Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Layout
2.2. Study Area and Sampling Plots
2.3. Facial Images and Emotional Scores
- (1)
- All photos had to be taken at the places in any IP listed in Table 1 and the time had to be from 08:00 a.m. to 21:00 p.m. from Monday to Friday every week, excluding holidays and sudden events.
- (2)
- A photo had to contain at least one intact human face with all sensing organs fully exposed.
- (3)
- Any photos with extremely high and low ages of people, who looked too young (e.g., toddlers and infants) or too old (e.g., senior citizens with visible disabilities), were excluded, because these people were unlikely workers.
2.4. Remote Evaluation of Green and Blue Space Landscape Metrics
2.5. Green View Index and Plant Diversity Evaluation
2.6. Recruitment Wage and Salary Satisfaction
2.7. Data Analysis and Statistics
3. Results
3.1. Spatial Distributions of Landscape Metrics
3.2. Spatial Distributions of GVI and Plant Diversity
3.3. Spatial Distributions of Facial Express Scores
3.4. Salary Satisfaction Estimate and Spatial Distribution
3.5. Driving Forces on Facial Expression Scores and Salary Satisfaction
4. Discussion
4.1. Estimation of Salary Satisfaction
4.2. Facial Expression Scores of Employees in Industrial Parks
4.3. Driving Forces When Being Exposed to Green Spaces
4.4. Applicative Meaning of This Study
4.5. Limits of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.I.; Kim, J.O. Does industrial land sprawl matter in land productivity? A case study of industrial parks of South Korea. J. Clean. Prod. 2022, 334, 130209. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, D.; Zhang, Y.; Chen, X.; Zhang, L.; Wang, Z. Do industrial parks generate intra-heat island effects in cities? New evidence, quantitative methods, and contributing factors from a spatiotemporal analysis of top steel plants in China. Environ. Pollut. 2022, 292, 118383. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.N.; Yang, N.; Xiong, Y.M. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Xiao, X.D.; Zhang, L.L.; Xiong, Y.M.; Jiang, J.Y.; Xu, A.Q. Influence of spatial characteristics of green spaces on microclimate in Suzhou Industrial Park of China. Sci. Rep. 2022, 12, 9121. [Google Scholar] [CrossRef]
- Xie, X.H.; Zhou, H.Z.; Gou, Z.H. Dynamic real-time individual green space exposure indices and the relationship with static green space exposure indices: A study in Shenzhen. Ecol. Indic. 2023, 154, 110557. [Google Scholar] [CrossRef]
- Lottrup, L.; Stigsdotter, U.K.; Meilby, H.; Corazon, S.S. Associations between use, activities and characteristics of the outdoor environment at workplaces. Urban For. Urban Green. 2012, 11, 159–168. [Google Scholar] [CrossRef]
- Maric, J.; Aleksandra, D.; Antonic, B.; Furundzic, D.; Parezanin, V. The Effects of Open Space on Reducing Workplace Stress: Case Study of Business Park in the Post-Socialist Urban Setting. Sustainability 2021, 13, 336. [Google Scholar] [CrossRef]
- Lottrup, L.; Grahn, P.; Stigsdotter, U.K. Workplace greenery and perceived level of stress: Benefits of access to a green outdoor environment at the workplace. Landsc. Urban Plan. 2013, 110, 5–11. [Google Scholar] [CrossRef]
- Gilchrist, K.; Brown, C.; Montarzino, A. Workplace settings and wellbeing: Greenspace use and views contribute to employee wellbeing at peri-urban business sites. Landsc. Urban Plan. 2015, 138, 32–40. [Google Scholar] [CrossRef]
- Siba, M.A.J.a.; Maruthaveeran, S.; Ujang, N. Investigating the use and constraints associated with green outdoor environment at workplaces: What do the office employees in Kuala Lumpur say? Urban For. Urban Green. 2020, 51, 126692. [Google Scholar] [CrossRef]
- Mangone, G.; Capaldi, C.A.; van Allen, Z.M.; Luscuere, P.G. Bringing nature to work: Preferences and perceptions of constructed indoor and natural outdoor workspaces. Urban For. Urban Green. 2017, 23, 1–12. [Google Scholar] [CrossRef]
- Ha, J.; Kim, H.J.; With, K.A. Urban green space alone is not enough: A landscape analysis linking the spatial distribution of urban green space to mental health in the city of Chicago. Landsc. Urban Plan. 2022, 218, 104309. [Google Scholar] [CrossRef]
- Sun, Y.X.; Meng, Q.Y.; Sun, Z.H.; Zhang, J.H.; Zhang, L.L. Assessing the impacts of grain sizes on landscape pattern of urban green space. In Applied Optics and Photonics China (AOPC)—Optical Sensing and Imaging Technology and Applications; Proceedings of SPIE: Beijing, China, 2017; Volume 10462, p. 10462. [Google Scholar]
- Wang, X.R.; Ouyang, L.B.; Lin, J.; An, P.F.; Wang, W.J.; Liu, L.; Wu, L.F. Spatial Patterns of Urban Green-Blue Spaces and Residents’ Well-Being: The Mediating Effect of Neighborhood Social Cohesion. Land 2023, 12, 1454. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.X.; Zhao, S.Q. The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, China’s Capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhu, J.J.; Zhai, K.B.; Wang, Y.; Wei, H.X.; Xu, Z.H.; Gu, X.R. Do Emotional Perceptions of Visible Greeneries Rely on the Largeness of Green Space? A Verification in Nanchang, China. Forests 2022, 13, 1192. [Google Scholar] [CrossRef]
- Liu, P.; Liu, M.N.; Xia, T.T.; Wang, Y.T.; Guo, P. The Relationship between Landscape Metrics and Facial Expressions in 18 Urban Forest Parks of Northern China. Forests 2021, 12, 1619. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Chen, Z.; Guo, M.; Guo, P. Optimizing Urban Forest Landscape for Better Perceptions of Positive Emotions. Forests 2021, 12, 1691. [Google Scholar] [CrossRef]
- He, Q.; Wang, Y.; Qiu, Q.; Su, Y.; Wei, H.X.; Li, J.Y. Posted Sentiments toward Experiences in Degraded Forests Are Shaped Jointly by Landscape Structure and Microclimate. Ecosyst. Health Sustain. 2023, 9, 0004. [Google Scholar] [CrossRef]
- Li, H.Y.; Peng, J.X.; Jiao, Y.; Ai, S.S. Experiencing Urban Green and Blue Spaces in Urban Wetlands as a Nature-Based Solution to Promote Positive Emotions. Forests 2022, 13, 473. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Sun, Y.; Meng, L.; Guo, P. Emotional perceptions of people exposed to green and blue spaces in forest parks of cities at rapid urbanization regions of East China. Urban For. Urban Green. 2022, 78, 127772. [Google Scholar] [CrossRef]
- Fisher, J.C.; Dallimer, M.; Irvine, K.N.; Aizlewood, S.G.; Austen, G.E.; Fish, R.D.; King, P.M.; Davies, Z.G. Human well-being responses to species’ traits. Nat. Sustain. 2023, 6, 1219–1227. [Google Scholar] [CrossRef]
- De Rito, M.; Auer, A.; Mikkelsen, C.; Herrera, L. Linking Farmers’ Perception of Biodiversity, Subjective Well-being and Conservation in the Tandilia System in the Southern Pampas of Argentina. Conserv. Soc. 2022, 20, 336–344. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, J.; Xu, Z.; Hui, T.; Guo, P.; Sun, Y. The association between plant diversity and perceived emotions for visitors in urban forests: A pilot study across 49 parks in China. Urban For. Urban Green. 2022, 73, 127613. [Google Scholar] [CrossRef]
- Luisetti, T.; Schratzberger, M. Including biological diversity in natural capital accounts for marine biodiversity conservation and human well-being. Biodivers. Conserv. 2023, 32, 405–413. [Google Scholar] [CrossRef]
- Higgins, S.L.; Thomas, F.; Goldsmith, B.; Brooks, S.J.; Hassall, C.; Harlow, J.; Stone, D.; Völker, S.; White, P. Urban freshwaters, biodiversity, and human health and well-being: Setting an interdisciplinary research agenda. Wiley Interdiscip. Rev.-Water 2019, 6, e1339. [Google Scholar] [CrossRef]
- Yang, S.T.; Li, C.J.; Lou, H.Z.; Luo, Y.; Wang, P.F.; Zhang, J.; Li, X.; Wu, X. The Impact of Urban Expansion on Plant Diversity Change in Karst Regions of Southwest China. Chin. Geogr. Sci. 2022, 32, 493–505. [Google Scholar] [CrossRef]
- Ma, B.Q.; Hauer, R.J.; Wei, H.X.; Koeser, A.K.; Peterson, W.; Simons, K.; Timilsina, N.; Werner, L.P.; Xu, C. An Assessment of Street Tree Diversity: Findings and Implications in the United States. Urban For. Urban Green. 2020, 56, 126826. [Google Scholar] [CrossRef]
- Fukuda, T.; Inoue, K.; Yabuki, N. PhotoAR+DR2016 Integrating Automatic Estimation of Green View Index and Augmented and Diminished Reality for Architectural Design Simulation. In Proceedings of the 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Rome, Italy, 20–22 September 2017; pp. 495–502. [Google Scholar]
- Zhang, J.H.; Hu, A.Q. Analyzing green view index and green view index best path using Google street view and deep learning. J. Comput. Des. Eng. 2022, 9, 2010–2023. [Google Scholar] [CrossRef]
- Wang, W.J.; Tian, P.L.; Zhang, J.H.; Agathokleous, E.; Xiao, L.; Koike, T.; Wang, H.M.; He, X. Big data-based urban greenness in Chinese megalopolises and possible contribution to air quality control. Sci. Total Environ. 2022, 824, 153834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Tan, P.Y.; Richards, D. Relative importance of quantitative and qualitative aspects of urban green spaces in promoting health. Landsc. Urban Plan. 2021, 213, 104131. [Google Scholar] [CrossRef]
- Li, X.J. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View images and deep learning. Environ. Plan. B-Urban Anal. City Sci. 2021, 48, 2039–2054. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989; pp. 194–197. [Google Scholar]
- de Vries, J.D.; van Hooff, M.L.M.; Geurts, S.A.E.; Kompier, M.A.J. Process evaluation of the receipt of an exercise intervention for fatigued employees: The role of exposure and exercise experiences. Eur. J. Work Organ. Psychol. 2021, 30, 753–769. [Google Scholar] [CrossRef]
- Rudolph, C.W.; Breevaart, K.; Zacher, H. Disentangling Between-Person and Reciprocal Within-Person Relations Among Perceived Leadership and Employee Well-Being. J. Occup. Health Psychol. 2022, 27, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Ohly, H.; White, M.P.; Wheeler, B.W.; Bethel, A.; Ukoumunne, O.C.; Nikolaou, V.; Garside, R. Attention Restoration Theory: A systematic review of the attention restoration potential of exposure to natural environments. J. Toxicol. Environ. Health Part B 2016, 19, 305–343. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. Green and Blue Spaces and Mental Health: New Evidence and Perspectives for Action. Available online: https://apps.who.int/iris/bitstream/handle/10665/342931/9789289055666-eng.pdf (accessed on 12 August 2023).
- Boers, S.; Hagoort, K.; Scheepers, F.; Helbich, M. Does Residential Green and Blue Space Promote Recovery in Psychotic Disorders? A Cross-Sectional Study in the Province of Utrecht, The Netherlands. Int. J. Environ. Res. Public Health 2018, 15, 2195. [Google Scholar] [CrossRef] [PubMed]
- de Bell, S.; Graham, H.; Jarvis, S.; White, P. The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space. Landsc. Urban Plan. 2017, 167, 118–127. [Google Scholar] [CrossRef]
- Kindermann, G.; Domegan, C.; Britton, E.; Carlin, C.; Mashinchi, M.I.; Ojo, A. Understanding the Dynamics of Green and Blue Spaces for Health and Wellbeing Outcomes in Ireland: A Systemic Stakeholder Perspective. Sustainability 2021, 13, 9553. [Google Scholar] [CrossRef]
- Geneshka, M.; Coventry, P.; Cruz, J.; Gilbody, S. Relationship between Green and Blue Spaces with Mental and Physical Health: A Systematic Review of Longitudinal Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 9010. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, Y.; Qiu, Q.; Su, Y.; Wang, Y.; Wei, H.X.; Li, J.Y. Joint effects of air PM2.5 and socioeconomic dimensions on posted emotions of urban green space visitors in cities experiencing population urbanization: A pilot study on 50 cities of East China. Sci. Total Environ. 2023, 861, 160607. [Google Scholar] [CrossRef]
- Wang, X.; Meng, L.; Liu, Y.; Wei, H. Facial Expressions of Urban Forest Visitors Jointly Exposed to Air Pollution and Regional Climate. Forests 2023, 14, 1571. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Sun, Y.X.; Xu, Z.H.; Hui, T.F.; Guo, P. Experiencing urban forests for mitigation of negative emotions of people exposed to seasonal PM2.5 in Northeast China. J. For. Res. 2023, 34, 1245–1261. [Google Scholar] [CrossRef]
- Pan, Z.W.; Xie, Z.Y.; Wu, L.Y.; Pan, Y.; Ding, N.; Liang, Q.S.; Qin, F. Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model. Remote Sens. 2023, 15, 2093. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, X.G.; Wei, H.X.; Xia, T.T.; Liu, M.N.; Ai, S.S. Geographical Distribution and Driving Meteorological Forces of Facial Expressions of Visitors in Urban Wetland Parks in Eastern China. Front. Earth Sci. 2022, 10, 781204. [Google Scholar] [CrossRef]
- Mao, B.; Liang, F.; Li, Z.Z.; Zheng, W.Q. Microclimates Potentially Shape Spatial Distribution of Facial Expressions for Urban Forest Visitors: A Regional Study of 30 Parks in North China. Sustainability 2022, 14, 1648. [Google Scholar] [CrossRef]
- Pamuk, O. Work-related stress in apparel employees. Tekstil 2007, 56, 627–632. [Google Scholar]
- Shu, K.Y. The effect of cognitive behavioral therapy on the release of interpersonal stress. Work-A J. Prev. Assess. Rehabil. 2021, 69, 625–636. [Google Scholar] [CrossRef]
- Sultana, N.; Asaduzzaman, M.; Siddique, A.; Khatun, H.; Bari, F.S.; Islam, M.N.; Tabassum, A.; Mondol, A.S.; Sayem, A.; Abdullah, A.Y.M.; et al. Job insecurity and mental health related outcomes among the humanitarian workers during COVID-19 pandemic: A cross-sectional study. BMC Psychol. 2022, 10, 265. [Google Scholar] [CrossRef]
- Lai, G.C.; Taylor, E.V.; Haigh, M.M.; Thompson, S.C. Factors Affecting the Retention of Indigenous Australians in the Health Workforce: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 914. [Google Scholar] [CrossRef]
- Yun, J.; Zerden, L.D.; Cuddeback, G.; Konrad, T.; Pathman, D.E. Overall Work and Practice Satisfaction of Licensed Clinical Social Workers in the National Health Service Corps Loan Repayment Program. Health Soc. Work 2021, 46, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Lehr, D.; Hillert, A.; Keller, S. What Can Balance the Effort? Associations between Effort-Reward Imbalance, Overcommitment, and Affective Disorders in German Teachers. Int. J. Occup. Environ. Health 2009, 15, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Abri, M.; Vosoughi, S.; Abolghasemi, J.; Rahimi, J.; Ebrahimi, H. The effect of job security on safety behavior with the moderating role of salary: A structural equation model. Int. J. Occup. Saf. Ergon. 2022, 28, 1732–1737. [Google Scholar] [CrossRef]
- Sanchez-Gomez, M.; Breso, E.; Giorgi, G. Could Emotional Intelligence Ability Predict Salary? A Cross-Sectional Study in a Multioccupational Sample. Int. J. Environ. Res. Public Health 2021, 18, 1322. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Greenberg, N. Non-deployment factors affecting psychological wellbeing in military personnel: Literature review. J. Ment. Health 2018, 27, 80–90. [Google Scholar] [CrossRef]
- Aert, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidnece of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Yao, L.X.; Gao, J.; Chen, C.Y.; Mu, D. How Does Emotional Labor Impact Employees’ Perceptions of Well-Being? Examining the Mediating Role of Emotional Disorder. Sustainability 2019, 11, 6798. [Google Scholar] [CrossRef]
- Buruck, G.; Dorfel, D.; Kugler, J.; Brom, S.S. Enhancing Well-Being at Work: The Role of Emotion Regulation Skills as Personal Resources. J. Occup. Health Psychol. 2016, 21, 480–493. [Google Scholar] [CrossRef]
- Lahat, L.; Ofek, D. Emotional Well-being Among Public Employees: A Comparative Perspective. Rev. Public Pers. Adm. 2022, 42, 31–59. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; Chen, X.; He, X.Y. Facial Expressions of Visitors in Forests along the Urbanization Gradient: What Can We Learn from Selfies on Social Networking Services? Forests 2019, 10, 1049. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; Zhai, X.Q. The Relationship between the Facial Expression of People in University Campus and Host-City Variables. Appl. Sci. 2020, 10, 1474. [Google Scholar] [CrossRef]
- Wei, H.; Hauer, R.J.; Guo, S. Daytime dynamic of spontaneous expressions of pedestrians in an urban forest park. Urban For. Urban Green. 2021, 65, 127326. [Google Scholar] [CrossRef]
- Wei, H.X.; Hauer, R.J.; He, X.Y. A forest experience does not always evoke positive emotion: A pilot study on unconscious facial expressions using the face reading technology. For. Policy Econ. 2021, 123, 102365. [Google Scholar] [CrossRef]
- Wei, H.; Ma, B.; Hauer, R.J.; Liu, C.; Chen, X.; He, X. Relationship between environmental factors and facial expressions of visitors during the urban forest experience. Urban For. Urban Green. 2020, 53, 126699. [Google Scholar] [CrossRef]
- Carvajal, M.J.; Peeples, P.; Popovici, I. A Probe into the Wages and Salaries of Health Economics, Outcomes Research, and Market Access Professionals. Appl. Health Econ. Health Policy 2019, 17, 741–751. [Google Scholar] [CrossRef]
- de Ree, J.; Muralidharan, K.; Pradhan, M.; Rogers, H. Double for Nothing? Experimental Evidence on an unconditional teacher salary increase in Indonesia. Q. J. Econ. 2018, 133, 993–1039. [Google Scholar] [CrossRef]
- Giuntini, F.T.; Ruiz, L.P.; Kirchner, L.D.; Passarelli, D.A.; Dos Reis, M.D.D.; Campbell, A.T.; Ueyama, J. How Do I Feel? Identifying Emotional Expressions on Facebook Reactions Using Clustering Mechanism. IEEE Access 2019, 7, 53909–53921. [Google Scholar] [CrossRef]
- Svoray, T.; Dorman, M.; Shahar, G.; Kloog, I. Demonstrating the effect of exposure to nature on happy facial expressions via Flickr data: Advantages of non-intrusive social network data analyses and geoinformatics methodologies. J. Environ. Psychol. 2018, 58, 93–100. [Google Scholar] [CrossRef]
- Lin, Y.; Wood, S.A.; Lawler, J.J. The relationship between natural environments and subjective well-being as measured by sentiment expressed on Twitter. Landsc. Urban Plan. 2022, 227, 104539. [Google Scholar] [CrossRef]
- Sina Weibo. Weibo, New Things Everyday Everytime. Available online: https://weibo.com/ (accessed on 11 August 2023).
- Douyin. Douyin, Records of Good Memories in Lives. Available online: https://www.douyin.com/ (accessed on 11 August 2023).
- Guan, H.M.; Wei, H.X.; Hauer, R.J.; Liu, P. Facial expressions of Asian people exposed to constructed urban forests: Accuracy validation and variation assessment. PLoS ONE 2021, 16, e0253141. [Google Scholar] [CrossRef]
- Yu, F.; Deng, J.F.; Ding, X.G.; Ma, H.Y. Interpolated Stand Properties of Urban Forest Parks Account for Posted Facial Expressions of Visitors. Sustainability 2022, 14, 3817. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Li, Y.J.; Sun, Y.X.; Zhao, Y.; Wang, Y.; Cheng, S.P. Mapping seasonal sentiments of people visiting blue spaces in urban wetlands: A pilot study on inland cities of China. Front. Ecol. Evol. 2022, 10, 969538. [Google Scholar] [CrossRef]
- NASA EarthData. Available online: https://search.earthdata.nasa.gov/search/?ac=true&m=0.0703125!0!2!1!0!0%2C2 (accessed on 9 July 2023).
- Japan Aerospace Exploration Agency. ALOS World 3D—30 m. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.112016.4326.2 (accessed on 10 July 2023).
- Schirpke, U.; Tasser, E.; Tappeiner, U. Predicting scenic beauty of mountain regions. Landsc. Urban Plan. 2013, 111, 1–12. [Google Scholar] [CrossRef]
- Baidu. Baidu Intelligent Cloud, Application Programming InterFace Center. Available online: https://cloud.baidu.com/doc/API/index.html (accessed on 12 August 2023).
- Baidu. Baidu Map. Available online: https://map.baidu.com/ (accessed on 12 August 2023).
- Cityscapes Dataset. Semantic Understanding of Urban Street Scenes. Available online: https://www.cityscapes-dataset.com/ (accessed on 12 August 2023).
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- SAS Institute Inc. The Genmod Procedure. In SAS/STAT 14.3—User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2017; pp. 3165 + 3312. [Google Scholar]
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar]
- Quinn, A.; Ji, P.S.; Nackerud, L. Predictors of secondary traumatic stress among social workers: Supervision, income, and caseload size. J. Soc. Work 2019, 19, 504–528. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, Y.L. The salary of physicians in Chinese public tertiary hospitals: A national cross-sectiona and follow-up study. BMC Health Serv. Res. 2018, 18, 661. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.X.; Wang, X.T.; Li, A.M. Leave or Stay as a Risky Choice: Effects of Salary Reference Points and Anchors on Turnover Intention. Front. Psychol. 2018, 9, 686. [Google Scholar] [CrossRef]
- Pouliakas, K. Pay Enough, Don’t Pay Too Much or Don’t Pay at All? The Impact of Bonus Intensity on Job Satisfaction. Kyklos 2010, 63, 597–626. [Google Scholar] [CrossRef]
- Samus, A.; Freeman, C.; Dickinson, K.J.M.; Van Heezik, Y. Relationships between nature connectedness, biodiversity of private gardens, and mental well-being during the COVID-19 lockdown. Urban For. Urban Green. 2022, 69, 127519. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, W.J.; Ren, Z.B.; Fu, Y.; Lv, H.L.; He, X.Y. Two-city street-view greenery variations and association with forest attributes and landscape metrics in NE China. Landsc. Ecol. 2021, 36, 1261–1280. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Yao, Y.; Li, X. Extracting human perceptions from street view images for better assessing urban renewal potential. Cities 2023, 134, 104189. [Google Scholar] [CrossRef]
Order | Industrial Park Name | Longitude (°) | Latitude (°) | Photo No. |
---|---|---|---|---|
1 | Harbin S&T 1 Innov. 2 Park | 126.468 | 45.817 | 95 |
2 | Great Northern Wilderness Park | 126.687 | 45.733 | 92 |
3 | Changchun Beihu S&T Park | 125.390 | 43.984 | 87 |
4 | Changchun Railway Traffic Indus. 3 Park | 125.190 | 43.967 | 84 |
5 | Shenyang Institute of Engineering S&T Park | 123.439 | 41.925 | 57 |
6 | Tiexi 1905 Innov. Cultural Park | 123.373 | 41.814 | 88 |
7 | Shenyang Chem. Indus. Park | 123.176 | 41.742 | 48 |
8 | Sany Heavy Inc. 4 Park (Beijing) | 116.287 | 40.089 | 71 |
9 | Beijing Qinghua S&T Park | 116.325 | 39.993 | 98 |
10 | Zhongguancun S&T Park | 116.371 | 39.992 | 96 |
11 | Tianjin Free Trade Pilot Zone Dongli Aviation Indus. Park | 117.373 | 39.103 | 86 |
12 | Tianjin Coastal S&T Park | 117.679 | 39.050 | 85 |
13 | Hebei Univ. 5 S&T Park | 115.457 | 38.915 | 93 |
14 | Dalian Software Park | 121.539 | 38.883 | 92 |
15 | Ningxia Built Materials Group Shares Inc. Park | 106.236 | 38.497 | 74 |
16 | Taiyuan Qinghua S&T Park | 112.540 | 37.795 | 89 |
17 | National Torch Plan Software Indus. Base Shanxi Software Park | 112.562 | 37.793 | 81 |
18 | Jinan Int. Biol. 6 Med. 7 Park | 117.129 | 36.680 | 93 |
19 | Qilu Software Park | 117.127 | 36.671 | 97 |
20 | Qingdao Int. Academician Harbor Intelligent Manufacture Park | 120.364 | 36.218 | 97 |
21 | Qingdao Haier S&T Inc. Park | 120.422 | 36.132 | 96 |
22 | Qingdao Software Park | 120.409 | 36.076 | 91 |
23 | National 863 Central Software Park | 113.557 | 34.817 | 91 |
24 | Henan E-Commerce Indus. Park | 113.538 | 34.803 | 82 |
25 | Henan National Univ. S&T Park-West | 113.538 | 34.793 | 86 |
26 | Henan Agr. 8 High-Tech. S&T Park | 114.109 | 34.737 | 87 |
27 | Henan Communication Indus. Park | 113.747 | 34.730 | 79 |
28 | Luoyang Hengsheng S&T Park | 112.494 | 34.626 | 40 |
29 | Ancient Steel Mill Design Creativity Indus. Park | 109.017 | 34.247 | 91 |
30 | Xi’an Qinghua S&T Park | 108.879 | 34.228 | 75 |
31 | Xidian Univ. S&T Park | 108.901 | 34.227 | 83 |
32 | Xi’an Software Park | 108.876 | 34.225 | 86 |
33 | Xi’an Jiaotong Univ. National Univ. S&T Park | 108.997 | 34.224 | 90 |
34 | Zhangjiagang Tariff-Free Sci. 9 Innov. Park | 120.464 | 31.938 | 81 |
35 | Meicun Indus. Central Park | 120.414 | 31.552 | 94 |
36 | National Auto-Parts (Suzhou) Production Base | 120.681 | 31.478 | 83 |
37 | Jiading Indus. Dev. 10 Park | 121.264 | 31.332 | 89 |
38 | Jiangsu Tianmu Lake Tourism Joint Stock Company Park | 119.430 | 31.317 | 91 |
39 | Shanghai Int. Tourism Park | 121.662 | 31.144 | 89 |
40 | Shanghai Xinghuo Dev. Area | 121.550 | 30.855 | 78 |
41 | Shanghai Chem. Indus. Park | 121.462 | 30.815 | 77 |
42 | Shanghai Fine Chem. Eng. Ind. Park | 121.281 | 30.732 | 83 |
43 | Zhejiang Xiangyuan Cultural Tourism Inc. Park | 120.154 | 30.278 | 57 |
44 | Hangzhou Tianmu Mountain Med. Inc. Park | 119.701 | 30.192 | 67 |
45 | Zhejiang Haizheng Med. Indus. Inc. Park | 121.499 | 28.662 | 52 |
46 | Fuzhou High Tech Area Three Innovations Indus. Park | 119.224 | 25.949 | 48 |
47 | Shilong Indus. Transfer Park | 114.120 | 24.946 | 86 |
48 | Guangzhou Mingzhu Indus. Park | 113.534 | 23.593 | 77 |
49 | Oversea Chinese S&T Indus. Park | 113.279 | 23.459 | 91 |
50 | Sihui Fine Chem. Indus. Park | 112.654 | 23.453 | 81 |
51 | Asian Alumium Indus. City | 112.863 | 23.340 | 95 |
52 | Shantou Haojiang District Nanshan Bay Indus. Park | 116.707 | 23.256 | 79 |
53 | Zhaoqing Jintao Indus. Park | 112.755 | 23.111 | 81 |
54 | Huawei Southern Production Base Park | 113.895 | 22.959 | 87 |
55 | BYD Auto Indus. Park | 114.364 | 22.681 | 97 |
56 | Qing Bay Indus. Park | 113.358 | 22.074 | 84 |
Variables | Coefficients | Happy | Sad | Neutral | PRI |
---|---|---|---|---|---|
Happy | R | 1 | −0.6858 | −0.8992 | 0.9693 |
P | <0.0001 | <0.0001 | <0.0001 | ||
Sad | R | 1 | 0.2983 | −0.8437 | |
P | 0.0256 | <0.0001 | |||
Neutral | R | 1 | −0.7640 | ||
P | <0.0001 | ||||
PRI | R | 1 | |||
P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ma, X.; Liu, Y.; Meng, L. Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land. Land 2023, 12, 2075. https://doi.org/10.3390/land12112075
Sun Y, Ma X, Liu Y, Meng L. Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land. Land. 2023; 12(11):2075. https://doi.org/10.3390/land12112075
Chicago/Turabian StyleSun, Yu, Xintong Ma, Yifeng Liu, and Lingquan Meng. 2023. "Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land" Land 12, no. 11: 2075. https://doi.org/10.3390/land12112075
APA StyleSun, Y., Ma, X., Liu, Y., & Meng, L. (2023). Salary Satisfaction of Employees at Workplace on a Large Area of Planted Land. Land, 12(11), 2075. https://doi.org/10.3390/land12112075