Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework and Optimization Modeling
2.2. Gaussian Two-Step Floating Catchment Area (G2SFCA) Method
2.3. Objectives of MAE
2.3.1. Objective 1: The Minimum SD in Accessibility
2.3.2. Objective 2: The Minimum CG in Accessibility
3. Case Study: Optimization for Equity Maximization of PGSs in Wuhan
3.1. Study Area
3.2. Data Source and Processing
3.3. Parameters Setting
3.3.1. The Time Threshold and Selection Principle of New PGSs’ Locations
3.3.2. Parameters Setting of the GA Model
4. Results
4.1. Accessibility and Supply-Demand Balance Pattern of Exsisting PGSs
4.2. Determination and Analysis of New PGSs
4.3. Area Optimization Results and Analysis
4.3.1. Model Iterations and Final Results
4.3.2. Optimized Spatial Distribution of PGSs Accessibility
4.3.3. Disparities of Spatial Equity
5. Discussion
5.1. Advantages of the Improved Optimization Models
5.2. Implications and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schäffer, B.; Brink, M.; Schlatter, F.; Vienneau, D.; Wunderli, J.M. Residential green is associated with reduced annoyance to road traffic and railway noise but increased annoyance to aircraft noise exposure. Environ. Int. 2020, 143, 105885. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Chen, M.; Dai, F.; Yang, B.; Zhu, S.W. Effects of neighborhood green space on PM2.5 mitigation: Evidence from five megacities in China. Build. Environ. 2019, 156, 33–45. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wup/ (accessed on 4 March 2023).
- Wu, L.; Kim, S.K. Exploring the equality of accessing urban green spaces: A comparative study of 341 Chinese cities. Ecol. Indic. 2021, 121, 107080. [Google Scholar] [CrossRef]
- Li, Z.M.; Fan, Z.X.; Song, Y.; Chai, Y.B. Assessing equity in park accessibility using a travel behavior-based G2SFCA method in Nanjing, China. J. Transp. Geogr. 2021, 96, 103179. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ. Sci. Policy 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Shen, W.; Li, Y.; Qin, Y.C.; Wang, L. Spatial equity of park green space using KD2SFCA and web map API: A case study of zhengzhou, China. Appl. Geogr. 2020, 123, 102310. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Páez, A.; Scott, D.M.; Morency, C. Measuring accessibility: Positive and normative implementations of various accessibility indicators. J. Transp. Geogr. 2012, 25, 141–153. [Google Scholar] [CrossRef]
- Khan, A.A. An integrated approach to measuring potential spatial access to health care services. Socio-Econ. Plan. Sci. 1992, 26, 275–287. [Google Scholar] [CrossRef]
- Yang, D.-H.; Goerge, R.; Mullner, R. Comparing GIS-Based Methods of Measuring Spatial Accessibility to Health Services. J. Med. Syst. 2006, 30, 23–32. [Google Scholar] [CrossRef]
- Joseph, A.E.; Bantock, P.R. Measuring potential physical accessibility to general practitioners in rural areas: A method and case study. Soc. Sci. Med. 1982, 16, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.J. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Luo, W.; Wang, F. Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.J.; Liu, Y.F.; Liu, X.J. Measuring spatial disparity in accessibility with a multi-mode method based on park green spaces classification in Wuhan, China. Appl. Geogr. 2018, 94, 251–261. [Google Scholar] [CrossRef]
- Xing, L.J.; Liu, Y.F.; Wang, B.S.; Wang, Y.H.; Liu, H.J. An environmental justice study on spatial access to parks for youth by using an improved 2SFCA method in Wuhan, China. Cities 2020, 96, 102405. [Google Scholar] [CrossRef]
- Shen, Y.N.; Sun, F.Y.; Che, Y. Public green spaces and human wellbeing: Mapping the spatial inequity and mismatching status of public green space in the Central City of Shanghai. Urban For. Urban Green. 2017, 27, 59–68. [Google Scholar] [CrossRef]
- Wen, C.; Albert, C.; Von Haaren, C. Equality in access to urban green spaces: A case study in Hannover, Germany, with a focus on the elderly population. Urban For. Urban Green. 2020, 55, 126820. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Kan, Z. Analysis of urban green space accessibility and distribution inequity in the City of Chicago. Urban For. Urban Green. 2021, 59, 127029. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.Z.; La Rosa, D. Which communities have better accessibility to green space? An investigation into environmental inequality using big data. Landsc. Urban Plan. 2020, 204, 103919. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Witten, K.; Hiscock, R.; Pearce, J.; Blakely, T. Neighbourhood access to open spaces and the physical activity of residents: A national study. Prev. Med. 2008, 47, 299–303. [Google Scholar] [CrossRef] [PubMed]
- El Murr, K.; Boisjoly, G.; Waygood, E.O.D. Measuring accessibility to parks: Analyzing the relationship between self-reported and calculated measures. J. Transp. Geogr. 2023, 107, 103550. [Google Scholar] [CrossRef]
- Williams, T.G.; Logan, T.M.; Zuo, C.T.; Liberman, K.D.; Guikema, S.D. Parks and safety: A comparative study of green space access and inequity in five US cities. Landsc. Urban Plan. 2020, 201, 103841. [Google Scholar] [CrossRef]
- Liang, H.L.; Zhang, Q.P. Assessing the public transport service to urban parks on the basis of spatial accessibility for citizens in the compact megacity of Shanghai, China. Urban Stud. 2017, 55, 1983–1999. [Google Scholar] [CrossRef]
- Huang, C.B.; Huang, P.; Wang, X.S.; Zhou, Z.X. Assessment and optimization of green space for urban transformation in resources-based city—A case study of Lengshuijiang city, China. Urban For. Urban Green. 2018, 30, 295–306. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, S.J.; Sun, F.Y.; Deng, L.Z.; Che, Y. Assessing the social equity of urban parks: An improved index integrating multiple quality dimensions and service accessibility. Cities 2022, 129, 103839. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.D.; Hu, Z.N.; Li, S.Y. Investigation of urban green space equity at the city level and relevant strategies for improving the provisioning in China. Land Use Policy 2021, 101, 105144. [Google Scholar] [CrossRef]
- Biernacka, M.; Łaszkiewicz, E.; Kronenberg, J. Park availability, accessibility, and attractiveness in relation to the least and most vulnerable inhabitants. Urban For. Urban Green. 2022, 73, 127585. [Google Scholar] [CrossRef]
- Daniele, P.; Sciacca, D. An optimization model for the management of green areas. Int. Trans. Oper. Res. 2021, 28, 3094–3116. [Google Scholar] [CrossRef]
- Wang, C.Y.; Turner, V.K.; Wentz, E.A.; Zhao, Q.; Myint, S.W. Optimization of residential green space for environmental sustainability and property appreciation in metropolitan Phoenix, Arizona. Sci. Total Environ. 2021, 763, 144605. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Murray, A.T.; Turner, B.L. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- Neema, M.N.; Ohgai, A. Multitype Green-Space Modeling for Urban Planning Using GA and GIS. Environ. Plan. B Plan. Des. 2013, 40, 447–473. [Google Scholar] [CrossRef]
- Wang, F.H.; Tang, Q. Planning toward Equal Accessibility to Services: A Quadratic Programming Approach. Environ. Plan. B Plan. Des. 2013, 40, 195–212. [Google Scholar] [CrossRef]
- Li, X.; Wang, F.H.; Yi, H. A two-step approach to planning new facilities towards equal accessibility. Environ. Plan. B Urban Anal. City Sci. 2016, 44, 994–1011. [Google Scholar] [CrossRef]
- Luo, J.; Tian, L.L.; Luo, L.; Yi, H.; Wang, F.H. Two-Step Optimization for Spatial Accessibility Improvement: A Case Study of Health Care Planning in Rural China. BioMed Res. Int. 2017, 2017, 2094654. [Google Scholar] [CrossRef]
- Li, M.Y.; Wang, F.H.; Kwan, M.-P.; Chen, J.; Wang, J. Equalizing the spatial accessibility of emergency medical services in Shanghai: A trade-off perspective. Comput. Environ. Urban Syst. 2022, 92, 101745. [Google Scholar] [CrossRef]
- Xu, C.; Haase, D.; Pribadi, D.O.; Pauleit, S. Spatial variation of green space equity and its relation with urban dynamics: A case study in the region of Munich. Ecol. Indic. 2018, 93, 512–523. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Ma, X.D. Evaluation of the accessible urban public green space at the community-scale with the consideration of temporal accessibility and quality. Ecol. Indic. 2021, 131, 108231. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Wu, J.Y.; Chen, H.T.; Wang, H.Y.; He, Q.S.; Zhou, K. Will the opening community policy improve the equity of green accessibility and in what ways?—Response based on a 2-step floating catchment area method and genetic algorithm. J. Clean. Prod. 2020, 263, 121454. [Google Scholar] [CrossRef]
- Li, X.; Li, X.S.; Ma, X.D. Spatial optimization for urban green space (UGS) planning support using a heuristic approach. Appl. Geogr. 2022, 138, 102622. [Google Scholar] [CrossRef]
- Gu, Z.N.; Luo, X.L.; Tang, M.; Liu, X.M. Does the edge effect impact the healthcare equity? An examination of the equity in hospitals accessibility in the edge city in multi-scale. J. Transp. Geogr. 2023, 106, 103513. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, J.; Chen, J.; Ye, J.P. An assessment of urban parks distribution from multiple dimensions at the community level: A case study of Beijing. Environ. Impact Assess. Rev. 2021, 91, 106663. [Google Scholar] [CrossRef]
- Gugulica, M.; Burghardt, D. Mapping indicators of cultural ecosystem services use in urban green spaces based on text classification of geosocial media data. Ecosyst. Serv. 2023, 60, 101508. [Google Scholar] [CrossRef]
- Tao, Z.L.; Cheng, Y.; Dai, T.Q.; Rosenberg, M.W. Spatial optimization of residential care facility locations in Beijing, China: Maximum equity in accessibility. Int. J. Health Geogr. 2014, 13, 33. [Google Scholar] [CrossRef]
- Lan, T.; Liu, Y.; Huang, G.; Corcoran, J.; Peng, J. Urban green space and cooling services: Opposing changes of integrated accessibility and social equity along with urbanization. Sustain. Cities Soc. 2022, 84, 104005. [Google Scholar] [CrossRef]
- Feng, L.M.; Mi, X.Y.; Yuan, D.C. Optimal planning of urban greening system in response to urban microenvironments in a high-density city using genetic algorithm: A case study of Tianjin. Sustain. Cities Soc. 2022, 87, 104244. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, B.M.; Lee, D.K. Multi-objective planning model for urban greening based on optimization algorithms. Urban For. Urban Green. 2019, 40, 183–194. [Google Scholar] [CrossRef]
- Kusumo, A.N.L.; Reckien, D.; Verplanke, J. Utilising volunteered geographic information to assess resident’s flood evacuation shelters. Case study: Jakarta. Appl. Geogr. 2017, 88, 174–185. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Byrne, J.; Xu, T.T.; Wang, S.W.; Wu, J.Y. Can smaller parks limit green gentrification? Insights from Hangzhou, China. Urban For. Urban Green. 2021, 59, 127009. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Tao, Z.L.; Wang, Q.; Han, W.C. Towards Health Equality: Optimizing Hierarchical Healthcare Facilities towards Maximal Accessibility Equality in Shenzhen, China. Appl. Sci. 2021, 11, 10282. [Google Scholar] [CrossRef]
- Tan, C.D.; Tang, Y.H.; Wu, X.F. Evaluation of the Equity of Urban Park Green Space Based on Population Data Spatialization: A Case Study of a Central Area of Wuhan, China. Sensors 2019, 19, 2929. [Google Scholar] [CrossRef]
- Yang, Y.; He, R.Z.; Tian, G.H.; Shi, Z.; Wang, X.Y.; Fekete, A. Equity Study on Urban Park Accessibility Based on Improved 2SFCA Method in Zhengzhou, China. Land 2022, 11, 2045. [Google Scholar] [CrossRef]
- Guo, S.H.; Song, C.; Pei, T.; Liu, Y.X.; Ma, T.; Du, Y.Y.; Chen, J.; Fan, Z.D.; Tang, X.L.; Peng, Y.; et al. Accessibility to urban parks for elderly residents: Perspectives from mobile phone data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Zhou, Y.H.; Lin, M.S.; Wu, S.D.; Li, B.Y. Exploring the disparities in park accessibility through mobile phone data: Evidence from Fuzhou of China. J. Environ. Manag. 2021, 281, 111849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yue, W.; Fan, P.; Gao, J. Measuring the accessibility of public green spaces in urban areas using web map services. Appl. Geogr. 2021, 126, 102381. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of populations | 30 |
Maximum number of iterations | 1000 |
Area range of new PGSs | 10,000–100,000 |
Dimension of populations | n − 1 |
Value of PGSs Accessibility | Ai | Ai_SD | Ai_G |
---|---|---|---|
less than 3.0000 | 1146 | 1138 | 1137 |
3.0000~6.0000 | 206 | 209 | 209 |
6.0001~9.0000 | 91 | 92 | 93 |
9.0001~12.0000 | 44 | 45 | 45 |
12.0001~15.0000 | 26 | 27 | 27 |
>15.0000 | 81 | 83 | 83 |
Value of Difference | D_SD | D_G |
---|---|---|
0.0001~0.5000 | 390 | 396 |
0.5001~1.0000 | 165 | 177 |
1.0001~2.0000 | 88 | 72 |
2.0001~4.0000 | 3 | 1 |
>4.0000 | 7 | 7 |
Balance Pattern | Before Optimization | Objective 1 | Objective 2 |
---|---|---|---|
High-High | 1.46% | 1.40% | 1.40% |
High-Low | 10.79% | 10.34% | 11.10% |
Low-High | 3.49% | 3.43% | 3.43% |
Low-Low | 13.13% | 10.02% | 10.53% |
Not significant | 71.13% | 74.81% | 73.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, L.; Xing, L.; Jing, Y.; Hu, Q. Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity. Land 2023, 12, 948. https://doi.org/10.3390/land12050948
Mu L, Xing L, Jing Y, Hu Q. Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity. Land. 2023; 12(5):948. https://doi.org/10.3390/land12050948
Chicago/Turabian StyleMu, Lei, Lijun Xing, Ying Jing, and Qinjiang Hu. 2023. "Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity" Land 12, no. 5: 948. https://doi.org/10.3390/land12050948
APA StyleMu, L., Xing, L., Jing, Y., & Hu, Q. (2023). Spatial Optimization of Park Green Spaces by an Improved Two-Step Optimization Model from the Perspective of Maximizing Accessibility Equity. Land, 12(5), 948. https://doi.org/10.3390/land12050948