The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector
Abstract
:1. Introduction
2. How Urban form Affects Urban Shrinkage in China
3. Methods and Data
3.1. General Framework
3.1.1. Identification of Urban Shrinkage
3.1.2. Spatial Autocorrelation
3.1.3. Landscape Pattern Analysis
3.1.4. Geodetector
3.2. Indicator Selection and Data Sources
4. Results and Analysis
4.1. Spatial Distribution of Urban Shrinkage
4.2. Spatial Distribution of Urban Form
4.3. The Effect of Urban Form on Urban Shrinkage
5. Discussion
5.1. The Effect of Urban Form and Socio-Economic Factors on Urban Shrinkage
5.2. Suggestions for Urban Shrinkage Control
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Haase, A.; Rink, D.; Grossmann, K.; Bernt, M.; Mykhnenko, V. Conceptualizing urban shrinkage. Environ. Plan. A-Econ. Space 2014, 46, 1519–1534. [Google Scholar] [CrossRef]
- Joo, Y.M.; Seo, B. Dual policy to fight urban shrinkage: Daegu, South Korea. Cities 2018, 73, 128–137. [Google Scholar] [CrossRef]
- Bernt, M.; Haase, A.; Großmann, K.; Cocks, M.; Couch, C.; Cortese, C.; Krzysztofik, R. How does (n’t) urban shrinkage get onto the agenda? Experiences from leipzig, liverpool, genoa and bytom. Int. J. Urban Reg. Res. 2014, 38, 1749–1766. [Google Scholar] [CrossRef]
- Martinez-Fernandez, C.; Audirac, I.; Fol, S.; Cunningham-Sabot, E. Shrinking cities: Urban challenges of globalization. Int. J. Urban Reg. Res. 2012, 36, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Moya, F. Green growth strategies in a shrinking city: Tackling urban revitalization through environmental justice in Kitakyushu city, Japan. J. Urban Aff. 2020, 42, 312–332. [Google Scholar] [CrossRef]
- Grossmann, K.; Bontje, M.; Haase, A.; Mykhnenko, V. Shrinking cities: Notes for the further research agenda. Cities 2013, 35, 221–225. [Google Scholar] [CrossRef]
- Häußermann, H.; Siebel, W. Die schrumpfende stadt und die stadtsoziologie. In Soziologische Stadtforschung; Springer: Berlin/Heidelberg, Germany, 1988; pp. 78–94. [Google Scholar] [CrossRef]
- Haase, D.; Haase, A.; Kabisch, N.; Kabisch, S.; Rink, D. Actors and factors in land-use simulation: The challenge of urban shrinkage. Environ. Model. Softw. 2012, 35, 92–103. [Google Scholar] [CrossRef]
- Meng, X.; Long, Y. Shrinking cities in China: Evidence from the latest two population censuses 2010–2020. Environ. Plan. A Econ. Space 2022, 54, 449–453. [Google Scholar] [CrossRef]
- Long, Y.; Wu, K. Shrinking cities in a rapidly urbanizing China. Environ. Plan. A 2016, 48, 220–222. [Google Scholar] [CrossRef]
- Schilling, J.; Logan, J. Greening the rust belt a green infrastructure model for right sizing america’s shrinking cities. J. Am. Plan. Assoc. 2008, 74, 451–466. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.G.; Zheng, W.S.; Rong, Y.F.; Liu, W. Identification of urban shrinkage using npp-viirs nighttime light data at the county level in China. Cities 2021, 118, 103373. [Google Scholar] [CrossRef]
- Guan, D.J.; He, X.J.; Hu, X.X. Quantitative identification and evolution trend simulation of shrinking cities at the county scale, China. Sustain. Cities Soc. 2021, 65, 102611. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, W.; Li, C.G.; Rong, Y.F.; Zhang, J.; Yang, Y.X.; Yan, Q.; Gao, S.B.; Liu, Y.J. County town shrinkage in China: Identification, spatiotemporal variations and the heterogeneity of influencing factors. J. Rural. Stud. 2022, 95, 350–361. [Google Scholar] [CrossRef]
- Wu, K.; Wang, X.N. Understanding growth and shrinkage phenomena of industrial and trade cities in southeastern China: Case study of Yiwu. J. Urban Plan. Dev. 2020, 146, 05020028. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Anderson, S.; Sutton, P.; Tilottama, G. The night light development index (nldi): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Gao, X.M.; Wu, M.Q.; Gao, J.; Han, L.; Niu, Z.; Chen, F. Modelling electricity consumption in cambodia based on remote sensing night-light images. Appl. Sci. 2022, 12, 3971. [Google Scholar] [CrossRef]
- Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses. J. Econ. Surv. 2020, 34, 955–980. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the syrian crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Reckien, D.; Martinez-Fernandez, C. Why do cities shrink? Eur. Plan. Stud. 2011, 19, 1375–1397. [Google Scholar] [CrossRef]
- Yang, Z.; Dunford, M. City shrinkage in China: Scalar processes of urban and hukou population losses. Reg. Stud. 2018, 52, 1111–1121. [Google Scholar] [CrossRef]
- Kropf, K. Aspects of urban form. Urban Morphol. 2009, 13, 105–120. [Google Scholar] [CrossRef]
- Echenique, M.H.; Hargreaves, A.J.; Mitchell, G.; Namdeo, A. Growing cities sustainably. J. Am. Plan. Assoc. 2012, 78, 121–137. [Google Scholar] [CrossRef]
- Symes, M. The compact city: A sustainable urban form?: Edited by Mike Jenks, Elizabeth Burton and Katie Williams E&F Spon, London, 1996, 350 pp, £29.95. Land Use Policy 1997, 14, 232–233. [Google Scholar] [CrossRef]
- Artmann, M.; Inostroza, L.; Fan, P. Urban sprawl, compact urban development and green cities. How much do we know, how much do we agree? Ecol. Indic. 2019, 96, 3–9. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.X.; Sun, D.Q.; Jin, C.; Xiao, X.M. Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Harari, M. Cities in bad shape: Urban geometry in india. Am. Econ. Rev. 2020, 110, 2377–2421. [Google Scholar] [CrossRef]
- He, Q.S.; He, W.S.; Song, Y.; Wu, J.Y.; Yin, C.H.; Mou, Y.C. The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Meng, X.; Wang, D.; Li, H. Correlation between urban shrink and urban compactness ratio in old industrial city: Taking siping city in Jilin province as an example. Econ. Geogr. 2019, 39, 67–74, (In Chinese with English abstract). [Google Scholar]
- Ye, L.; Wu, A.M. Urbanization, land development, and land financing: Evidence from chinese cities. J. Urban Aff. 2014, 36, 354–368. [Google Scholar] [CrossRef]
- He, Q.S.; Song, Y.; Liu, Y.L.; Yin, C.H. Diffusion or coalescence? Urban growth pattern and change in 363 chinese cities from 1995 to 2015. Sustain. Cities Soc. 2017, 35, 729–739. [Google Scholar] [CrossRef]
- Fernandez, B.; Hartt, M. Growing shrinking cities. Reg. Stud. 2022, 56, 1308–1319. [Google Scholar] [CrossRef]
- Meng, X.; Ma, S.; Xiang, W.; Kan, C.; Wu, K.; Long, Y. Classification of shrinking cities in China using baidu big data. Acta Geogr. Sin. 2021, 76, 2477–2488. [Google Scholar] [CrossRef]
- Zhou, B.B.; Aggarwal, R.; Wu, J.G.; Lv, L.G. Urbanization-associated farmland loss: A macro-micro comparative study in China. Land Use Policy 2021, 101, 105228. [Google Scholar] [CrossRef]
- Yu, M.; Yang, Y.J.; Chen, F.; Zhu, F.W.; Qu, J.F.; Zhang, S.L. Response of agricultural multifunctionality to farmland loss under rapidly urbanizing processes in yangtze river delta, China. Sci. Total Environ. 2019, 666, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Yue, W.Z.; Liu, Y.; Fan, P.L.; Wei, Y. Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities 2018, 78, 96–107. [Google Scholar] [CrossRef]
- Fang, C.; Qi, W.F.; Song, J. Researches on comprehensive measurement of compactness of urban agglomerations in China. Acta Geogr. Sin. 2008, 63, 1011–1021. [Google Scholar]
- Shen, J.; Chen, C.L.; Yang, M.Y.; Zhang, K.Y. City size, population concentration and productivity: Evidence from China. China World Econ. 2019, 27, 110–131. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- Zhu, J.M. Making urbanisation compact and equal: Integrating rural villages into urban communities in Kunshan, China. Urban Stud. 2017, 54, 2268–2284. [Google Scholar] [CrossRef]
- Guan, C.H.; Peiser, R.B. Accessibility, urban form, and property value: A study of Pudong, Shanghai. J. Transp. Land Use 2018, 11, 1057–1080. [Google Scholar] [CrossRef]
- Bo, C.; Xu, H.; Liu, Y. Examination of the relationships between urban form and urban public services expenditure in China. Adm. Sci. 2017, 7, 39. [Google Scholar] [CrossRef]
- Liu, Y. Retracted article: Does urban spatial structure affect labour income?—Research based on 97 cities in China. Econ. Res. Ekon. Istraz. 2021, 34, 545–569. [Google Scholar] [CrossRef]
- Hummel, D. The effects of population and housing density in urban areas on income in the united states. Local Econ. 2020, 35, 27–47. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, Y.P.; Shen, H.F.; Li, T.W. Effects of urban form on haze pollution in China: Spatial regression analysis based on pm2.5 remote sensing data. Appl. Geogr. 2018, 98, 215–223. [Google Scholar] [CrossRef]
- Fan, C.J.; Tian, L.; Zhou, L.; Hou, D.Y.; Song, Y.; Qiao, X.H.; Li, J.W. Examining the impacts of urban form on air pollutant emissions: Evidence from China. J. Environ. Manag. 2018, 212, 405–414. [Google Scholar] [CrossRef]
- Liu, H.M.; Huang, B.; Zhan, Q.M.; Gao, S.H.; Li, R.R.; Fan, Z.Y. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Wu, Q. The land finance revenue under the “business tax to value-added tax reform”: Constrains on the planning target of construction land. J. Financ. Econ. 2019, 45, 17–28. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Rodriguez-Loinaz, G.; Alday, J.G.; Onaindia, M. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. J. Manag. 2015, 147, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Li, G.; Zhang, H.; Jin, L.; Su, Y.; Wu, K. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Appl. Geogr. 2017, 79, 26–36. [Google Scholar] [CrossRef]
- Liu, X.; Ma, L.; Li, X.; Ai, B.; Li, S.; He, Z. Simulating urban growth by integrating landscape expansion index (lei) and cellular automata. Int. J. Geogr. Inf. Sci. 2014, 28, 148–163. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bahadure, P.; Sarda, N. Measuring compact urban form: A case of Nagpur city, India. Sustainability 2014, 6, 4246–4272. [Google Scholar] [CrossRef]
- Conticelli, E. Compact city as a model achieving sustainable development. In Sustainable Cities and Communities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Jenks, M.; Burgess, R. Compact Cities: Sustainable Urban Forms for Developing Countries; Taylor & Francis: London, UK, 2000. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy 2016, 52, 240–254. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Appl. Energy 2020, 261, 114409. [Google Scholar] [CrossRef]
- Blanco, H.; Alberti, M.; Olshansky, R.; Chang, S.; Wheeler, S.M.; Randolph, J.; London, J.B.; Hollander, J.B.; Pallagst, K.M.; Schwarz, T.; et al. Shaken, shrinking, hot, impoverished and informal: Emerging research agendas in planning. Prog. Plan. 2009, 72, 195–250. [Google Scholar] [CrossRef]
Expressions | Meaning |
---|---|
If P(X1 ∩ X2) < min(P(X1), P(X2)) | It suggests that nonlinearity weakens after the interaction between factors X1 and X2. |
If min(P(X1), P(X2)) < P(X1 ∩ X2) < max(P(X1), P(X2)) | It means that the monoclinic line is weakened after the interaction of X1 and X2. |
If P(X1 ∩ X2) > max(P(X1), P(X2)) and P(X1 ∩ X2) < P(X1) + P(X2) | It shows that X1 and X2 enhance each other after interaction. |
If P(X1 ∩ X2) > P(X1) + P(X2) | It shows that nonlinearity is strengthened after the interaction of X1 and X2. |
If P(X1 ∩ X2) = P(X1) + P(X1) | It shows that X1 and X2 are independent of each other. |
Abbreviations | Measurement Dimensions | Indicators | Calculation Formula/Unit | |
---|---|---|---|---|
Urban form indexes | PD | Fragmentation | Patch density | is the number of patches. is the total area of the landscape or patch. |
AI | Compactness | Aggregation Index | is the number of edges of similar neighboring rasters when patch type reaches maximum aggregation. | |
LSI | Landscape Shape Index | is the number of patch types. is the total area of the landscape (2); is the total length of adjacent edges. between patches of type and () | ||
GLEI | Urban sprawl | Landscape Expansion Index | is the area of intersection between the buffer zone of the new patch and the original patch. is the area of intersection of the buffer zone of the new patch with other areas, except the original patch. | |
ABD | City Size | Urban area | Square kilometers | |
Socio-economic indexes | GDP | Level of urban development | Gross Regional Product | Billion |
PPI | Industry Structure | The proportion of employees in the primary industry | % | |
ThirdR | Value added of tertiary industry as a proportion of GDP | % | ||
IEN | Industry Development Level | Number of industrial enterprises above the scale | individual | |
RI | People’s livelihood level | Real estate investment situation—residential investment | Ten thousand Yuan | |
SO | Science and education level | Science and technology expenditures | Ten thousand Yuan | |
EO | Education Expenses | Ten thousand Yuan | ||
VDB | Local financial level | Balance of various deposits in RMB | Ten thousand Yuan |
Drive Factor | q-Value | q-Value Sorting | ||
---|---|---|---|---|
City Form Factors | PD | Plaque Density | 0.144 ** | 1 |
ABD | Urban Area | 0.133 ** | 2 | |
GLEI | General Landscape Expansion Index | 0.092 ** | 3 | |
LSI | Landscape Shape Index | 0.082 ** | 4 | |
AI | Aggregation Index | 0.075 ** | 5 | |
Social Economy Factor | IEN | Number of industrial enterprises above the scale (pcs) | 0.198 ** | 1 |
RI | Real estate investment situation—residential investment (million yuan) | 0.170 ** | 2 | |
EO | Education expenditure (million yuan) | 0.150 ** | 3 | |
GDP | Gross regional product (billion yuan) | 0.147 ** | 4 | |
VDB | Balance of various deposits in RMB (RMB million) | 0.142 ** | 5 | |
PPI | The proportion of employees in the primary industry (%) | 0.115 ** | 6 | |
SO | Science and technology expenditure (million yuan) | 0.109 ** | 7 | |
ThirdR | Added value of tertiary industry as a proportion of GDP (%) | 0.087 ** | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Yan, M.; Zheng, L.; Wang, B.; Zhou, J. The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector. Land 2023, 12, 799. https://doi.org/10.3390/land12040799
He Q, Yan M, Zheng L, Wang B, Zhou J. The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector. Land. 2023; 12(4):799. https://doi.org/10.3390/land12040799
Chicago/Turabian StyleHe, Qingsong, Miao Yan, Linzi Zheng, Bo Wang, and Jiang Zhou. 2023. "The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector" Land 12, no. 4: 799. https://doi.org/10.3390/land12040799
APA StyleHe, Q., Yan, M., Zheng, L., Wang, B., & Zhou, J. (2023). The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector. Land, 12(4), 799. https://doi.org/10.3390/land12040799