Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Concepts and Research Framework
2.1.1. The EPIC Crop Growth Model
2.1.2. Mechanism of Salt Stress in Maize
2.1.3. Hazard Intensity Assessment and Information Diffusion Method
2.1.4. Research Framework
2.2. Data
2.3. Method
2.3.1. Features and Simulation Process of EPIC0509
2.3.2. Identifying Hazard Factors for Corn Salinization
2.3.3. Intensity of Hazard Caused by Corn Salinization
2.3.4. Calculation of Crop Yield
2.3.5. Salinization Hazard Intensity Recurrence Algorithm
3. Results
3.1. Mean Expected Hazard Intensity of Global Corn Salinisation
3.2. Global Risk Assessment of Salinization Hazard Factors with Different Return Periods
4. Discussion
4.1. Comparison of Salinization Results
4.1.1. Model Validation
4.1.2. Compared to the Excess Salts Data
4.1.3. Compared to the Salinization Data from GLASOD
4.2. Research Value and Policy Recommendations
- (1)
- Adapt to climate change by adjusting agricultural production structure and selecting crop varieties with strong resilience to climate impacts.
- (2)
- Optimize land use and resource allocation by planning agricultural layout based on differences in land productivity potential, improving resource efficiency, and enhancing land protection and improvement measures to prevent salinization.
- (3)
- Promote carbon-neutral agriculture by reducing greenhouse gas emissions from farming, promoting low-carbon agricultural technologies such as organic farming and precision fertilization, and increasing farmland carbon sequestration through afforestation and wetland conservation.
- (4)
- Strengthen salinization prevention and control efforts by enhancing monitoring and assessment, developing scientific prevention and control measures such as rational irrigation, drainage infrastructure construction, and soil improvement, and providing training and technical guidance to farmers to enhance their ability to cope with salinization.
4.3. The Outlook and Shortcomings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.B.; Verburg, P.H.; Tang, H.J. Understanding land system dynamics and its consequences. J. Geogr. Sci. 2018, 28, 1563–1566. [Google Scholar] [CrossRef]
- Shi, P.J.; Song, C.Q.; Cheng, C.X. Geographical synergetics: Fromunderstanding human-environment relationship to designing human-environment synergy. Acta Geograpaica Sin. 2019, 74, 3–15. [Google Scholar]
- FAO. Learning about Soil Salinization; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Martinez-Beltran, J. Overview of Salinity Problems in the World and FAO Strategies to Address the Problem. In Managing Saline Soils and Water: Science, Technology and Social Issues; Proceedings of the International Salinity Forum; Water Science and Policy Center: Riverside, CA, USA; p. 2005.
- Davidson, R.A.; Lambert, K.B. Comparing the Hurricane Disaster Risk of U.S. Coastal Counties. Nat. Hazards Rev. 2001, 2, 132–142. [Google Scholar] [CrossRef]
- Huang, J.; Prochazka, M.J.; Triantafilis, J. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia. Sci. Total Environ. 2016, 551, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Stofberg, S.F.; Essink, G.H.O.; Pauw, P.S.; De Louw, P.G.; Leijnse, A.; van der Zee, S.E. Fresh water lens persistence and root zone salinization hazard under temperate climate. Water Resour. Manag. 2017, 31, 689–702. [Google Scholar] [CrossRef]
- Bessaim, M.M.; Missoum, H.; Bendani, K.; Bekkouche, M.S. Mitigation of Salinity Hazard from Low Permeable Soil by Electrochemical Treatment: A Laboratory Based Investigation. In Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–95. [Google Scholar] [CrossRef]
- Lobell, D.; Lesch, S.; Corwin, D.; Ulmer, M.; Anderson, K.; Potts, D.; Doolittle, J.; Matos, M.; Baltes, M. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef]
- Furby, S.; Caccetta, P.; Wallace, J. Salinity monitoring in Western Australia using remotely sensed and other spatial data. J. Environ. Qual. 2010, 39, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Caccetta, P.; Dunne, R.; George, R.; McFarlane, D. A methodology to estimate the future extent of dryland salinity in the southwest of Western Australia. J. Environ. Qual. 2010, 39, 26–34. [Google Scholar] [CrossRef]
- Spies, B.; Woodgate, P. Salinity Mapping Methods in the Australian Context; Department of the Environment and Heritage: Canberra, Australia, 2005; pp. 23–24. [Google Scholar]
- Metternicht, G.I.; Zinck, J. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- De Paz, J.; Visconti, F.; Zapata, R.; Sánchez, J. Integration of two simple models in a geographical information system to evaluate salinization risk in irrigated land of the Valencian Community, Spain. Soil Use Manag. 2004, 20, 333–342. [Google Scholar] [CrossRef]
- Amezketa, E. An integrated methodology for assessing soil salinization, a pre-condition for land desertification. J. Arid. Environ. 2006, 67, 594–606. [Google Scholar] [CrossRef]
- Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; Van der Zee, S.E. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ. Exp. Bot. 2013, 92, 176–185. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954; Volume 78, p. 154. [Google Scholar]
- Sentis, I. Soil Salinization and Land Desertification. Soil Degrad. Desertif. Mediterr. Environ. 1996, pp. 105–129. Available online: https://indico.ictp.it/event/a0114/material/2/14.pdf (accessed on 10 September 2023).
- Castrignanò, A.; Buttafuoco, G.; Puddu, R. Multi-Scale Assessment of the Risk of Soil Salinization in an Area of South-Eastern Sardinia (Italy). Precis. Agric. 2008, 9, 17–31. Available online: https://link.springer.com/content/pdf/10.1007/s11119-008-9054-4.pdf (accessed on 10 September 2023). [CrossRef]
- Mirlas, V. Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools: A case study from the Jezre’el Valley, Israel. Agric. Water Manag. 2012, 109, 144–154. [Google Scholar] [CrossRef]
- Datta, K.; Sharma, V.; Sharma, D. Estimation of a production function for wheat under saline conditions. Agric. Water Manag. 1998, 36, 85–94. [Google Scholar] [CrossRef]
- Bui, E.N.; Smettem, K.R.; Moran, C.J.; Williams, J. Use of soil survey information to assess regional salinization risk using geographical information systems. J. Environ. Qual. 1996, 25, 433–439. [Google Scholar] [CrossRef]
- Šimůnek, J.; Suarez, D.L. Two-dimensional transport model for variably saturated porous media with major chemistry. Water Resour. Res. 1994, 30, 1115–1133. [Google Scholar] [CrossRef]
- Ragab, R. An integrated modelling approach for irrigation water management using saline and non-saline water: The SALTMED model. In Proceedings of the International Symposium on Techniques to Control Salination for Horticultural Productivity, Antalya, Turkey, 7–10 November 2000; Volume 573, pp. 129–138. [Google Scholar]
- Raes, D.; Van Goidsenhoven, B.; Goris, K.; Samain, B.; De Pauw, E.; El Baba, M.; Tubail, K.; Ismael, J.; De Nys, E. BUDGET, a management tool for assessing salt accumulation in the root zone under irrigation. In Proceedings of the Inter Regional Conference on Environment-Water, ICID, Fortaleza, Brazil, 27–30 August 2001. [Google Scholar]
- Rubio, J.; Calvo, A. Solil Degradation and Desertification in Mediterranean Envoronments; Geoforma Ediciones: Logrono, Barcelona, 1996. [Google Scholar]
- Arunrat, N.; Pumijumnong, N.; Hatano, R. Predicting local_scale impact of climate change on rice yield and soil organic carbon sequestration: A case study in Roi Et Province, Northeast Thailand. Agric. Syst. 2018, 164, 58–70. [Google Scholar] [CrossRef]
- FAO. Global Map of Salt-Affected Soils. Available online: https://www.fao.org/3/cb7247en/cb7247en.pdf (accessed on 10 September 2023).
- Kaya, F.; Schillaci, C.; Keshavarzi, A.; Başayiğit, L. Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain. Land 2022, 11, 2148. [Google Scholar] [CrossRef]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- Yang, R.; Cao, R.; Gong, X.; Feng, J. Cultivation has selected for a wider niche and large range shifts in maize. PeerJ 2022, 10, e14019. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H. Salt stress in maize: Effects, resistance mechanisms, and management: A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Williams, J.R.; Wang, E.; Meinardus, A.; Harman, W.; Siemers, M.; Atwood, J.D. EPIC Users Guide V. 0509; Blackland Research and Extension Center: Temple, TX, USA, 2006. [Google Scholar]
- Williams, J.R. EPIC: The Erosion-Productivity Impact Calculator; United States Department of Agriculture: Washington, DC, USA, 1989. [Google Scholar]
- Singh, V.P.; Woolhiser, D.A. Mathematical modeling of watershed hydrology. J. Hydrol. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. SWAT peer-reviewed literature: A review. In Proceedings of the 3rd International SWAT Conference, Zurich, Switzerland, 11–15 July 2005; Available online: https://swat.tamu.edu/docs/swat/conferences/2005/PDF/Session_I/Gassman.pdf (accessed on 10 September 2023).
- Huang, C.F. Optimality Processing to the Sample Knowledge of Non-Completeness; Department of Mathematics, Beijing Normal University: Beijing, China, 1992; Volume 28, pp. 129–148. [Google Scholar]
- National Soil Erosion-Soil Productivity Research Planning Committee. Soil erosion effects on soil productivity: A research perspective. J. Soil Water Conserv. 1981, 36, 82–90. [Google Scholar]
- Williams, J.R. The erosion-productivity impact calculator (EPIC) model: A case history. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1990, 329, 421–428. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Williams, J.; Nearing, M.; Nicks, A.; Skidmore, E.; Valentin, C.; King, K.; Savabi, R. Using soil erosion models for global change studies. J. Soil Water Conserv. 1996, 51, 381–385. [Google Scholar]
- Stockle, C.O.; Williams, J.R.; Rosenberg, N.J.; Jones, C.A. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I—Modification of the EPIC model for climate change analysis. Agric. Syst. 1992, 38, 225–238. [Google Scholar] [CrossRef]
- Zhi-Qiang, W.; Wei-Hua, F.; Fei, H.E.; Hong, X.U. Effect of climate change on wheat yield in northern China: A research based on EPIC model. J. Nat. Disasters 2008, 17, 109–114. [Google Scholar]
- Anderson, C.J.; Babcock, B.A.; Peng, Y.; Gassman, P.W.; Campbell, T.D. Placing bounds on extreme temperature response of maize. Environ. Res. Lett. 2015, 10, 124001. [Google Scholar] [CrossRef]
- Bao, Y.; Hoogenboom, G.; McClendon, R.; Vellidis, G. A comparison of the performance of the CSM-CERES-Maize and EPIC models using maize variety trial data. Agric. Syst. 2017, 150, 109–119. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J.; Chaba, G.D.; Poss, J.A.; Shannon, M.C. Salt sensitivity of corn at various growth stages. Irrig. Sci. 1983, 4, 45–57. [Google Scholar] [CrossRef]
- Brugnoli, E.; Björkman, O. Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 1992, 187, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Pessarakli, M.; Huber, J.; Tucker, T. Dry matter yield, nitrogen absorption, and water uptake by sweet corn under salt stress. J. Plant Nutr. 1989, 12, 279–290. [Google Scholar] [CrossRef]
- BLISS, R.D.; Platt-Aloia, K.; Thomson, W. Changes in plasmalemma organization in cowpea radicle during imbibition in water and NaCl solutions. Plant Cell Environ. 1984, 7, 601–606. [Google Scholar] [CrossRef]
- Lauchli, A.; Schubert, S. The Role of Calcium in the Regulation of Membrane and Cellular Growth Processes under Salt Stress. In Environmental Stress in Plants; Springer: Berlin/Heidelberg, Germany, 1989; pp. 131–138. [Google Scholar]
- Lynch, J.; Cramer, G.R.; Läuchli, A. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol. 1987, 83, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Hichem, H.; El Naceur, A.; Mounir, D. Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 2009, 47, 517–526. [Google Scholar] [CrossRef]
- Cha-Um, S.; Kirdmanee, C. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot 2009, 41, 87–98. [Google Scholar]
- Khodary, S. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int. J. Agric. Biol 2004, 6, 5–8. [Google Scholar]
- Zhang, Y.F.; Yin, B. Advances in Study of Salt-stress Tolerance in Maize. J. Maize Sci. 2008, 16, 83–85. [Google Scholar]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, K.; Hu, Y.; Steppuhn, H. Physiological responses of plants to salinity: A review. Can. J. Plant Sci. 1998, 78, 19–27. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Yu, H.; Lin, D.; Wu, Y.; Wang, J.A. Mapping Drought Risk (Maize) of the World. In World Atlas of Natural Disaster Risk; Springer: Berlin/Heidelberg, Germany, 2015; pp. 211–226. [Google Scholar] [CrossRef]
- Huang, C.F.; Liu, X.L.; Zhou, G.X.; Li, X.J. Aricultural natural disater risk assessment method according to the historic disaster data. J. Nat. Disasters 1998, 7, 1–9. [Google Scholar]
- Miliaresis, G.C.; Argialas, D. Segmentation of physiographic features from the global digital elevation model/GTOPO30. Comput. Geosci. 1999, 25, 715–728. [Google Scholar] [CrossRef]
- IIASA; FAO. Global Agro-Ecological Zones–Model Documentation (GAEZ V. 3.0); International Institute of Applied Systems Analysis: Vienna, Austria; Food and Agricultural Organization: Rome, Italy, 2012; Available online: https://pure.iiasa.ac.at/id/eprint/13290/1/GAEZ_Model_Documentation.pdf (accessed on 1 September 2022).
- Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The inter-sectoral impact model intercomparison project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. USA 2014, 111, 3228–3232. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Tan, G.; Shibasaki, R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecol. Model. 2003, 168, 357–370. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254. [Google Scholar] [CrossRef] [PubMed]
- ESRI.; GRID. Map of Aridity. Available online: https://data.apps.fao.org/catalog/iso/221072ae-2090-48a1-be6f-5a88f061431a (accessed on 1 September 2022).
- Portal, F.S. Harmonized World Soil Database. Available online: https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/zh/ (accessed on 1 September 2022).
- ISRIC. Global Assessment of Human-Induced Soil Degradation (GLASOD). Available online: https://www.isric.org/projects/global-assessment-human-induced-soil-degradation-glasod (accessed on 1 September 2022).
- Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Chen, J.; Cui, H.; Wu, Y.; Ravindranath, N.H.; Rahman, A. Simulating potential yields of Chinese super hybrid rice in Bangladesh, India and Myanmar with EPIC model. Acta Geogr. Sin. 2018, 28, 1020–1036. [Google Scholar] [CrossRef]
- Guo, H.; Wang, R.; Garfin, G.M.; Zhang, A.; Lin, D.; Liang, Q.; Wang, J. Rice drought risk assessment under climate change: Based on physical vulnerability a quantitative assessment method. Sci. Total Environ. 2021, 751, 141481. [Google Scholar] [CrossRef] [PubMed]
- Lian, F. Crop Salinity Vulnerability Curve Construction Based on Epic Model—A Case Study of Global Mazie. Doctoral Dissertation, Beijing Normal University, Beijing, China, 2016; pp. 24–25. [Google Scholar]
- Tanji, K.K.; Kielen, N.C. Agricultural Drainage Water Management in Arid and Semi-Arid Areas; FAO: Rome, Italy, 2002. [Google Scholar]
- Katerji, N.; Van Hoorn, J.; Hamdy, A.; Mastrorilli, M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 2003, 62, 37–66. [Google Scholar] [CrossRef]
- Huang, C.F. Informationmatrix method for risk analysis of natural disaster. J. Nat. Disasters 2006, 15, 1–10. [Google Scholar]
- Schofield, R.V.; Kirkby, M.J. Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Glob. Biogeochem. Cycles 2003, 17, 4-1–4-13. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Lin, D.; Yu, H.; Wang, J.; Shi, P. GEPIC-V-R model: A GIS-based tool for regional crop drought risk assessment. Agric. Water Manag. 2014, 144, 107–119. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Lian, F.; Gao, Y.; Lin, D.; Wang, J. Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize. Sustainability 2016, 8, 813. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, H.; Wang, R.; Lin, D.; Gao, Y.; Lian, F.; Wang, J. Identification of the Most Sensitive Parameters of Winter Wheat on a Global Scale for Use in the EPIC Model. Agron. J. 2017, 109, 58–70. [Google Scholar] [CrossRef]
Data Name | Data Content | Spatial Resolution | Temporal Resolution | Data Sources |
---|---|---|---|---|
DEM | Global elevation | 0.0833° × 0.0833° | 1997 | USGS [62] |
Slope | Global slope | 0.0833° × 0.0833° | 1997 | GAEZ [63] |
Soil Properties | Global soil distribution raster image and soil physical and chemical properties such as PH, soil depth, conductivity, etc. | 0.0833° × 0.0833° | 1995 | ISRIC |
Meteorological | Global precipitation, temperature, solar radiation, and other information | 0.5° × 0.5° | 1971–2099 | Cross-sector impact model comparison projectRCP2.6 [64] |
Planting Area | Global cultivation crop region | 5 min × 5 min | 1992 | Sustainability and the Global Environment, University of Wisconsin-Madison [65] |
Corn Parameter Data | Corn EPIC Model Reference (US) | Site | - | Texas A&M University College of Agriculture and Life Sciences |
Growth Period | Corn planting time and growth period length | 0.5° × 0.5° | 2000–2015 | Nelson Institute for Environmental Studies at the University of Wisconsin-Madison [66] |
Irrigation | Global annual irrigation water of agriculture(mm) | 0.5° × 0.5° | 1995 | Institute of Industrial Science, University of Tokyo [67] |
Fertilizer | Global annual fertilizer application for maize | 0.5° × 0.5° | 2012 | Earth stat [68] |
Corn production | Production data for global country units | Vector unit | 1995–2004 | FAO |
China provincial unit production data | Vector unit | 1995–2004 | Department of Plantation Management, Ministry of Agriculture, China | |
US state unit production data | Vector unit | 1995–2004 | United States Department Of Agriculture | |
Australian state unit production data | Vector unit | 1995–2004 | Australian Bureau of Statistics | |
India state unit production data | Vector unit | 1995–2004 | Department of Agriculture and Cooperation | |
Evaluation unit | World administrative divisions, rivers, lakes, etc. | Vector unit | 1995–2004 | ESRI, China Surveying and Mapping Geographic Information Bureau, CRU TS2.1, DIVA-GIS |
Aridity Index | Global Map of Aridity | 10 arc minutes | 1961–1990 | FAO [69] |
Other salinization research results | Excess salts | 0.5° × 0.5° | 1971–1981 | Harmonized World Soil Database [70] |
Cs | Vector unit | 1991 | GLASOD [71] |
Elimination of Coercion Type | Elimination Method |
---|---|
Temperature stress | Management measures automatic fertilization |
Nutrient stress | Management measures automatic fertilization |
Water stress | Set up automatic irrigation to meet crop water requirements |
Ventilation stress | Pre-experiment setting the maximum water supply so that no ventilation stress is generated |
Rank | 10-Year-Return-Period | 20-Year-Return-Period | 50-Year-Return-Period | 100-Year-Return-Period | ||||
---|---|---|---|---|---|---|---|---|
Country | Mean | Country | Mean | Country | Mean | Country | Mean | |
1 | Oman | 0.99 | Oman | 0.99 | Oman | 1.00 | Oman | 1.00 |
2 | Egypt | 0.90 | Egypt | 0.91 | Egypt | 0.92 | Egypt | 0.92 |
3 | Mongolia | 0.73 | Mongolia | 0.78 | Mongolia | 0.82 | Mongolia | 0.84 |
4 | Kuwait | 0.65 | Kuwait | 0.66 | Kuwait | 0.66 | Kyrgyzstan | 0.67 |
5 | Turkmenistan | 0.62 | Turkmenistan | 0.64 | Turkmenistan | 0.65 | Kuwait | 0.66 |
6 | Yemen | 0.58 | Kyrgyzstan | 0.61 | Kyrgyzstan | 0.65 | Turkmenistan | 0.66 |
7 | Uzbekistan | 0.57 | Yemen | 0.60 | Yemen | 0.61 | Yemen | 0.62 |
8 | Kyrgyzstan | 0.56 | Uzbekistan | 0.58 | Uzbekistan | 0.59 | Uzbekistan | 0.60 |
9 | Algeria | 0.56 | Algeria | 0.57 | Algeria | 0.58 | Saudi Arabia | 0.59 |
10 | Iraq | 0.54 | Saudi Arabia | 0.56 | Saudi Arabia | 0.58 | Algeria | 0.58 |
Country | 10-Year-Return-Period | 20-Year-Return-Period | 50-Year-Return-Period | 100-Year-Return-Period | ||||
---|---|---|---|---|---|---|---|---|
Rank | Mean | Rank | Mean | Rank | Mean | Rank | Mean | |
Russia | 28 | 0.19 | 29 | 0.20 | 29 | 0.20 | 29 | 0.21 |
Canada | 68 | 0.00 | 68 | 0.00 | 69 | 0.01 | 69 | 0.01 |
China | 21 | 0.30 | 21 | 0.31 | 21 | 0.32 | 21 | 0.33 |
United States | 69 | 0.00 | 69 | 0.00 | 70 | 0.00 | 70 | 0.00 |
Brazil | 76 | 0.00 | 76 | 0.00 | 76 | 0.00 | 76 | 0.00 |
Australia | 35 | 0.09 | 36 | 0.09 | 36 | 0.10 | 36 | 0.10 |
India | 63 | 0.01 | 64 | 0.01 | 63 | 0.01 | 63 | 0.01 |
Argentina | 27 | 0.20 | 27 | 0.20 | 28 | 0.21 | 28 | 0.21 |
Kazakhstan | 14 | 0.45 | 14 | 0.46 | 14 | 0.47 | 14 | 0.48 |
Algeria | 9 | 0.56 | 9 | 0.57 | 9 | 0.58 | 10 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.; Hu, C.; Lian, F.; Wang, J.; Gu, X.; Yu, Y. Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion. Land 2023, 12, 2076. https://doi.org/10.3390/land12112076
Lin D, Hu C, Lian F, Wang J, Gu X, Yu Y. Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion. Land. 2023; 12(11):2076. https://doi.org/10.3390/land12112076
Chicago/Turabian StyleLin, Degen, Chuanqi Hu, Fang Lian, Jing’ai Wang, Xingli Gu, and Yingxian Yu. 2023. "Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion" Land 12, no. 11: 2076. https://doi.org/10.3390/land12112076
APA StyleLin, D., Hu, C., Lian, F., Wang, J., Gu, X., & Yu, Y. (2023). Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion. Land, 12(11), 2076. https://doi.org/10.3390/land12112076