Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Characteristics
2.2. Sample Scheme and Sampling
2.3. Laboratory Analysis and Indicator Determination
2.4. Data Processing and Statistical Methods
3. Results
3.1. Soil Biological and Physicochemical Index Responses in the Different Regions
3.1.1. Analysis of the Differences among Soil Biological Indicators
3.1.2. Analysis of the Differences between the Physical and Chemical Properties of the Soils from the Different Regions
3.2. Analysis of Environmental Factors Affecting Soil Biological Indicators
3.2.1. Correlation Analysis of the Factors Influencing the Soil Biological Indicators
3.2.2. Indicators Redundancy Analysis of Factors Influencing the Soil Biological Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Li, G.; Zhang, G.; Fu, B. Soil security: From Earth’s critical zone to ecosystem services. Acta Geogr. Sin. 2015, 70, 1859–1869. [Google Scholar]
- Chen, Q.; Wang, X.; Xia, Y.; Huang, J.; Yin, Y.; Nie, W.; Guo, H. Research on the evaluation method of the ecosystem services of Earth’s critical zone. J. Nanjing Univ. Nat. Sci. 2022, 58, 1070–1086. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Panagos, P.; Yigini, Y.; Dunbar, M.B.; Gardi, C.; Montanarella, L.; Ballabio, C. A Knowledge-Based Approach to Estimating the Magnitude and Spatial Patterns of Potential Threats to Soil Biodiversity. Sci. Total Environ. 2016, 545, 11–20. [Google Scholar] [CrossRef]
- Aksoy, E.; Louwagie, G.; Gardi, C.; Gregor, M.; Schroeder, C.; Loehnertz, M. Assessing Soil Biodiversity Potentials in Europe. Sci. Total Environ. 2017, 589, 236–249. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Halley, J.M.; Rillig, M.C. Extinction Risk of Soil Biota. Nat. Commun. 2015, 6, 8862. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerda, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Stone, D.; Blomkvist, P.; Hendriksen, N.B.; Bonkowski, M.; Jorgensen, H.B.; Carvalho, F.; Dunbar, M.B.; Gardi, C.; Geisen, S.; Griffiths, R.; et al. A Method of Establishing a Transect for Biodiversity and Ecosystem Function Monitoring across Europe. Appl. Soil Ecol. 2016, 97, 3–11. [Google Scholar] [CrossRef]
- Blum, W.E.H.; Busing, J.; Montanarella, L. Research Needs in Support of the European Thematic Strategy for Soil Protection. Trac-Trends Anal. Chem. 2004, 23, 680–685. [Google Scholar] [CrossRef]
- Shi, L.; Fu, S. Review of soil biodiversity research:history, current status and future challenges. Chin. Sci. Bull. 2014, 59, 493–509. [Google Scholar]
- McCaig, A.E.; Glover, L.A.; Prosser, J.I. Numerical Analysis of Grassland Bacterial Community Structure under Different Land Management Regimens by Using 16S Ribosomal DNA Sequence Data and Denaturing Gradient Gel Electrophoresis Banding Patterns. Appl. Environ. Microbiol. 2001, 67, 4554–4559. [Google Scholar] [CrossRef] [Green Version]
- Finlay, B.J.; Esteban, G.F.; Clarke, K.J.; Olmo, J.L. Biodiversity of Terrestrial Protozoa Appears Homogeneous across Local and Global Spatial Scales. Protist 2001, 152, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Vandenkoornhuyse, P.; Ridgway, K.P.; Watson, I.J.; Fitter, A.H.; Young, J.P.W. Co-Existing Grass Species Have Distinctive Arbuscular Mycorrhizal Communities. Mol. Ecol. 2003, 12, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Vandenkoornhuyse, P.; Husband, R.; Daniell, T.J.; Watson, I.J.; Duck, J.M.; Fitter, A.H.; Young, J.P.W. Arbuscular Mycorrhizal Community Composition Associated with Two Plant Species in a Grassland Ecosystem. Mol. Ecol. 2002, 11, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floyd, R.; Abebe, E.; Papert, A.; Blaxter, M. Molecular Barcodes for Soil Nematode Identification. Mol. Ecol. 2002, 11, 839–850. [Google Scholar] [CrossRef]
- Fitter, A.H.; Gilligan, C.A.; Hollingworth, K.; Kleczkowski, A.; Twyman, R.M.; Pitchford, J.W.; Members of the Nerc Soil Biodiversity Programme. Biodiversity and Ecosystem Function in Soil. Funct. Ecol. 2005, 19, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K. Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture 2021, 11, 583. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric Analysis of Research on Soil Health from 1999 to 2018. J. Soils Sediments 2020, 20, 1513–1525. [Google Scholar] [CrossRef]
- Turbé, A.; Toni, A.; Benito, P.; Lavelle, P.; Lavelle, P.; Camacho, N.; Putten, W.; Labouze, E.; Mudgal, S. Soil Biodiversity: Functions, Threats and Tools for Policy Makers; Report European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Zhu, Y.; Chen, B.; Fu, W. Research frontiers in soil ecology. Sci. Technol. Rev. 2022, 40, 25–31. [Google Scholar]
- Lemanceau, P.; Creamer, R.; Griffiths, B.S. Soil Biodiversity and Ecosystem Functions across Europe: A Transect Covering Variations in Bio-Geographical Zones, Land Use and Soil Properties. Appl. Soil Ecol. 2016, 97, 1–2. [Google Scholar] [CrossRef]
- Lemanceau, P.; Maron, P.-A.; Mazurier, S.; Mougel, C.; Pivato, B.; Plassart, P.; Ranjard, L.; Revellin, C.; Tardy, V.; Wipf, D. Understanding and Managing Soil Biodiversity: A Major Challenge in Agroecology. Agron. Sustain. Dev. 2015, 35, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Thomson, B.C.; Tisserant, E.; Plassart, P.; Uroz, S.; Griffiths, R.I.; Hannula, S.E.; Buee, M.; Mougel, C.; Ranjard, L.; Van Veen, J.A.; et al. Soil Conditions and Land Use Intensification Effects on Soil Microbial Communities across a Range of European Field Sites. Soil Biol. Biochem. 2015, 88, 403–413. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thebault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, E.; Sun, L.; San, Q.; Cao, C.; Tian, X.; He, Q. Effects of different crop rotation patterns on the physicochemical properties and enzymatic activities of black soils in Northeast China. China Agric. Technol. Ext. 2021, 37, 70–75, 80. [Google Scholar]
- Qiu, C.; Han, X.; Lu, X.; Yan, J.; Chen, X.; Zhou, W. Effects of maize straw incorporation on soil fertility and crop production in the black soil region of Northeast China. Soils Crop. 2020, 9, 277–286. [Google Scholar]
- Zou, W.; Han, X.; Yan, J.; Chen, X.; Lu, X.; Qiu, C.; Hao, X. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 9–18. [Google Scholar]
- Tang, H.; Cheng, F.; Zhang, L. Exploration and perspectives on the conservation of soil biodiversity in arable land. China Land 2022, 2, 11–13. [Google Scholar] [CrossRef]
- Guerra, C.A.; Heintz-Buschart, A.; Sikorski, J.; Chatzinotas, A.; Guerrero-Ramirez, N.; Cesarz, S.; Beaumelle, L.; Rillig, M.C.; Maestre, F.T.; Delgado-Baquerizo, M.; et al. Blind Spots in Global Soil Biodiversity and Ecosystem Function Research. Nat. Commun. 2020, 11, 3870. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing Effect of Polylactic Acid Microplastic and Straw Residue on Soil Property and Ecological Function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Koegel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Jia, J.; Fan, F.; Zhang, F.; Zhang, J. Research Progresses on Farmland Soil Ecosystem Multifunctionality. Acta Pedol. Sin. 2022, 59, 1177–1189. [Google Scholar]
- Creamer, R.E.; Barel, J.M.; Bongiorno, G.; Zwetsloot, M.J. The Life of Soils: Integrating the Who and How of Multifunctionality. Soil Biol. Biochem. 2022, 166, 108561. [Google Scholar] [CrossRef]
- Fine, A.; van Es, H.; Schindelbeck, R. Statistics, Scoring Functions, and Regional Analysis of a Comprehensive Soil Health Database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Negi, A. Soil Health Card: An Overview. In Current Research in Soil Science; Aiknik Publication: New Delhi, India, 2020; pp. 43–58. ISBN 978-93-90070-37-4. [Google Scholar]
- Li, X.; Zhang, J.; Wu, L.; Ren, Y.; Zhang, J.; Xu, M. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation. Sci. Agric. Sin. 2021, 54, 3043–3056. [Google Scholar]
- Zhao, J. Biological Monitoring and Assessment of Soil Health. Soils 2006, 38, 136–142. [Google Scholar]
- Zhao, R.; Wu, K.; Zhang, X.; Feng, Z. Evaluation on Farmland Health Productivity in Main Grain Production Areas: A Case Study in Wen County of Henan Province. China Land Sci. 2019, 33, 67–75. [Google Scholar]
- Lu, R. Methods for Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Press: Beijing, China, 2000; ISBN 978-7-80119-925-6. [Google Scholar]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ryo, M.; Lehmann, A.; Aguilar-Trigueros, C.A.; Buchert, S.; Wulf, A.; Iwasaki, A.; Roy, J.; Yang, G. The Role of Multiple Global Change Factors in Driving Soil Functions and Microbial Biodiversity. Science 2019, 366, 886–890. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Morillo, J.A.; Penuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate Change Effects on Plant-Soil Feedbacks and Consequences for Biodiversity and Functioning of Terrestrial Ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.; Moitra, M.N.M. Abundance and Group Diversity of Soil Mite Population in Relation to Four Edaphic Factors at Chintamani Abhayaranya, Narendrapur, South 24-Parganas, West Bengal. Proc. Zool. Soc. 2009, 62, 57–65. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Campos-Herrera, R.; Sánchez-Moreno, S.; Vittoz, P.; Rasmann, S. The Abundance, Diversity, and Metabolic Footprint of Soil Nematodes Is Highest in High Elevation Alpine Grasslands. Front. Ecol. Evol. 2016, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zou, W.; Yang, F. Main Achievements, Challenges, and Recommendations of Black Soil Conservation and Utilization in China. Bull. Chin. Acad. Sci. 2021, 36, 1194–1202. [Google Scholar] [CrossRef]
- Han, X.; Zou, W.; Yan, J.; Lu, x.; Chen, X.; Ma, Y.; Guo, Y. China’s Heilongjiang Province creates a “Longjiang model” for blackland conservation and utilization. China Rural Sci. Technol. 2021, 4, 25–27. [Google Scholar]
- Zhang, S.; Zhao, R.; Wu, K.; Huang, Q.; Kang, L. Effects of the Rapid Construction of a High-Quality Plough Layer Based on Woody Peat in a Newly Reclaimed Cultivated Land Area. Agriculture 2021, 12, 31. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover Cropping Enhances Soil Microbial Biomass and Affects Microbial Community Structure: A Meta-Analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial Patterns of County-Level Arable Land Productive-Capacity and Its Coordination with Land-Use Intensity in Mainland China. Agric. Ecosyst. Environ. 2022, 326, 107757. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Gao, P.; Liu, C.; Cheng, C. Visualizing Clustering Characteristics of Multidimensional Arable Land Quality Indexes at the County Level in Mainland China. Environ. Plan.-Econ. Space 2022, 54, 222–225. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Shen, S.; Gao, P.; Cheng, C.; Cheng, F.; Wan, C.; Zhu, D. Spatial Pattern of Arable Land-Use Intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerda, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The Interdisciplinary Nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Demetrio, W.C.; Dionísio, J.A.; Maceda, A. Negative Effects of Earthworms on Soil Nematodes Are Dependent on Earthworm Density, Ecological Category and Experimental Conditions. Pedobiologia 2019, 76, 150568. [Google Scholar] [CrossRef]
- Ma, L.; Shao, M.; Li, T. Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China. Sustainability 2020, 12, 6603. [Google Scholar] [CrossRef]
- Tan, X.; Nie, Y.; Ma, X.; Guo, Z.; Liu, Y.; Tian, H.; Megharaj, M.; Shen, W.; He, W. Soil Chemical Properties Rather than the Abundance of Active and Potentially Active Microorganisms Control Soil Enzyme Kinetics. Sci. Total Environ. 2021, 770, 144500. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, B.; Liu, H.; Liu, J. Effects of different land management practices on soil carbon and nitrogen, enzyme activities, and microbial diversities northwest of Shanxi. Acta Ecol. Sin. 2019, 39, 4376–4389. [Google Scholar]
- Saghaï, A.; Wittorf, L.; Philippot, L.; Hallin, S. Loss in Soil Microbial Diversity Constrains Microbiome Selection and Alters the Abundance of N-Cycling Guilds in Barley Rhizosphere. Appl. Soil Ecol. 2022, 169, 104224. [Google Scholar] [CrossRef]
- Yang, W.; Lan, H.; Li, M.; Meng, C. Predicting bulk density and porosity of soil using image processing and support vector regression. Trans. Chin. Soc. Agric. Eng. 2021, 37, 144–151. [Google Scholar]
- Di, X.; Wu, H.; Jia, H.; Zhang, W.; Gu, H.; Shao, M.; Sheng, J. Construction of Relationship Model between Soil Bulk Density and Soil Organic Carbon Content of Main Grasslands in Xinjiang. Chin. J. Soil Sci. 2021, 52, 1323–1329. [Google Scholar] [CrossRef]
- Gardi, C.; Montanarella, L.; Arrouays, D.; Bispo, A.; Lemanceau, P.; Ranjard, L.; Mulder, C.; Rutgers, M.; Menta, C. Soil Biodiversity Monitoring in Europe: Ongoing Activities and Challenges. Eur. J. Soil Sci. 2009, 60, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Gould, I.J.; Quinton, J.N.; Weigelt, A.; De Deyn, G.B.; Bardgett, R.D. Plant Diversity and Root Traits Bene-fit Physical Properties Key to Soil Function in Grasslands. Ecol. Lett. 2016, 19, 1140–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgiazzi, A.; Panagos, P. Soil Biodiversity and Soil Erosion: It Is Time to Get Married. Glob. Ecol. Biogeogr. 2018, 27, 1155–1167. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, F.; Wang, W.; Wang, W.; Chen, Q.; Zhao, Y.; Ma, Y. Soil nutrients and enzyme activities in Larix principis-rupprechtii plantations in the Qinling Mountains, China. Acta Ecol. Sin. 2015, 35, 1086–1094. [Google Scholar]
- Luo, L.; Meng, H.; Gu, J.-D. Microbial Extracellular Enzymes in Biogeochemical Cycling of Ecosystems. J. Environ. Manag. 2017, 197, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wu, T.; Ding, J.; Xu, W.; Yuan, F.; Liu, B.-F.; Zhao, L.; Li, Y.; Ren, N.-Q.; Yang, S.-S. Co-Composting of Faecal Sludge and Carbon-Rich Wastes in the Earthworm’s Synergistic Cooperation System: Performance, Global Warming Potential and Key Microbiome. Sci. Total Environ. 2023, 857, 159311. [Google Scholar] [CrossRef]
- Escudero, H.J.; Domínguez, A.; Bedano, J.C. Large-Scale Ecologically-Based Farming Systems Foster Earthworm Communities and Their Contribution to Ecosystem Processes. Appl. Soil Ecol. 2023, 185, 104800. [Google Scholar] [CrossRef]
- Bartz, M.L.C.; Brown, G.G.; da Rosa, M.G.; Filho, O.K.; James, S.W.; Decaëns, T.; Baretta, D. Earthworm Richness in Land-Use Systems in Santa Catarina, Brazil. Appl. Soil Ecol. 2014, 83, 59–70. [Google Scholar] [CrossRef]
- Masin, C.; Rodríguez, A.R.; Zalazar, C.; Godoy, J.L. Approach to Assess Agroecosystem Anthropic Disturbance: Statistical Monitoring Based on Earthworm Populations and Edaphic Properties. Ecol. Indic. 2020, 111, 105984. [Google Scholar] [CrossRef]
- Ahmed, S.; Marimuthu, N.; Tripathy, B.; Julka, J.M.; Chandra, K. Earthworm Community Structure and Diversity in Different Land-Use Systems along an Elevation Gradient in the Western Himalaya, India. Appl. Soil Ecol. 2022, 176, 104468. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xu, X. Effects of Earthworms of Different Ecological Types on Organic Carbon Content in Soil Aggregates. J. Northeast For. Univ. 2023, 51, 101–105. [Google Scholar] [CrossRef]
Indicator | Unit | Hailun County | Wen County | Yixing County |
---|---|---|---|---|
Bulk density (BD) | g·cm−3 | 1.18 ± 0.11 b | 1.43 ± 0.13 a | 1.12 ± 0.19 b |
Soil water content (SWC) | % | 26.73 ± 4.12 a | 11.65 ± 4.77 b | 28.21 ± 7.09 a |
pH value (pH) | — | 6.78 ± 0.67 b | 8.46 ± 0.28 a | 6.62 ± 0.51 b |
Electrical conductivity (EC) | us·cm−1 | 71.52 ± 35.65 b | 135.34 ± 78.43 a | 66.16 ± 30.74 b |
Cation exchange capacity (CEC) | cmol+·kg−1 | 21.52 ± 2.55 | 22.59 ± 2.32 | 23.13 ± 2.91 |
Soil organic matter (SOM) | g·kg−1 | 44.38 ± 7.88 a | 14.21 ± 4.32 bc | 29.58 ± 9.67 b |
Total nitrogen (TN) | g·kg−1 | 2.58 ± 0.39 a | 1.09 ± 0.32 bc | 1.96 ± 0.53 b |
Total phosphorus (TP) | g·kg−1 | 0.72 ± 0.28 | 0.67 ± 0.22 | 0.56 ± 0.23 |
Hydrolysable nitrogen (HN) | mg·kg−1 | 186.94 ± 31.18 a | 75.88 ± 26.67 bc | 134.92 ± 34.42 b |
Available phosphorus (AP) | mg·kg−1 | 28.64 ± 19.02 a | 13.30 ± 7.80 b | 17.24 ± 16.99 b |
Available potassium (AK) | mg·kg−1 | 141.28 ± 89.02 a | 145.12 ± 68.68 a | 81.89 ± 60.18 b |
Axis | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
---|---|---|---|---|
Soil bioindicators eigenvalues/% | 60.76 | 24.78 | 7.50 | 3.47 |
Soil bioindicators—physicochemical indicators correlations | 0.806 | 0.677 | 0.375 | 0.208 |
Cumulative explained amount of soil bioindicators characteristics/% | 60.76 | 85.54 | 93.04 | 96.51 |
Cumulative percentage variance of soil bioindicators—physicochemical indicators/% | 62.07 | 83.02 | 95.23 | 100 |
Sum of all eigenvalues | 1.000 | |||
Sum of all canonical eigenvalues | 0.620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.; Zhao, R.; Wu, K.; Feng, Z.; Zhao, H.; Zhang, S. Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils. Land 2023, 12, 755. https://doi.org/10.3390/land12040755
Kang L, Zhao R, Wu K, Feng Z, Zhao H, Zhang S. Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils. Land. 2023; 12(4):755. https://doi.org/10.3390/land12040755
Chicago/Turabian StyleKang, Long, Rui Zhao, Kening Wu, Zhe Feng, Huafu Zhao, and Sicheng Zhang. 2023. "Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils" Land 12, no. 4: 755. https://doi.org/10.3390/land12040755
APA StyleKang, L., Zhao, R., Wu, K., Feng, Z., Zhao, H., & Zhang, S. (2023). Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils. Land, 12(4), 755. https://doi.org/10.3390/land12040755