Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Multi-Objective Urban Land Optimization (MULO) Model
2.3.1. Minimum Cumulative Resistance (MCR) Model
2.3.2. Land Use Optimization Model
Objective
The Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
- After simulating the total built-up land in 2030, the population is created by assigning land use to other land uses randomly.
- Through the non-dominated sorting, crowding distance was used to determine the rank of chromosomes by calculating the average Euclidean distance of the chromosomes of each objective function [52]. Solutions in the same rank are considered equally important, and solutions in a smaller rank are better than those in a larger rank.
- A roulette is used to select chromosomes for subsequent steps. When the rank of an individual is higher, it has more chance to be selected.
- After determining the crossover probability, some of the genes at the same position in the two selected parents will be exchanged for their land use types, and then form two temp offspring.
- After determining the mutation probability, some of the genes in the temp offspring will be randomly changed to different land use types to form a new offspring (Figure 4).
Constraints
3. Results
3.1. LES Zoning of the GBA
3.2. Land Use Optimization Results
3.2.1. Model Parameters and Constraints
3.2.2. Spatial Pattern of the GBA in 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kii, M. Projecting future populations of urban agglomerations around the world and through the 21st century. NPJ Urban Sustain. 2021, 1, 10. [Google Scholar]
- Guo, P.; Zhang, F.; Wang, H.; Qin, F. Suitability evaluation and layout optimization of the spatial distribution of rural residential areas. Sustainability 2020, 12, 2409. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Yan, F.; Su, F.; Lyne, V.; Zhou, C. Land Use Optimization for Coastal Urban Agglomerations Based on Economic and Ecological Gravitational Linkages and Accessibility. Land 2022, 11, 1003. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Zeng, Y.; Chen, M.; Su, F.; Cui, Y. Changes in Ecosystems and Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area since the Reform and Opening Up in China. Remote Sens. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Huang, H.; Li, Q.; Zhang, Y. Urban residential land suitability analysis combining remote sensing and social sensing data: A case study in Beijing, China. Sustainability 2019, 11, 2255. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Huang, Q.; Ding, D.; Mei, M.; Qin, H. Modelling urban expansion guided by land ecological suitability: A case study of Changzhou City, China. Habitat Int. 2018, 75, 12–24. [Google Scholar]
- Akbari, M.; Neamatollahi, E.; Neamatollahi, P. Evaluating land suitability for spatial planning in arid regions of eastern Iran using fuzzy logic and multi-criteria analysis. Ecol. Indic. 2019, 98, 587–598. [Google Scholar] [CrossRef]
- Kaim, A.; Cord, A.F.; Volk, M. A review of multi-criteria optimization techniques for agricultural land use allocation. Environ. Model. Softw. 2018, 105, 79–93. [Google Scholar] [CrossRef]
- Tajbakhsh, S.; Memarian, H.; Kheyrkhah, A. A GIS-based integrative approach for land use optimization in a semi-arid watershed. Glob. J. Environ. Sci. Manag. 2018, 4, 31–46. [Google Scholar]
- Strange, N.; Meilby, H.; Bogetoft, P. Land use optimization using self-organizing algorithms. Nat. Resour. Model. 2001, 14, 541–574. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land 2021, 10, 1398. [Google Scholar] [CrossRef]
- Ma, S.; Cai, Y.; Xie, D.; Zhang, X.; Zhao, Y. Towards balanced development stage: Regulating the spatial pattern of agglomeration with collaborative optimal allocation of urban land. Cities 2022, 126, 103645. [Google Scholar] [CrossRef]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Maleki, J.; Masoumi, Z.; Hakimpour, F.; Coello, C.A.C. A spatial land-use planning support system based on game theory. Land Use Policy 2020, 99, 105013. [Google Scholar] [CrossRef]
- Sharmin, N.; Haque, A.; Islam, M.M. Generating Alternative Land-use Allocation for Mixed Use Areas: Multi-Objective Optimization Approach. Geogr. Anal. 2019, 51, 448–474. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Gao, P.; Wang, H.; Cushman, S.A.; Cheng, C.; Song, C.; Ye, S. Sustainable land-use optimization using NSGA-II: Theoretical and experimental comparisons of improved algorithms. Landsc. Ecol. 2021, 36, 1877–1892. [Google Scholar] [CrossRef]
- Pan, T.; Su, F.; Yan, F.; Lyne, V.; Wang, Z.; Xu, L. Optimization of multi-objective multi-functional landuse zoning using a vector-based genetic algorithm. Cities 2023, 137, 104256. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Verma, S.; Pant, M.; Snasel, V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems. IEEE Access 2021, 9, 57757–57791. [Google Scholar] [CrossRef]
- Ramezanian, R.; Hajipour, M. Integrated framework of system dynamics and meta-heuristic for multi-objective land use planning problem. Landsc. Ecol. Eng. 2020, 16, 113–133. [Google Scholar] [CrossRef]
- Maleki, J.; Masoumi, Z.; Hakimpour, F.; Coello Coello, C.A. Many-objective land use planning using a hypercube-based NSGA-III algorithm. Trans. GIS 2022, 26, 609–644. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, Y.; Su, F.; Lyne, V.; Cheng, F.; Xiao, H. Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS Int. J. Geo-Inf. 2021, 10, 100. [Google Scholar] [CrossRef]
- Handayanto, R.T.; Tripathi, N.K.; Kim, S.M.; Guha, S. Achieving a sustainable urban form through land use optimisation: Insights from Bekasi City’s land-use plan (2010–2030). Sustainability 2017, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Parrott, L. An improved Genetic Algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Masoumi, Z.; Coello Coello, C.A.; Mansourian, A. Dynamic urban land-use change management using multi-objective evolutionary algorithms. Soft Comput. 2020, 24, 4165–4190. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Su, Y.; Zhang, C.; Wu, X.; Wen, X.; Huang, G.; Deng, Y.; Lafortezza, R.; Chen, X. Estimating ecological sustainability in the Guangdong-Hong Kong-Macao Greater Bay Area, China: Retrospective analysis and prospective trajectories. J. Environ. Manag. 2022, 303, 114167. [Google Scholar] [CrossRef]
- Mavrommati, G.; Richardson, C. Experts’ evaluation of concepts of Ecologically Sustainable Development applied to coastal ecosystems. Ocean Coast. Manag. 2012, 69, 27–34. [Google Scholar] [CrossRef]
- Franco, L.; Magalhães, M.R. Assessing the ecological suitability of land-use change. Lessons learned from a rural marginal area in southeast Portugal. Land Use Policy 2022, 122, 106381. [Google Scholar] [CrossRef]
- Bagheri, M.; Zaiton Ibrahim, Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Wei, B.; Li, Y.; Suo, A.; Zhang, Z.; Xu, Y.; Chen, Y. Spatial suitability evaluation of coastal zone, and zoning optimisation in ningbo, China. Ocean Coast. Manag. 2021, 204, 105507. [Google Scholar] [CrossRef]
- Stanković, M.; Gladović, P.; Popović, V. Determining the importance of the criteria of traffic accessibility using fuzzy AHP and rough AHP method. Decis. Mak. Appl. Manag. Eng. 2019, 2, 86–104. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Multi-Criteria Decision-Making Techniques for Improvement Sustainability Engineering Processes. Symmetry 2020, 12, 986. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Azma, A.; Akbari, M. Combined fuzzy AHP–GIS for agricultural land suitability modeling for a watershed in southern Iran. Environ. Manag. 2020, 66, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Dai, W.; Shao, G.; Xu, J. Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2045–2060. [Google Scholar] [CrossRef] [Green Version]
- Adriaensen, F.; Chardon, J.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Huang, R.; Nie, Y.; Duo, L.; Zhang, X.; Wu, Z.; Xiong, J. Construction land suitability assessment in rapid urbanizing cities for promoting the implementation of United Nations sustainable development goals: A case study of Nanchang, China. Environ. Sci. Pollut. Res. 2021, 28, 25650–25663. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, R.; Ye, X.; Zhang, H.; Wang, X. Suitability evaluation of urban construction land based on an approach of vertical-horizontal processes. ISPRS Int. J. Geo-Inf. 2018, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, B. Research on an analytical framework for urban spatial structural and functional optimisation: A case study of Beijing city, China. Land 2021, 10, 86. [Google Scholar] [CrossRef]
- Li, F.; Gong, Y.; Cai, L.; Sun, C.; Chen, Y.; Liu, Y.; Jiang, P. Sustainable land-use allocation: A multiobjective particle swarm optimization model and application in Changzhou, China. J. Urban Plan. Dev. 2018, 144, 04018010. [Google Scholar] [CrossRef]
- Zheng, W.; Ke, X.; Xiao, B.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits-A case study in Wuhan, China. J. Environ. Manag. 2019, 248, 109306. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, W.; He, J.; Liu, Y.; Ai, T.; Liu, D. A land-use spatial optimization model based on genetic optimization and game theory. Comput. Environ. Urban Syst. 2015, 49, 1–14. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, W.; Wang, T. Spatio-temporal land use multi-objective optimization: A case study in Central China. Trans. GIS 2019, 23, 726–744. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Ullah, K.M.; Mansourian, A. Evaluation of land suitability for urban land-use planning: Case study D haka City. Trans. GIS 2016, 20, 20–37. [Google Scholar] [CrossRef]
- Holzkämper, A.; Seppelt, R. A generic tool for optimising land-use patterns and landscape structures. Environ. Model. Softw. 2007, 22, 1801–1804. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Peng, L.; Shao, J.; Chi, T. An improved artificial bee colony algorithm for optimal land-use allocation. Int. J. Geogr. Inf. Sci. 2015, 29, 1470–1489. [Google Scholar] [CrossRef]
- Uyan, M.; Tongur, V.; Ertunc, E. Comparison of different optimization based land reallocation models. Comput. Electron. Agric. 2020, 173, 105449. [Google Scholar] [CrossRef]
- Wang, R. An improved nondominated sorting genetic algorithm for multiobjective problem. Math. Probl. Eng. 2016, 2016, 1519542. [Google Scholar] [CrossRef]
- Chen, X.; Duan, J. What they talk about when they talk about urban regeneration: Understanding the concept ‘urban regeneration’in PRD, China. Cities 2022, 130, 103880. [Google Scholar] [CrossRef]
Type | Name | Source |
---|---|---|
Vector data | Boundary of the GBA | The Resource and Environmental Science and Data Center (https://www.resdc.cn/, accessed on 1 January 2022) |
Ecological control area | The website of the Ministry of Natural Resources of the People’s Republic of China (http://g.mnr.gov.cn/, accessed on 1 June 2022) | |
Road network | Openstreet Map | |
Raster data | Land use map | The Resource and Environmental Science and Data Center (https://www.resdc.cn/, accessed on 12 June 2022) |
NDVI | ||
Geomorphological type data | ||
DEM | Shuttle Radar Topography Mission (SRTM, http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp, accessed on 1 December 2022) | |
Population density | WorldPop (https://www.worldpop.org, accessed on 12 December 2022) |
Resistance Factor | Grade | Weight | ||||
---|---|---|---|---|---|---|
V | IV | III | II | I | ||
Topography (S1) | ||||||
Slope (S11) | <2 | 2–5 | 5–10 | 10–25 | >25 | 0.04 |
Landscape (S12) | Plain | - | Hill | - | Mountain | 0.02 |
Elevation (S13) | 0–40 | 40–80 | 80–120 | 120–160 | >160 | 0.03 |
Ecology environment (S2) | ||||||
NDVI (S21) | <0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 | 0.14 |
Land use (S22) | Built-up land | Grassland, unused land | Cropland | Forest | Water | 0.19 |
Ecological protection area (S23) | - | - | - | - | Ecological red line | 0.24 |
Distance to Water (S24) | 1 | 1–2 | 2–3 | 3–4 | >4 | 0.12 |
Human Disturbance (S3) | ||||||
Distance to urban (S31) | 0–0.5 | 0.5–1 | 1–1.5 | 1.5–2 | >2 | 0.05 |
Distance to highway (S32) | 0–1 | 1–2 | 2–3 | 3–4 | >4 | 0.09 |
Population density (S33) | >1000 | 700–1000 | 400–700 | 200–400 | 0–200 | 0.08 |
Land Use (km2)/Pattern | Initial Pattern (2020) | Optimal Patten (2030) | Changed Area | The Sources of Newly Added Built-Up Land |
---|---|---|---|---|
Cropland | 13,812 | 12,200 | −1612 | |
Forest | 35,952 | 35,766 | −186 | |
Grassland | 1195 | 1124 | −71 | |
Water | 4318 | 4318 | 0 | |
Built-up | 9570 | 11,439 | 1869 | |
Unused | 4 | 4 | 0 |
City/Area (km2) | Built-Up Land in 2020 | Built-Up Land in 2030 | New-Added Built-Up | Proportion (%) |
---|---|---|---|---|
Guangzhou | 1790 | 2186 | 396 | 21.2% |
Shenzhen | 1113 | 1150 | 37 | 2.0% |
Zhuhai | 420 | 451 | 31 | 1.7% |
Foshan | 1450 | 1791 | 341 | 18.2% |
Jiangmen | 849 | 1167 | 318 | 17.0% |
Zhaoqin | 577 | 718 | 141 | 7.5% |
Huizhou | 896 | 1278 | 382 | 20.4% |
Dongguan | 1590 | 1702 | 112 | 6.0% |
Zhongshan | 633 | 720 | 87 | 4.7% |
Hong Kong | 190 | 213 | 23 | 1.2% |
Macao | 14 | 15 | 1 | 0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, Y.; Yan, F.; Su, F. Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area. Land 2023, 12, 754. https://doi.org/10.3390/land12040754
Pan T, Zhang Y, Yan F, Su F. Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area. Land. 2023; 12(4):754. https://doi.org/10.3390/land12040754
Chicago/Turabian StylePan, Tingting, Yu Zhang, Fengqin Yan, and Fenzhen Su. 2023. "Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area" Land 12, no. 4: 754. https://doi.org/10.3390/land12040754
APA StylePan, T., Zhang, Y., Yan, F., & Su, F. (2023). Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area. Land, 12(4), 754. https://doi.org/10.3390/land12040754