]
- Jaeger, J.A.; Bertiller, R.; Schwick, C.; Kienast, F. Suitability criteria for measures of urban sprawl. Ecol. Indic. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Garcia Martín, F.M. Los valores de compacidad y densidad en los tejidos residenciales de la periferia de las ciudades intermedias españolas a lo largo del siglo XX. ACE 2019, 14, 11–34. [Google Scholar] [CrossRef]
- Gielen, E.; Riutort-Mayol, G.; Palencia-Jiménez, J.S.; Cantarino, I. An urban sprawl index based on multivariate and Bayesian factor analysis with application at the municipality level in Valencia. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 888–914. [Google Scholar] [CrossRef]
- Cole, J.P. Study of major and minor civil divisions in political geography. In Proceedings of the 20th International Geographical Congress, London, UK, 20–28 July 1964. [Google Scholar]
- Moreno, P.; García López, J. Estado del arte en procesos de zonificación. GeoFocus 2011, 11, 155–181. [Google Scholar]
- Aldenderfer, M.S.; Blashfield, R.K. Cluster Analysis; Sage University: London, UK, 1986. [Google Scholar]
- Sarzynski, A.; Galster, G.; Stack, L. Typologies of sprawl: Investigating United States metropolitan land use patterns. Urban Geogr. 2014, 35, 48–70. [Google Scholar] [CrossRef]
- Perez, J.; Ornon, A.; Usui, H. Classification of residential buildings into spatial patterns of urban growth: A morpho-structural approach. EPB Urban Anal. City Sci. 2021, 48, 2402–2417. [Google Scholar] [CrossRef]
- Chen, Y. Normalizing and classifying shape indexes of cities by ideas from fractals. Chaos Solitons Fractals 2022, 154, 111653. [Google Scholar] [CrossRef]
- Chen, Y. Derivation of the functional relations between fractal dimension of and shape indices of urban form. Comput. Environ. Urban Syst. 2011, 35, 442–451. [Google Scholar] [CrossRef]
- Colaninno, N.; Cerda, J.; Roca, J. Spatial Patterns of Land Use: Morphology and Demography, in a Dynamic Evaluation of Urban Sprawl Phenomena along the Spanish Mediterranean Coast; ERSA conference papers; European Regional Science Association: Amsterdam, The Netherlands, 2011. [Google Scholar]
Size (Ha.) | Number of Cluster | Surface (km2) | |||
---|---|---|---|---|---|
Number | % | km2 | % | % of M.A. | |
<1 | 5120 | 49.08 | 42 | 7.95 | 1.88 |
1 to 5 | 4392 | 42.00 | 87 | 16.53 | 3.92 |
5 to 10 | 434 | 4.16 | 30 | 5.67 | 1.34 |
10 to 20 | 225 | 2.16 | 31 | 5.95 | 1.41 |
20 to 50 | 129 | 1.24 | 40 | 7.68 | 1.82 |
50 to 100 | 59 | 0.57 | 41 | 7.85 | 1.86 |
100 to 200 | 36 | 0.35 | 48 | 9.14 | 2.17 |
200 to 500 | 24 | 0.23 | 72 | 13.71 | 3.25 |
500 to 1000 | 8 | 0.08 | 53 | 10.16 | 2.41 |
>1000 | 4 | 0.04 | 81 | 15.36 | 3.64 |
Total | 10,431 | 100.00 | 525 | 100.00 | 23.71 |
Frequency | Mean | Std | Max | Min |
---|---|---|---|---|
DENS_1 | 18.06 | 13.04 | 57.01 | 3.63 |
DENS_2 | 46.26 | 43.88 | 250.92 | 4.91 |
DENS_3 | 115.49 | 112.22 | 558.60 | 0 |
COMP_1 | 0.37 | 0.11 | 0.63 | 0.10 |
CONT_1 | 77.19 | 10.80 | 93.53 | 39.69 |
CENTR_1 | 18,717.10 | 7792.20 | 48,412.5 | 1189.97 |
CENTR_2 | 3655.21 | 2974.60 | 21,399.20 | 19.84 |
MIX_1 | 13.03 | 20.43 | 100 | 0 |
Dens1 | Dens2 | Dens3 | Comp1 | Cont1 | Centr1 | Centr2 | Mix1 | |
---|---|---|---|---|---|---|---|---|
Dens1 | 1 | 0.866 ** | 0.393 ** | 0.206 * | −0.359 ** | −0.285 ** | −0.213 ** | 0.6 ** |
Dens2 | 0.866 ** | 1 | 0.717 ** | 0.110 | −0.484 ** | −0.385 ** | −0.295 ** | 0.361 ** |
Dens3 | 0.393 ** | 0.717 ** | 1 | −0.006 | −0.461 ** | −0.343 ** | −0.294 ** | −0.164 ** |
Comp1 | 0.206 * | 0.110 | −0.006 | 1 | −0.010 | 0.079 | −0.062 | 0.167 |
Cont1 | −0.359 ** | −0.484 ** | −0.461 ** | −0.010 | 1 | 0.556 ** | 0.873 ** | −0.121 * |
Centr1 | −0.285 ** | −0.385 ** | −0.343 ** | 0.079 | 0.556 ** | 1 | 0.511 ** | −0.167 ** |
Centr2 | −0.213 * | −0.295 ** | −0.294 ** | −0.062 | 0.873 ** | 0.511 ** | 1 | −0.076 |
Mix1 | 0.6 ** | 0.361 ** | −0.164 ** | 0.167 | −0.121 * | −0.167 ** | −0.076 | 1 |
Variable | Component | ||
---|---|---|---|
1 | 2 | 3 | |
Dens1 | −0.155 | 0.713 | 0.614 |
Dens2 | −0.247 | 0.905 | 0.293 |
Dens3 | −0.260 | 0.857 | −0.304 |
Comp1 | 0.023 | −0.010 | 0.517 |
Cont1 | 0.902 | −0.275 | −0.029 |
Centr1 | 0.713 | −0.238 | −0.038 |
Centr2 | 0.939 | −0.047 | −0.033 |
Mix1 | −0.090 | 0.096 | 0.890 |
Variable | Group | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Total | ||
Nº Cases | 4 | 27 | 39 | 52 | 3 | 6 | 131 | |
Total Area (km2) | 54.22 | 93.16 | 74.33 | 68.43 | 4.56 | 5.62 | 300.33 | |
Total Population | 919.587 | 632.157 | 73.843 | 145,026 | 0 | 75 | 1,770,688 | |
Nº Municipalities | 12 | 81 | 67 | 76 | 6 | 8 | 250 | |
Average Value | FACTOR 1 | −2.46 | −0.38 | −0.54 | 0.87 | −1.95 | 0.29 | 0 |
FACTOR 2 | 2.36 | 0.92 | −0.83 | 0.04 | −0.63 | −0.38 | 0 | |
FACTOR 3 | −1.07 | 0.37 | −0.35 | −0.32 | 1.95 | 3.13 | 0 | |
Dens_1 | 29.19 | 32.84 | 8.45 | 13.83 | 38.15 | 33.27 | 18.06 | |
Dens_2 | 158.56 | 89.84 | 16.15 | 34.03 | 68.19 | 65.97 | 46.26 | |
Dens_3 | 495.50 | 187.18 | 62.10 | 109.05 | 0.00 | 0.18 | 115.49 | |
Comp_1 | 0.3460 | 0.3648 | 0.3655 | 0.3519 | 0.3907 | 0.4713 | 0.3648 | |
Cont_2 | 46.40 | 70.57 | 74.01 | 85.85 | 60.05 | 81.82 | 77.20 | |
Centr_1 | 3494.99 | 13,489.41 | 18,045.59 | 23,689.01 | 9147.91 | 18,449.23 | 18,717.10 | |
Centr_2 | 2716.61 | 2477.28 | 4443.52 | 3825.13 | 2462.38 | 3581.37 | 3655.21 | |
Mix_1 | 5.07 | 20.53 | 1.45 | 3.79 | 52.47 | 91.89 | 11.73 | |
Industrial and Commercial | 4.01 | 20.03 | 0.76 | 3.57 | 52.47 | 91.76 | 11.30 | |
Tertiary | 1.06 | 0.50 | 0.69 | 0.22 | 0.00 | 0.13 | 0.43 | |
No municipalities | 3.00 | 3.00 | 1.72 | 1.46 | 2.00 | 1.33 | 1.91 |
Nº Municipalities | Group | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | TOTAL | |
1 | 2 | 6 | 22 | 34 | 1 | 4 | 69 |
2 | 9 | 10 | 13 | 1 | 2 | 35 | |
3 | 3 | 5 | 4 | 1 | 13 | ||
4 | 1 | 5 | 1 | 1 | 8 | ||
5 | 2 | 2 | |||||
6 | 1 | 1 | 2 | ||||
8 | 1 | 1 | |||||
10 | 1 | 1 | |||||
Total | 4 | 27 | 39 | 52 | 3 | 6 | 131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salom-Carrasco, J.; Zornoza-Gallego, C. Morphometric Indicators for the Definition of New Territorial Units in the Periurban Space: Application to the Metropolitan Area of Valencia (Spain). Land 2024, 13, 54. https://doi.org/10.3390/land13010054
Salom-Carrasco J, Zornoza-Gallego C. Morphometric Indicators for the Definition of New Territorial Units in the Periurban Space: Application to the Metropolitan Area of Valencia (Spain). Land. 2024; 13(1):54. https://doi.org/10.3390/land13010054
Chicago/Turabian StyleSalom-Carrasco, Julia, and Carmen Zornoza-Gallego. 2024. "Morphometric Indicators for the Definition of New Territorial Units in the Periurban Space: Application to the Metropolitan Area of Valencia (Spain)" Land 13, no. 1: 54. https://doi.org/10.3390/land13010054
APA StyleSalom-Carrasco, J., & Zornoza-Gallego, C. (2024). Morphometric Indicators for the Definition of New Territorial Units in the Periurban Space: Application to the Metropolitan Area of Valencia (Spain). Land, 13(1), 54. https://doi.org/10.3390/land13010054