Spatial Analysis Model for the Evaluation of the Territorial Adequacy of the Urban Process in Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Metodology
2.3.1. Analysis of the Dynamics of Land Use Change
2.3.2. Analysis of the Spatial Structure and Quantification of the Form of the Urban Process
2.3.3. Assessment of the Territorial Adequacy of the Urban Process with Multi-Criteria Decision Analysis (MCDA) and Geographic Information Systems Techniques
3. Results
3.1. Results of the Analysis of Land Use Change Dynamics
1990 | 2018 | LOSSES | EARNINGS | TOTAL CHANGE | NET CHANGE | |
---|---|---|---|---|---|---|
USES | T1 (Pj*) | T2 (P*j) | Lj = Pj* − Pjj | Gj = P*j − Pjj | TCj = Lj + Gj | NCj = P*j − Pj* |
(1) CUF | 92,528.05 | 84,912.36 | 51,989.54 | 44,373.84 | 96,363.38 | −7615.69 |
(2) DUF | 113,570.05 | 205,668.50 | 74,281.99 | 166,380.44 | 240,662.42 | 92,098.45 |
(3) ICT | 34,527.16 | 107,603.63 | 26,722.55 | 99,799.03 | 126,521.57 | 73,076.48 |
(4) MAL | 15,027.89 | 32,323.29 | 11,463.86 | 28,759.26 | 40,223.12 | 17,295.39 |
(5) AGA | 4398.48 | 24,649.05 | 3038.53 | 23,289.09 | 26,327.62 | 20,250.56 |
(6) AAZ | 5,218,406.18 | 4,736,283.75 | 3,095,275.65 | 2,613,153.22 | 5,708,428.87 | −482,122.43 |
(7) NVA | 4,431,961.79 | 4,975,842.51 | 3,338,846.62 | 3,882,727.34 | 7,221,573.96 | 543,880.71 |
(8) OSV | 651,149.86 | 238,058.30 | 143,641.91 | −269,449.65 | −125,807.74 | −413,091.56 |
(9) WWS | 542,564.77 | 232,174.56 | 532,335.19 | 221,944.98 | 754,280.17 | −310,390.21 |
SURFACES (HAS) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AREAS | (1) CUF | (2) DUF | (3) ICT | (4) MAL | (5) AGA | (6) AAZ | (7) NVA | (8) OSV | (9) WWS | LOSSES | TOTAL 1 (A) |
(1) CUF | 51,670 | 24,960 | 7031 | 63 | 1144 | 5311 | 1739 | 134 | 157 | 40,539 | 92,209 |
(2) DUF | 6690 | 73,696 | 2903 | 313 | 1820 | 11,657 | 15,370 | 239 | 296 | 39,288 | 112,984 |
(3) ICT | 1563 | 2073 | 25,547 | 89 | 437 | 2583 | 865 | 65 | 128 | 7805 | 33,351 |
(4) MAL | 37 | 199 | 263 | 6379 | 30 | 659 | 2193 | 44 | 138 | 3564 | 9943 |
(5) AGA | 140 | 441 | 326 | 0 | 3014 | 157 | 214 | 23 | 58 | 1360 | 4374 |
(6) AAZ | 20,944 | 78,439 | 59,435 | 7394 | 10,818 | 3,315,682 | 597,027 | 15,859 | 7339 | 797,255 | 4112,937 |
(7) NVA | 2451 | 20,853 | 6391 | 7061 | 5933 | 260,764 | 3,389,265 | 85,795 | 5590 | 394,838 | 3,784,102 |
(8) OSV | 880 | 3274 | 2421 | 2016 | 1124 | 83,520 | 412,583 | 128,799 | 1690 | 507,508 | 636,307 |
(9) WWS | 226 | 782 | 1924 | 13 | 295 | 2759 | 3399 | 832 | 35,370 | 10,230 | 45,600 |
EARNINGS | 32,931 | 131,021 | 80,694 | 16,949 | 21,601 | 367,410 | 1,033,390 | 102,992 | 15,397 | 1,802,385 | ↓ |
TOTAL 2 (B) | 84,601 | 204,717 | 106,241 | 23,328 | 24,615 | 3,683,092 | 4,422,655 | 231,792 | 50,767 | → | 8,831,807 |
PERCENTAGE OF EARNINGS | |||||||||||
EARNINGS(%) | (1) CUF | (2) DUF | (3) ICT | (4) MAL | (5) AGA | (6) AAZ | (7) NVA | (8) OSV | (9) WWS | EARNINGS | % AREA(E) |
(1) CUF | 61.07(C) | 19.05 | 8.71 | 0.37 | 5.29 | 1.45 | 0.17 | 0.13 | 1.02 | 2.25 | 1.04 |
(2) DUF | 20.31 (D) | 36.00 | 3.60 | 1.85 | 8.43 | 3.17 | 1.49 | 0.23 | 1.92 | 2.18 | 1.28 |
(3) ICT | 4.75 | 1.58 | 24.05 | 0.52 | 2.03 | 0.70 | 0.08 | 0.06 | 0.83 | 0.43 | 0.38 |
(4) MAL | 0.11 | 0.15 | 0.33 | 27.34 | 0.14 | 0.18 | 0.21 | 0.04 | 0.90 | 0.20 | 0.11 |
(5) AGA | 0.42 | 0.34 | 0.40 | 0.00 | 12.25 | 0.04 | 0.02 | 0.02 | 0.38 | 0.08 | 0.05 |
(6) AAZ | 63.60 | 59.87 | 73.65 | 43.62 | 50.08 | 90.02 | 57.77 | 15.40 | 47.67 | 44.23 | 46.57 |
(7) NVA | 7.44 | 15.92 | 7.92 | 41.66 | 27.47 | 70.97 | 76.63 | 83.30 | 36.30 | 21.91 | 42.85 |
(8) OSV | 2.67 | 2.50 | 3.00 | 11.89 | 5.20 | 22.73 | 39.93 | 55.57 | 10.98 | 28.16 | 7.20 |
(9) WWS | 0.69 | 0.60 | 2.38 | 0.08 | 1.36 | 0.75 | 0.33 | 0.81 | 69.67 | 0.57 | 0.52 |
100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
PERCENTAGE OF LOSSES | |||||||||||
LOSSES(%) | (1) CUF | (2) DUF | (3) ICT | (4) MAL | (5) AGA | (6) AAZ | (7) NVA | (8) OSV | (9) WWS | LOSSES | % AREA (F) |
(1) CUF | 56.04 | 61.57 | 17.34 | 0.16 | 2.82 | 13.10 | 4.29 | 0.33 | 0.39 | 100 | 43.96 |
(2) DUF | 17.03 | 65.23 | 7.39 | 0.80 | 4.63 | 29.67 | 39.12 | 0.61 | 0.75 | 100 | 34.77 |
(3) ICT | 20.03 | 26.57 | 76.60 | 1.14 | 5.61 | 33.10 | 11.08 | 0.84 | 1.65 | 100 | 23.40 |
(4) MAL | 1.05 | 5.59 | 7.39 | 64.16 | 0.83 | 18.49 | 61.53 | 1.24 | 3.88 | 100 | 35.84 |
(5) AGA | 10.29 | 32.42 | 23.95 | 0.00 | 68.91 | 11.58 | 15.75 | 1.71 | 4.30 | 100 | 31.09 |
(6) AAZ | 2.63 | 9.84 | 7.46 | 0.93 | 1.36 | 80.62 | 74.89 | 1.99 | 0.92 | 100 | 19.38 |
(7) NVA | 0.62 | 5.28 | 1.62 | 1.79 | 1.50 | 66.04 | 89.57 | 21.73 | 1.42 | 100 | 10.43 |
(8) OSV | 0.17 | 0.65 | 0.48 | 0.40 | 0.22 | 16.46 | 81.30 | 20.24 | 0.33 | 100 | 79.76 |
(9) WWS | 2.21 | 7.64 | 18.81 | 0.13 | 2.88 | 26.97 | 33.23 | 8.14 | 77.57 | 100 | 22.43 |
% LOSSES | 1.83 | 7.27 | 4.48 | 0.94 | 1.20 | 20.38 | 57.33 | 5.71 | 0.85 | 100 | 20.41 |
3.2. Analysis of the Spatial Occupation Generated by the Urban Process through the Definition of Units of Urban Functionality and Homogeneous Behaviour
SPACES/USES | (1) CUF | (2A) DUF | (2B) DUF | (2C) DUF | (2D) DUF | (3) ICT | (4) MAL | (5) AGA | TOTAL URBAN |
Traditional urban centres and their successive extensions | |||||||||
Barcelona | 8756.32 | 7731.60 | 7670.04 | 7143.90 | 4783.00 | 33,640.35 | 2166.84 | 6029.69 | 77,921.74 |
Valencia | 3482.43 | 1552.54 | 1467.19 | 3279.51 | 3392.04 | 15,064.14 | 763.49 | 2038.91 | 31,040.25 |
Palma | 1355.37 | 2170.15 | 2551.40 | 3442.70 | 6614.53 | 9208.02 | 556.88 | 2355.37 | 28,254.42 |
Murcia | 1284.97 | 1602.44 | 1309.72 | 2273.73 | 4323.93 | 8564.67 | 774.73 | 1559.79 | 21,693.98 |
Málaga | 1978.46 | 1738.14 | 1643.79 | 1508.36 | 3012.40 | 8241.52 | 826.21 | 1219.40 | 20,168.28 |
Granada | 1427.37 | 1745.71 | 930.78 | 1298.44 | 1956.19 | 5427.16 | 649.02 | 484.25 | 13,918.92 |
Alicante | 1112.81 | 1399.03 | 1442.81 | 665.81 | 717.97 | 5104.31 | 854.47 | 1320.01 | 12,617.22 |
Almería | 496.73 | 337.17 | 211.42 | 112.45 | 931.97 | 5245.38 | 509.13 | 412.51 | 8256.76 |
Castellón | 547.63 | 370.02 | 337.58 | 806.29 | 1470.57 | 3187.20 | 226.68 | 468.26 | 7414.23 |
Tarragona | 446.64 | 563.84 | 376.72 | 521.5 | 621.93 | 3416.70 | 65.6 | 1000.58 | 7013.51 |
Girona | 225.51 | 200.02 | 117.82 | 89.13 | 109.43 | 467.9 | 52 | 131.66 | 1393.47 |
Suburban tourist city spaces | |||||||||
Marbella | 432.16 | 632.94 | 974.36 | 1711.24 | 3053.65 | 2497.82 | 343.42 | 1677.38 | 11,322.97 |
Torrevieja | 295.7 | 336.58 | 289.02 | 207.43 | 365.78 | 671.13 | 6.44 | 166.43 | 2338.51 |
Benidorm | 146.25 | 219.42 | 74.56 | 92.35 | 181.66 | 610.08 | 4.82 | 241.05 | 1570.19 |
Gandía | 274.16 | 97.75 | 61.21 | 24.39 | 167.48 | 483.49 | 0.71 | 63.53 | 1172.72 |
Modern and complex suburban spaces | |||||||||
Cartagena | 680.64 | 756.19 | 523.05 | 580.53 | 1734.37 | 4646.14 | 427.07 | 773.69 | 10,121.68 |
Elche–Sta. Pola | 588.25 | 299.3 | 254.02 | 621.92 | 3446.72 | 3236.86 | 106.16 | 369.51 | 8922.74 |
Reus | 247.31 | 149.98 | 126.87 | 183.7 | 727.67 | 1503.06 | 59.08 | 132.86 | 3130.53 |
Elda | 160.71 | 26.99 | 29.44 | 184.83 | 231.26 | 369.95 | 145.83 | 60.22 | 1209.23 |
Manresa | 199.74 | 76.46 | 15.64 | 14.09 | 113.19 | 548.59 | 27.78 | 103.94 | 1099.43 |
TOTAL | 24,139.15 | 22,006.27 | 20,407.44 | 24,762.31 | 37,955.73 | 112,134.45 | 8566.34 | 20,609.02 | 270,580.71 |
SPACES/USES | (6) AAZ | (7) NVA | (8) OSV | (9) WWS | TOTAL, NON URBAN | TOTAL, AREAS (*) |
Traditional urban centres and their successive extensions | ||||||
Palma | 141,036.24 | 28,635.00 | 1814.66 | 530.56 | 172,016.46 | 200,270.86 |
Barcelona | 80,053.57 | 84,667.65 | 450.12 | 958.16 | 166,129.50 | 244,051.23 |
Granada | 116,062.60 | 19,209.89 | 6.38 | 511.99 | 135,790.86 | 149,709.77 |
Málaga | 121,250.29 | 9255.74 | 571.42 | 939.5 | 132,016.95 | 152,185.24 |
Murcia | 90,844.33 | 6776.10 | 0 | 571.44 | 98,191.87 | 119,885.86 |
Valencia | 67,732.14 | 2551.93 | 188.38 | 3040.30 | 73,512.75 | 104,552.99 |
Almería | 29,963.15 | 523.81 | 382.34 | 956.96 | 31,826.26 | 40,083.01 |
Castellón | 20,729.80 | 3945.29 | 77.05 | 59.56 | 24,811.70 | 32,225.93 |
Alicante | 22,417.01 | 189.29 | 230.69 | 127.73 | 22,964.72 | 35,581.94 |
Tarragona | 10,657.83 | 3329.66 | 109.11 | 60.37 | 14,156.97 | 21,170.47 |
Girona | 937.16 | 1515.23 | 0 | 41.98 | 2494.37 | 3887.83 |
Suburban tourist city spaces | ||||||
Marbella | 32,354.37 | 24,358.64 | 369.12 | 285.45 | 57,367.58 | 68,690.56 |
Gandía | 4172.29 | 706.4 | 37.42 | 11.91 | 4928.02 | 6100.73 |
Torrevieja | 2128.43 | 17.28 | 404.27 | 2287.90 | 4837.88 | 7176.37 |
Benidorm | 1380.51 | 816.28 | 67.12 | 18.63 | 2282.54 | 3852.73 |
Modern and complex suburban spaces | ||||||
Cartagena | 45,472.75 | 2945.29 | 172.73 | 408.98 | 48,999.75 | 59,121.42 |
Elche–Sta. Pola | 27,637.71 | 28.7 | 31.09 | 1851.68 | 29,549.18 | 38,471.93 |
Reus | 7387.77 | 946.3 | 79.2 | 0 | 8413.27 | 11,543.81 |
Elda | 3207.38 | 163.65 | 0 | 1.74 | 3372.77 | 4581.99 |
Manresa | 2200.65 | 838.33 | 0 | 26.74 | 3065.72 | 4165.14 |
TOTAL | 827,625.98 | 191,420.45 | 4991.11 | 12,691.58 | 1,036,729.12 | 1,307,309.85 |
3.3. Evaluation of the Degree of Spatial Adequacy of the Urban Process Based on the Proposed Indicators
AREAS | VERY CLOSE | CLOSE | LITTLE CLOSE | MIDPOINT | NOT FAR | FAR | A LONG WAY | TOTAL |
---|---|---|---|---|---|---|---|---|
Traditional urban centres and their successive extensions | ||||||||
Murcia | 61,235 | 4220 | 8256 | 11,578 | 31,322 | 939 | 2219 | 119,770 |
Palma M. | 32,297 | 39,407 | 5146 | 2927 | 6151 | 9810 | 2714 | 98,453 |
Málaga | 64,243 | 6104 | 1318 | 915 | 11,890 | 2356 | 2948 | 89,774 |
Granada | 23,479 | 4278 | 13,521 | 8808 | 22,461 | 2569 | 2415 | 77,532 |
Barcelona | 34,607 | 2053 | 11,369 | 3833 | 9834 | 1647 | 3168 | 66,511 |
Valencia | 15,341 | 7212 | 8179 | 6612 | 15,300 | 2464 | 2684 | 57,792 |
Almería | 1780 | 12,080 | 136 | 73 | 132 | 3559 | 22,206 | 39,966 |
Alicante | 7222 | 3108 | 1499 | 4846 | 12,842 | 2975 | 3060 | 35,552 |
Castellón | 5462 | 3718 | 2962 | 8764 | 1686 | 381 | 1274 | 24,245 |
Tarragona | 5731 | 1272 | 2014 | 1296 | 9357 | 726 | 1141 | 21,537 |
Girona | 2255 | 193 | 336 | 476 | 424 | 225 | 651 | 4560 |
Suburban tourist city spaces | ||||||||
Marbella | 28,228 | 2217 | 4050 | 1180 | 20,063 | 4168 | 746 | 60,653 |
Benidorm | 6558 | 5256 | 5611 | 5101 | 5656 | 5214 | 5140 | 38,536 |
Torrevieja | 144 | 3598 | 1950 | 727 | 542 | 54 | 162 | 7178 |
Gandía | 468 | 165 | 465 | 4331 | 313 | 78 | 299 | 6118 |
Modern and complex suburban spaces | ||||||||
Cartagena | 13,201 | 3307 | 397 | 363 | 169 | 38,570 | 2585 | 58,592 |
Elda | 18 | 23 | 5919 | 9292 | 6282 | 11,946 | 12,122 | 45,602 |
Elche-Sta.Pola | 5761 | 4599 | 568 | 4694 | 20,796 | 623 | 1441 | 38,482 |
Reus | 2764 | 286 | 940 | 1409 | 4315 | 1151 | 705 | 11,571 |
Manresa | 2044 | 195 | 89 | 398 | 69 | 1263 | 118 | 4176 |
Total Area | 312,840 | 103,292 | 74,727 | 77,623 | 179,603 | 90,717 | 67,797 | 906,598 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
AREAS | VERY CLOSE | CLOSE | LITTLE CLOSE | MIDPOINT | NOT FAR | FAR | A LONG WAY |
---|---|---|---|---|---|---|---|
Traditional urban centres and their successive extensions | |||||||
Murcia | 214 | 477 | 506 | 651 | 833 | 833 | 630 |
Palma Mallorca | 262 | 416 | 471 | 596 | 821 | 772 | 814 |
Málaga | 249 | 525 | 716 | 748 | 765 | 1092 | 1483 |
Granada | 166 | 338 | 483 | 587 | 635 | 669 | 669 |
Barcelona | 290 | 359 | 644 | 1524 | 1524 | 1531 | 1531 |
Valencia | 214 | 728 | 728 | 671 | 789 | 894 | 1020 |
Almería | 218 | 406 | 406 | 443 | 442 | 645 | 390 |
Alicante | 188 | 432 | 505 | 737 | 624 | 737 | 828 |
Castellón | 170 | 356 | 412 | 508 | 596 | 357 | 596 |
Tarragona | 194 | 384 | 384 | 516 | 736 | 618 | 763 |
Girona | 145 | 261 | 448 | 499 | 251 | 333 | 424 |
Suburban tourist city spaces | |||||||
Marbella | 231 | 519 | 710 | 712 | 712 | 369 | 369 |
Benidorm | 66 | 333 | 508 | 625 | 717 | 768 | 768 |
Torrevieja | 250 | 175 | 175 | 124 | 229 | 229 | 229 |
Gandía | 237 | 366 | 441 | 368 | 426 | 403 | 701 |
Modern and complex suburban spaces | |||||||
Cartagena | 189 | 361 | 343 | 461 | 530 | 650 | 234 |
Elda | 240 | 380 | 544 | 544 | 344 | 318 | 344 |
Elche-Sta. Pola | 200 | 456 | 508 | 647 | 707 | 553 | 557 |
Reus | 111 | 364 | 501 | 597 | 679 | 759 | 759 |
Manresa | 192 | 263 | 253 | 475 | 475 | 99 | 128 |
AREAS | VERY CLOSE | CLOSE | LITTLE CLOSE | MIDPOINT | NOT FAR | FAR | A LONG WAY |
---|---|---|---|---|---|---|---|
Traditional urban centres and their successive extensions | |||||||
Murcia | 91 | 187 | 238 | 272 | 338 | 338 | 371 |
Palma Mallorca | 93 | 174 | 194 | 230 | 277 | 295 | 334 |
Málaga | 85 | 193 | 267 | 306 | 328 | 554 | 708 |
Granada | 104 | 191 | 261 | 335 | 335 | 381 | 441 |
Barcelona | 116 | 192 | 249 | 348 | 353 | 599 | 631 |
Valencia | 103 | 190 | 290 | 326 | 347 | 436 | 512 |
Almería | 91 | 195 | 228 | 245 | 261 | 327 | 209 |
Alicante | 83 | 191 | 234 | 338 | 303 | 355 | 364 |
Castellón | 84 | 200 | 215 | 269 | 268 | 162 | 268 |
Tarragona | 91 | 175 | 208 | 245 | 386 | 347 | 407 |
Girona | 85 | 159 | 159 | 241 | 117 | 133 | 186 |
Suburban tourist city spaces | |||||||
Marbella | 84 | 184 | 243 | 348 | 269 | 348 | 174 |
Benidorm | 91 | 188 | 238 | 343 | 343 | 346 | 346 |
Torrevieja | 201 | 263 | 263 | 146 | 280 | 264 | 280 |
Gandía | 115 | 186 | 225 | 154 | 213 | 177 | 371 |
Modern and complex suburban spaces | |||||||
Cartagena | 77 | 163 | 179 | 213 | 264 | 334 | 88 |
Elda | 83 | 170 | 262 | 262 | 186 | 167 | 186 |
Elche-Sta. Pola | 100 | 195 | 216 | 271 | 297 | 224 | 224 |
Reus | 51 | 194 | 212 | 285 | 285 | 333 | 333 |
Manresa | 87 | 139 | 133 | 208 | 208 | 82 | 83 |
AREAS | VERY CLOSE | CLOSE | LITTLE CLOSE | MIDPOINT | NOT FAR | FAR | A LONG WAY |
---|---|---|---|---|---|---|---|
Traditional urban centres and their successive extensions | |||||||
Murcia | 393 | 393 | 60 | 49 | 23 | 12 | 12 |
Palma Mallorca | 354 | 354 | 72 | 51 | 46 | 151 | 12 |
Málaga | 315 | 315 | 71 | 49 | 37 | 24 | 11 |
Granada | 137 | 137 | 66 | 48 | 23 | 23 | 12 |
Barcelona | 2536 | 2430 | 2100 | 50 | 36 | 24 | 11 |
Valencia | 962 | 962 | 61 | 36 | 35 | 18 | 11 |
Almería | 305 | 305 | 50 | 27 | 27 | 22 | 11 |
Alicante | 185 | 185 | 75 | 49 | 25 | 23 | 11 |
Castellón | 137 | 137 | 59 | 37 | 22 | 17 | 11 |
Tarragona | 121 | 121 | 60 | 47 | 28 | 21 | 10 |
Girona | 258 | 258 | 57 | 48 | 37 | 20 | 11 |
Suburban tourist city spaces | |||||||
Marbella | 119 | 119 | 61 | 46 | 34 | 13 | 8 |
Benidorm | 218 | 218 | 46 | 46 | 40 | 10 | 10 |
Torrevieja | 48 | 48 | 36 | 36 | 22 | 10 | 10 |
Gandía | 120 | 38 | 38 | 31 | 21 | 15 | 11 |
Modern and complex suburban spaces | |||||||
Cartagena | 230 | 230 | 57 | 57 | 31 | 22 | 10 |
Elda | 15 | 15 | 15 | 17 | 17 | 12 | 10 |
Elche-Sta. Pola | 253 | 253 | 64 | 48 | 23 | 15 | 11 |
Reus | 121 | 121 | 44 | 44 | 23 | 23 | 10 |
Manresa | 25 | 35 | 40 | 41 | 41 | 35 | 20 |
References
- Abrantes, P.; Rocha, J.; Marques da Costa, E.; Gomes, E.; Morgado, P.; Costa, N. Modelling urban form: A multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 47–65. [Google Scholar] [CrossRef]
- Fan, Q.; Mei, X.; Zhang, C.; Wang, H. Urban spatial form analysis based on the architectural layout—Taking Zhengzhou City as an example. PLoS ONE 2022, 17, e0277169. [Google Scholar] [CrossRef] [PubMed]
- Simancas-Cruz, M.; Peñarrubia-Zaragoza, M.P. Analysis of the Accommodation Density in Coastal Tourism Areas of Insular Destinations from the Perspective of Overtourism. Sustainability 2019, 11, 3031. [Google Scholar] [CrossRef]
- He, X.; Yuan, X.; Zhang, D.; Zhang, R.; Li, M.; Zhou, C. Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sens. 2021, 13, 1801. [Google Scholar] [CrossRef]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dissymmetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X. Urban agglomeration economies and their relationships to built environment and socio-demographic characteristics in Hong Kong. Habitat Int. 2021, 117, 102417. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, J. Suburban identification based on multi-source data and landscape analysis of its construction land: A case study of Jiangsu Province, China. Habitat Int. 2021, 118, 102459. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, M.; Zhang, F.; Chen, M.; Tian, M.; Sun, L.; Su, G.; Liu, R. A Structure Identification Method for Urban Agglomeration Based on Nighttime Light Data and Railway Data. Remote Sens. 2023, 15, 216. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Lai, J.; Zhang, J.; Senousi, A.M.; Zhao, P. Analysis of urban agglomeration structure through spatial network and mobile phone data. Trans. GIS 2021, 25, 1949–1969. [Google Scholar] [CrossRef]
- Bambó, R.; De la Cal, P.; Díez, C.; Ezquerra, I.; García–Pérez, S.; Monclús, J. Quality of public space and sustainable development goals: Analysis of nine urban projects in Spanish cities. Front. Archit. Res. 2023, 12, 477–495. [Google Scholar] [CrossRef]
- Abbasi–Mahroo, H.; Vafamehr, M. Structural optimization of four designed roof modules: Inspired by Voronax grid shell structures. Front. Archit. Res. 2023, 12, 129–147. [Google Scholar] [CrossRef]
- Mandeli, K. Public space and the challenge of urban transformation in cities of emerging economies: Jeddah case study. Cities 2019, 95, 102409. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Liu, W. Increasing the use of large-scale public open spaces: A case study of the North Central Axis Square in Shenzhen, China. Habitat Int. 2016, 53, 66–77. [Google Scholar] [CrossRef]
- Efroymson, D.; Thanh–Ha, T.T.K.; Ha, P.T. Public Spaces: How They Humanize Cities, 1st ed.; HealthBridge, WBB Trust: Dhaka, Bangladesh, 2009; p. 165. Available online: https://www.researchgate.net/publication/281834385_Public_Spaces_How_they_humanize_cities (accessed on 9 December 2023).
- Jaszczak, A.; Kristianova, K.; Pochodyła, E.; Kazak, J.K.; Młynarczyk, K. Revitalization of Public Spaces in Cittaslow Towns: Recent Urban Redevelopment in Central Europe. Sustainability 2021, 13, 2564. [Google Scholar] [CrossRef]
- Piccioni, C. Relationships Between Walkable Urban Environments and the Creative and Knowledge Economies. Int. Rev. Spat. Plan. Sustain. Dev. 2023, 11, 104–121. [Google Scholar] [CrossRef]
- Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.G. Linking Urbanization, and the Environment: Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef]
- Wu, Z.; Su, Y.; Xiong, M. Land comprehensive carrying capacity and spatio-temporal analysis of the Guangdong-Hong Kong-Macau Greater Bay Area. Front. Environ. Sci. 2022, 10, 964211. [Google Scholar] [CrossRef]
- Mundia, C.N.; Murayama, Y. Modeling spatial processes of urban growth in African cities: A case study of Nairobi city. Urban Geogr. 2010, 31, 259–272. [Google Scholar] [CrossRef]
- De Noronha-Vaz, E.; Nijkamp, P.; Painho, M.; Caetano, M. A multi-scenario forecast of urban change: A study on urban growth in the Algarve. Landsc. Urban Plan. 2012, 104, 201–211. [Google Scholar] [CrossRef]
- Yushkova, N.G.; Dontsov, D.G.; Gushchina, E.G. Optimization of planning of territorial systems in the context of strategic tasks of advanced development. IOP Conf. Ser. Mater. Sci. Eng. 2019, 698, 033008. [Google Scholar] [CrossRef]
- Burdova, D.V.; Tikhonova, K.B. Optimization of the territorial planning system based on the formation of integrated information systems with a single geospace. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 042069. [Google Scholar] [CrossRef]
- Pumain, D. An evolutionary theory of urban systems. In International and Transnational Perspectives on Urban Systems, 1st ed.; Rozenblat, C., Pumain, D., Velasquez, E., Eds.; Springer Nature, Advances in Geographical and Environmental Sciences: Berlin/Heidelberg, Germany, 2018; pp. 3–18. ISBN 978-981-10-7798-2. [Google Scholar] [CrossRef]
- Goodness, J.; Andersson, E.; Anderson, P.M.L.; Elmqvist, T.H. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 2016, 70, 597–605. [Google Scholar] [CrossRef]
- Ruan, F. The complexity of the urban system: Profiles based on current literature and gaps with Sustainable Development Goals. Sustain. Dev. 2023, 31, 2137–2154. [Google Scholar] [CrossRef]
- Wang, S.; Qu, Y.; Zhao, W.; Guan, M.; Ping, Z. Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation. Land 2022, 11, 505. [Google Scholar] [CrossRef]
- Childers, D.L.; Cadenasso, M.L.; Morgany–Grove, J.; Marshall, V.; McGrath, B.; Pickett, S.T.A. An ecology for cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 2015, 7, 3774–3791. [Google Scholar] [CrossRef]
- Theodorson, G.A. Studies in Human Ecology, 1st ed.; Spanish Translation Editorial Labor, S.A. Barcelona; Harper & Row Publishers: New York, NY, USA, 1974; pp. 1–525. [Google Scholar]
- Makse, H.A.; Havlin, S.; Stanley, H.E. Modelling urban growth patterns. Nature 1995, 377, 608–612. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Mousivand, A.J. A Morphological Approach to Predicting Urban Expansion. Trans. GIS 2014, 18, 219–233. [Google Scholar] [CrossRef]
- Wang, J.; Fleischmann, M.; Venerandi, A.; Romice, O.; Kuffer, M.; Porta, S. EO + Morphometrics: Understanding cities through urban morphology at large scale. Landsc. Urban Plan. 2023, 233, 104691. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D. Changes in Urban Growth Patterns in Busan Metropolitan City, Korea: Population and Urbanized Areas. Land 2022, 11, 1319. [Google Scholar] [CrossRef]
- Nuissl, H.; Siedentop, S. Urbanisation and Land Use Change. In Sustainable Land Management in a European Context. Human-Environment Interactions, 1st ed.; Weith, T., Barkmann, T., Gaasch, N., Rogga, S., Strauß, C., Zscheischler, J., Eds.; Springer: Cham, Switzerland, 2021; Volume 8, pp. 75–99. [Google Scholar] [CrossRef]
- Yang, X.; Pu, F. Clustered and dispersed: Exploring the morphological evolution of traditional villages based on cellular automaton. Herit. Sci. 2022, 10, 133. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Delloye, J.; Peeters, D.; Thomas, I. On the Morphology of a Growing City: A Heuristic Experiment Merging Static Economics with Dynamic Geography. PLoS ONE 2015, 10, e0135871. [Google Scholar] [CrossRef]
- Permana, Y. Morphology of Urban Space: Model of Configuration using Logic of Space (LoS) Theory in densely populated of Bandung City. J. Archit. Res. Educ. 2019, 1, 18–35. [Google Scholar] [CrossRef]
- Teller, J. Regulating urban densification: What factors should be used? Build. Cities 2021, 2, 302–317. [Google Scholar] [CrossRef]
- Fric, U.; O’Gorman, W.; Roncevic, B. Strategic Competence Model for Understanding Smart Territorial Development. Societies 2023, 13, 76. [Google Scholar] [CrossRef]
- Moulinet, F.; Sekia, F. Territorial Innovation Models: A Critical Survey. Reg. Stud. 2003, 37, 289–302. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEchern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Pontius, R.G.; Malizia, N.R. Effect of Category Aggregation on Map Comparison. In Geographic Information Science. GIScience 2004. Lecture Notes in Computer Science, 1st ed.; Egenhofer, M.J., Freksa, C., Miller, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3234, pp. 251–268. [Google Scholar] [CrossRef]
- Pérez, U.; Bosque, J. Land cover and land use transitions in the period 1991–2005 in the Combeima River basin (Colombia). Ser. Geográfica 2008, 14, 163–178. [Google Scholar]
- Farfán, M.; Rodríguez-Tapia, G.; Mas, J.F. Hierarchical Analysis of the Intensity of Land Cover/Use Change and Deforestation (2000–2008) in the Sierra de Manantlán Biosphere Reserve, Mexico. Investig. Geográficas (Inst. Geogr. UNAM) 2016, 90, 89–104. [Google Scholar] [CrossRef]
- Damián, D.A.; Márquez, C.O.; García, V.J.; Rodríguez, M.V.; Recalde, C.G. Systematic Transitions in Land Use and Cover in a High Andean Micro-Basin, Ecuador 1991–2011. Rev. Espac. 2018, 39, 8–20. Available online: https://www.revistaespacios.com/a18v39n32/18393208.html (accessed on 26 November 2023).
- Humacata, L.; Buzai, G.; Lara, B. Mapping of land-use changes. Development and analysis based on geographic information systems. Párrafos Geográficos 2019, 18, 22–43. Available online: http://www.revistas.unp.edu.ar/index.php/parrafosgeograficos/article/view/677 (accessed on 26 November 2023).
- Tadese, M.; Kumar, L.; Koech, R.; Kogo, B.K. Mapping of land-use/land-cover changes and its dynamics in Awash River Basin using remote sensing and GIS. Remote Sensing Applications. Soc. Environ. 2020, 19, 100352. [Google Scholar] [CrossRef]
- Barredo, J.I.; Gómez–Delgado, M. GIS and Multicriteria Evaluation Techniques for Urban and Regional Planning, 2nd ed.; RA-MA: Madrid, Spain, 2005; 194p, Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC31438 (accessed on 30 November 2023).
- Munda, G.; Nijkamp, P.; Rietveld, P. Qualitative multicriteria evaluation for environmental management. Ecol. Econ. 1994, 10, 97–112. [Google Scholar] [CrossRef]
- Nijkamp, P.; Rietveld, P.; Voogd, H. Multicriteria Evaluation in Physical Planning; Elsevier Science Publishers: Amsterdam, The Nederlands, 2013; 232p. [Google Scholar]
- Mecca, B. Assessing the sustainable development: A review of multi-criteria decision analysis for urbana and architectural sustainability. J. Multi-Criteria Decis. Anal. 2023, 30, 203–218. [Google Scholar] [CrossRef]
- Lin, H.; Wan, Q.; Li, X.; Chen, J.; Kong, Y. GIS-Based Multicriteria Evaluation for Investment Environment. Environ. Plan. B Plan. Des. 1997, 24, 403–414. [Google Scholar] [CrossRef]
- Spencer, E.H. How to analyze Likert and other rating scale data. Curr. Pharm. Teach. Learn. 2015, 7, 836–850. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Eastman, R.J.; Kycin, P.A.K.; Toledano, J. A procedure for Multiple-Objective Decision Making in GIS under conditions of Conflicting Objectives. In EGIS’93; Harts, J., Otteus, H.F.L., Scholten, H.J., Eds.; EGIS Foundation: Genoa, Italy, 1993; Volume 2, pp. 438–447. Available online: https://www.gbv.de/dms/tib-ub-hannover/125967926.pdf (accessed on 28 November 2023).
- Laaribi, A.; Chevallier, J.J.; Martel, J.M. A spatial decision aid: A multicriterion evaluation approach. Comput. Environ. Urban Syst. 1996, 20, 351–366. [Google Scholar] [CrossRef]
- Schwarz, N. Urban form revisited—Selecting indicators for characterising European cities. Landsc. Urban Plan. 2010, 96, 29–47. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Xia, C.; Gar-On, A.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Quijada-Alarcón, J.; Rodríguez-Rodríguez, R.; González-Cancelas, N.; Bethancourt-Lasso, G. Spatial Analysis of Territorial Connectivity and Accessibility in the Province of Coclé in Panama. Sustainability 2023, 15, 11500. [Google Scholar] [CrossRef]
- Attwell, M.R.; Fletcher, M. An analytical technique for investigating spatial relationships. J. Archaeol. Sci. 1987, 14, 1–11. [Google Scholar] [CrossRef]
- Cook, J.; Sutskever, I.; Mnih, A.; Hinton, G. Visualizing Similarity Data with a Mixture of Maps. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, PMLR, San Juan, Puerto Rico, 21–24 March 2007; Volume 2, pp. 67–74. Available online: https://proceedings.mlr.press/v2/cook07a.html (accessed on 9 December 2023).
- Dress, A.; Lokot, T.; Schubert, W.; Serocka, P. Two Theorems about Similarity Maps. Ann. Comb. 2008, 12, 279–290. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Z.; Yang, Z.; Guan, X. A Pruning Method Based on Feature Map Similarity Score. Big Data Cogn. Comput. 2023, 7, 159. [Google Scholar] [CrossRef]
- Mendoza, A.; Solano, C.; Palencia, D.; García, D. Application of the Analytical Hierarchy Process (AHP) for decision-making with expert judgment. Ingeniare. Rev. Chil. Ing. 2019, 27, 3. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Schmoldt, D.L., Kangas, J., Mendoza, G.A., Pesonen, M., Eds.; Managing Forest Ecosystems; Springer: Dordrecht, Germany, 2001; Volume 3, pp. 15–35. [Google Scholar] [CrossRef]
- Brunelli, M. Introduction to the Analytic Hierarchy Process, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–83. [Google Scholar] [CrossRef]
- Moreno, J.M. The Hierarchical Analytical Process (AHP). Fundamentals, methodology and applications. Electron. J. Commun. Work. ASEPUMA 2002, 1, 28–77. Available online: https://eva.fing.edu.uy/mod/resource/view.php?id=69576&forceview=1 (accessed on 9 December 2023).
Provinces | Areas | Inhabitants 1991 | Inhabitants 2022 | % Increase | Surface (km2) | % Surf./Prov. | Density 1990 (Inh./km2) | Density 2022 (Inh./km2) |
---|---|---|---|---|---|---|---|---|
GIRONA | Girona | 68,656 | 102,666 | 49.54 | 39 | 0.04 | 1754.11 | 2623.05 |
BARCELONA | Manresa | 66,320 | 77,452 | 16.79 | 42 | 0.05 | 1591.93 | 1859.15 |
Barcelona | 1,643,542 | 1,636,193 | −0.45 | 101 | 0.11 | 16,216.50 | 16,143.99 | |
TARRAGONA | Tarragona | 110,153 | 134,883 | 22.45 | 63 | 0.07 | 1748.46 | 2141.00 |
Reus | 87,670 | 106,741 | 21.75 | 53 | 0.06 | 1652.59 | 2012.08 | |
PALMA | Palma | 296,754 | 415,940 | 40.16 | 209 | 0.24 | 1422.39 | 1993.67 |
CASTELLÓN | Castellón | 134,213 | 171,857 | 28.05 | 111 | 0.13 | 1205.54 | 1543.67 |
VALENCIA | Valencia | 752,909 | 792,492 | 5.26 | 135 | 0.15 | 5591.60 | 5885.57 |
Gandía | 51,806 | 75,911 | 46.53 | 61 | 0.07 | 852.07 | 1248.54 | |
ALICANTE | Benidorm | 42,442 | 69,738 | 64.31 | 39 | 0.04 | 1102.10 | 1810.91 |
Elda | 54,350 | 52,297 | −3.78 | 46 | 0.05 | 1186.94 | 1142.11 | |
Alicante | 265,473 | 338,577 | 27.54 | 201 | 0.23 | 1318.99 | 1682.20 | |
Elche–Santa Pola | 188,062 | 235,580 | 25.27 | 326 | 0.37 | 576.75 | 722.48 | |
Torrevieja | 25,014 | 83,547 | 234.00 | 71 | 0.08 | 350.14 | 1169.47 | |
MURCIA | Murcia | 328,100 | 462,979 | 41.11 | 882 | 1.00 | 372.05 | 525.00 |
Cartagena | 168,023 | 216,961 | 29.13 | 558 | 0.63 | 301.07 | 388.76 | |
ALMERÍA | Almería | 155,120 | 199,237 | 28.44 | 296 | 0.34 | 524.92 | 674.21 |
GRANADA | Granada | 255,212 | 228,682 | −10.40 | 88 | 0.10 | 2899.48 | 2598.07 |
MÁLAGA | Málaga | 522,108 | 579,076 | 10.91 | 395 | 0.45 | 1321.86 | 1466.09 |
Marbella | 80,599 | 150,725 | 87.01 | 117 | 0.13 | 688.17 | 1286.93 | |
Total, Areas | 5,296,526 | 6,131,534 | 15.77 | 3832 | 4.35 | 1382.09 | 1599.98 | |
Total, Provinces | 13,724,866 | 18,537,697 | 35.07 | 88,175 | 100 | 155.65 | 210.24 |
USES | CLC | IGRPP | URBAN COVER—SIOSE HR | UC |
---|---|---|---|---|
ARTIFICIAL SURFACES | Continuous urban fabric | Residential | CUF: Continuous urban fabric (>80%) | (1) |
Discontinuous urban fabric | Built-up areas | DUF (A): Discontinuous dense urban fabric (50–80%) | (2A) | |
DUF (B): Discontinuous medium density urban fabric (30–50%) | (2B) | |||
DUF (C): Discontinuous low density urban fabric (10–30%) | (2C) | |||
DUF (D): Discontinuous very low density urban fabric (<10%) and/or isolated structures, construction sites and land without current use | (2D) | |||
Industrial or commercial areas | Industrial | ICT: Industrial, commercial, public, military, and private units | (3) | |
Roads, railways, and associated land networks | Infrastructure | ICT: Fast transit roads and associated land | ||
ICT: Other roads and associated land | ||||
ICT: Railways and associated land | ||||
ICT: Port areas | ||||
ICT: Airports | ||||
Mining extraction areas | Abandonment | MAL: Mineral extraction and dump sites | (4) | |
Urban green areas | Green zone | AGA: Green urban areas | (5) | |
Sports facilities | Service | AGA: Sports and leisure facilities | ||
AGRICULTURAL | Heterogeneous agricultural areas | Primary | Arable land (annual crops) | (6) |
Annual crops | AAZ: Permanent crops (vineyards, fruit trees, olive groves) | |||
FORESTAL | Natural grasslands | NVA: Pastures | (7) | |
Forests | NVA: Forests | |||
Shrub and herbaceous | NVA: Herbaceous vegetation associations | |||
Open spaces | OSV: Open spaces with little or no vegetation | (8) | ||
WETLANDS | Coastal wetlands | WWZ: Wetlands | (9) | |
Water sheets | WWZ: Water |
SUITABILITY | VALUE (*) | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|
EXTREMELY LOW | 1 | (1), (4) | 876.371–1531.15 | 408.231–707.58 | 0–11.59 |
VERY LOW | 0.723 | (3) | 747.441–876.37 | 348.661–408.23 | 11.591–24.37 |
LOW | 0.516 | (2A) | 636.941–747.44 | 297.601–348.66 | 24.371–37.14 |
MEDIUM LOW | 0.360 | (2B) | 526.431–636.94 | 246.531–297.60 | 37.141–49.92 |
MEDIUM | 0.240 | (2C) | 415.921–526.43 | 195.471–246.53 | 49.921–62.70 |
MEDIUM HIGH | 0.148 | (2D) | 305.421–415.92 | 144.401–195.47 | 62.701–75.47 |
HIGH | 0.080 | (5) | 194.911–305.42 | 93.331–144.40 | 75.471–88.25 |
VERY HIGH | 0.032 | (6) | 84.411–194.91 | 42.271–93.33 | 88.251–101.03 |
EXTREMELY HIGH | 0 | (7), (8), (9) | 0–84.41 | 0–42.27 | 101.031–2535.89 |
AREAS | VERY CLOSE | CLOSE | LITTLE CLOSE | MIDPOINT | NOT FAR | FAR | A LONG WAY | TOTAL |
---|---|---|---|---|---|---|---|---|
Traditional urban centres and their successive extensions | ||||||||
Murcia | 51.13 | 3.52 | 6.89 | 9.67 | 26.15 | 0.78 | 1.85 | 100 |
Palma M. | 32.80 | 40.03 | 5.23 | 2.97 | 6.25 | 9.96 | 2.76 | 100 |
Málaga | 71.56 | 6.80 | 1.47 | 1.02 | 13.24 | 2.62 | 3.28 | 100 |
Granada | 30.28 | 5.52 | 17.44 | 11.36 | 28.97 | 3.31 | 3.12 | 100 |
Barcelona | 52.03 | 3.09 | 17.09 | 5.76 | 14.79 | 2.48 | 4.76 | 100 |
Valencia | 26.55 | 12.48 | 14.15 | 11.44 | 26.47 | 4.26 | 4.64 | 100 |
Almería | 4.45 | 30.23 | 0.34 | 0.18 | 0.33 | 8.90 | 55.56 | 100 |
Alicante | 20.32 | 8.74 | 4.22 | 13.63 | 36.12 | 8.37 | 8.61 | 100 |
Castellón | 22.53 | 15.33 | 12.22 | 36.15 | 6.95 | 1.57 | 5.25 | 100 |
Tarragona | 26.61 | 5.90 | 9.35 | 6.02 | 43.45 | 3.37 | 5.30 | 100 |
Girona | 49.45 | 4.23 | 7.37 | 10.43 | 9.30 | 4.94 | 14.27 | 100 |
Suburban tourist city spaces | ||||||||
Marbella | 46.54 | 3.66 | 6.68 | 1.95 | 33.08 | 6.87 | 1.23 | 100 |
Benidorm | 17.02 | 13.64 | 14.56 | 13.24 | 14.68 | 13.53 | 13.34 | 100 |
Torrevieja | 2.01 | 50.13 | 27.17 | 10.13 | 7.55 | 0.75 | 2.25 | 100 |
Gandía | 7.65 | 2.70 | 7.60 | 70.79 | 5.11 | 1.27 | 4.88 | 100 |
Modern and complex suburban spaces | ||||||||
Cartagena | 22.53 | 5.64 | 0.68 | 0.62 | 0.29 | 65.83 | 4.41 | 100 |
Elda | 0.04 | 0.05 | 12.98 | 20.38 | 13.78 | 26.20 | 26.58 | 100 |
Elche-Sta. Pola | 14.97 | 11.95 | 1.48 | 12.20 | 54.04 | 1.62 | 3.74 | 100 |
Reus | 23.89 | 2.47 | 8.13 | 12.18 | 37.29 | 9.94 | 6.09 | 100 |
Manresa | 48.95 | 4.67 | 2.13 | 9.52 | 1.66 | 30.24 | 2.82 | 100 |
Total Area | 34.51 | 11.39 | 8.24 | 8.56 | 19.81 | 10.01 | 7.48 | 100 |
Mean | 28.57 | 11.54 | 8.86 | 12.98 | 18.97 | 10.34 | 8.74 | |
Std | 19.37 | 13.36 | 6.91 | 15.83 | 15.69 | 15.32 | 12.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galacho-Jiménez, F.B.; Reyes-Corredera, S. Spatial Analysis Model for the Evaluation of the Territorial Adequacy of the Urban Process in Coastal Areas. Land 2024, 13, 109. https://doi.org/10.3390/land13010109
Galacho-Jiménez FB, Reyes-Corredera S. Spatial Analysis Model for the Evaluation of the Territorial Adequacy of the Urban Process in Coastal Areas. Land. 2024; 13(1):109. https://doi.org/10.3390/land13010109
Chicago/Turabian StyleGalacho-Jiménez, Federico B., and Sergio Reyes-Corredera. 2024. "Spatial Analysis Model for the Evaluation of the Territorial Adequacy of the Urban Process in Coastal Areas" Land 13, no. 1: 109. https://doi.org/10.3390/land13010109
APA StyleGalacho-Jiménez, F. B., & Reyes-Corredera, S. (2024). Spatial Analysis Model for the Evaluation of the Territorial Adequacy of the Urban Process in Coastal Areas. Land, 13(1), 109. https://doi.org/10.3390/land13010109