Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Indicator System
2.3. Data Sources
2.4. Improved Matter–Element Model for Early Warning
- (1)
- Establish the early warning matter–element of CLQ.
- (2)
- Determine the classical and limited fields.
- (3)
- Establish the correlation function based on fuzzy side distance.
- (4)
- Calculate the single dominance index.
- (5)
- Calculate the integrated dominance index.
2.5. Panel Data Model for Driving Factors of CLQ
3. Experiments and Results
3.1. CLQ Early Warning Results
3.1.1. The Classical Field and Limited Field of CLQ
3.1.2. Indicator Levels and Warning Result Levels
3.1.3. CLQ Early Warning Results Based on the Improved Matter–Element Model
3.2. Spatiotemporal Driving Factors of CLQ
3.2.1. Unit Root Test
3.2.2. Cointegration Test
3.2.3. Panel Data Model Test
3.2.4. Regression Results of the Panel Data Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mirghaed, F.A.; Souri, B. Spatial analysis of soil quality through landscape patterns in the Shoor River Basin, Southwestern Iran. Catena 2022, 211, 106028. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.H.; Shang, G.Y.; Zhang, A.L. An evaluation on farmland ecological service in Jianghan Plain, China-from farmers’ heterogeneous preference perspective. Ecol. Indic. 2022, 136, 108665. [Google Scholar] [CrossRef]
- Li, Q.F.; Guo, W.H.; Sun, X.B.; Yang, A.Z.; Qu, S.J.; Chi, W.F. The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China. Land 2021, 10, 842. [Google Scholar] [CrossRef]
- Teng, Y.; Pang, B.Y.; Guo, X.Y. Study on the quality improvement on black land in Northeast China under the environment of sustainable agricultural development. Kybernetes 2021, 52, 809–827. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.W.; Zhou, B.K.; Zhao, B.S.; Ma, M.C.; Qin, J.; Jiang, X.; Chen, S.F.; Cao, F.M.; Shen, D.L.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Wei, J.B.; Xiao, D.N.; Zhang, X.Y.; Li, X.Y. Topography and land use effects on the spatial variation of soil organic carbon: A case study in a typical small watershed of the black soil region in northeast China. Eurasian Soil Sci. 2011, 41, 39–47. [Google Scholar] [CrossRef]
- Zhang, S.X.; Li, Q.; Zhang, X.P.; Wei, K.; Chen, L.J.; Liang, W.J. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Everest, T.; Savaskan, G.S.; Or, A.; Ozcan, H. Suitable site selection by using full consistency method (FUCOM): A case study for maize cultivation in northwest Turkey. Environ. Dev. Sustain. 2022, 1–20. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on cultivated land quality evaluation from the perspective of farmland ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Zou, S.J.; Zhang, L.; Huang, X.; Osei, F.B.; Ou, G.L. Early ecological security warning of cultivated lands using RF-MLP integration model: A case study on China’s main grain-producing areas. Ecol. Indic. 2022, 141, 109059. [Google Scholar] [CrossRef]
- Kong, X. China must protect high-quality arable land. Nature 2014, 506, 7. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Shan, L.P.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Berrouet, L.M.; Machado, J.; Villegas-Palacio, C. Vulnerability of socio—Ecological systems: A conceptual Framework. Ecol. Indic. 2018, 84, 632–647. [Google Scholar] [CrossRef]
- Ma, T.Y.; Li, J.; Bai, S.; Chang, F.Z.; Jiang, Z.; Yan, X.G.; Shao, J.H. Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance. Sustainability 2022, 14, 16501. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Li, Y.; Zhu, Y.; Wang, J.; Ma, J. A multi-faceted, location-specific assessment of land degradation threats to peri-urban agriculture at a traditional grain base in northeastern China. J. Environ. Manag. 2020, 271, 111000. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G. Smallholders’ Agricultural Production Efficiency of Conservation Tillage in Jianghan Plain, China-Based on a Three-Stage DEA Model. Int. J. Environ. Res. Public Health 2020, 17, 7470. [Google Scholar] [CrossRef]
- Pardini, G.; Gispert, M.; Emran, M.; Doni, S. Rainfall/runoff/erosion relationships and soil properties survey in abandoned shallow soils of NE Spain. J. Soils Sediments 2016, 17, 499–514. [Google Scholar] [CrossRef]
- Liu, T.J.; Xu, X.T.; Yang, J. Experimental study on the effect of freezing-thawing cycles on wind erosion of black soil in Northeast China. Cold Reg. Sci. Technol. 2017, 136, 1–8. [Google Scholar] [CrossRef]
- Everest, B. Farmers’ adaptations of soil and water conservation in mitigating climate change. Arab. J. Geosci. 2021, 14, 2141. [Google Scholar] [CrossRef]
- Walz, R. Development of Environmental Indicator Systems: Experiences from Germany. Environ. Manag. 2000, 25, 613–623. [Google Scholar] [CrossRef]
- Hu, X.J.; Ma, C.M.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Chen, G.Q.; Han, M.Y. Virtual land use change in China 2002–2010: Internal transition and trade imbalance. Land Use Policy 2015, 47, 55–65. [Google Scholar] [CrossRef]
- Cai, W. Matter-Element and Application; Science and Technology Literature Publishing House: Beijing, China, 1994. [Google Scholar]
- Pan, G.; Xu, Y.; Yu, Z.; Song, S.; Zhang, Y. Analysis of river health variation under the background of urbanization based on entropy weight and matter-element model: A case study in Huzhou City in the Yangtze River Delta, China. Environ. Res. 2015, 139, 31–35. [Google Scholar] [CrossRef]
- He, Y.X.; Dai, A.Y.; Zhu, J.A.; He, H.Y.; Li, F.R. Risk assessment of urban network planning in china based on the matter-element model and extension analysis. Int. J. Electr. Power Energy Syst. 2011, 33, 775–782. [Google Scholar] [CrossRef]
- Gong, J.Z.; Liu, Y.S.; Chen, W.L. Land suitability evaluation for development using a matter-element model: A case study in Zengcheng, Guangzhou, China. Land Use Policy 2012, 29, 464–472. [Google Scholar] [CrossRef]
- Deng, X.J.; Xu, Y.P.; Han, L.F.; Yu, Z.H.; Yang, M.N.; Pan, G.B. Assessment of river health based on an improved entropy-based fuzzy matter-element model in the Taihu Plain, China. Ecol. Indic. 2015, 57, 85–95. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Hormann, G. Dynamic water quality evaluation based on fuzzy matter-element model and functional data analysis, a case study in Poyang Lake. Environ. Sci. Pollut. Res. 2017, 24, 19138–19148. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Y.; Duan, W.K.; Fleskens, L.; Li, M.; Hao, J.M. Study on evaluation of regional cultivated land quality based on resource-asset-capital attributes and its spatial mechanism. Appl. Geogr. 2020, 125, 102284. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Mirghaed, F.A.; Egli, M. The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. Catena 2021, 204, 105412. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, D.Y.; Li, H.; Liu, S.H. Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of northeast China. Ecol. Indic. 2017, 80, 215–223. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.Z.; Hong, W.Y. Institutional transition transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Shi, Q.L.; Lin, Y.Z.; Zhang, E.P.; Yan, H.M.; Zhan, J.Y. Impacts of Cultivated Land Reclamation on the Climate and Grain Production in Northeast China in the Future 30 Years. Adv. Meteorol. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Fan, R.Q.; Zhang, X.P.; Yang, X.M.; Liang, A.Z.; Jia, S.X.; Chen, X.W. Effects of tillage management on infiltration and preferential flow in a black soil, Northeast China. Chin. Geogr. Sci. 2013, 23, 312–320. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, A.W.; Zhao, Z.Z.; Zou, L.; Sun, C. Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration. Sustainability 2016, 8, 869. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Zhang, C.G.; Lin, Y. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China. Energy Policy 2012, 49, 488–498. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Li, L.S.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Germer, J.; Sauerborn, J.; Asch, F.; de Boer, J.; Schreiber, J.; Weber, G.; Muller, J. Skyfarming an ecological innovation to enhance global food security. J. Verbrauch. Lebensm.-J. Consum. Prot. Food Saf. 2011, 6, 237–251. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Liu, X.; Shi, L.J.; Qian, H.Y.; Sun, S.K.; Wu, P.T.; Zhao, X.N.; Engel, B.A.; Wang, Y.B. New problems of food security in Northwest China: A sustainability perspective. Land Degrad. Dev. 2020, 31, 975–989. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Wang, J.; Han, H.; Niu, J.; Chen, X. Modeling of spatial pattern and influencing factors of cultivated land quality in Henan Province based on spatial big data. PLoS ONE 2022, 17, e0265613. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Wang, D.Y.; Li, H.; Li, W.B.; Wang, Q. Ecological Land Fragmentation Evaluation and Dynamic Change of a Typical Black Soil Farming Area in Northeast China. Sustainability 2017, 9, 300. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Liu, C.; Wei, J. Evaluation of cultivated land quality using attention mechanism-back propagation neural network. PeerJ Comput. Sci. 2022, 8, e948. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zheng, H.; Cai, Z.; Zhou, Y.; Xu, Y. Evaluation of Cultivated Land Quality in Semiarid Sandy Areas: A Case Study of the Horqin Zuoyihou Banner. Land 2022, 11, 1457. [Google Scholar] [CrossRef]
- Song, W.; Wu, K.; Zhao, H.; Zhao, R.; Li, T. Arrangement of High-standard Basic Farmland Construction Based on Village-region Cultivated Land Quality Uniformity. Chin. Geogr. Sci. 2018, 29, 325–340. [Google Scholar] [CrossRef]
- Kang, L.; Zhao, R.; Wu, K.N.; Huang, Q.; Zhang, S.C. Impacts of Farming Layer Constructions on Cultivated Land Quality under the Cultivated Land Balance Policy. Agronomy 2021, 11, 2403. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, W.; Xu, H.; Gao, X. The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China. Land 2021, 10, 896. [Google Scholar] [CrossRef]
- Wang, L.Y.; Anna, H.; Zhang, L.Y.; Xiao, Y.; Wang, Y.Q.; Xiao, Y.; Liu, J.G.; Ouyang, Z.Y. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef]
- Gong, H.; Zhao, Z.; Chang, L.; Li, G.; Li, Y.; Li, Y. Spatiotemporal Patterns in and Key Influences on Cultivated-Land Multi-Functionality in Northeast China’s Black-Soil Region. Land 2022, 11, 1101. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wang, Y. Spatiotemporal Evolution of Cultivated Land Non-Agriculturalization and Its Drivers in Typical Areas of Southwest China from 2000 to 2020. Remote Sens. 2022, 14, 3211. [Google Scholar] [CrossRef]
- Yu, D.; Wang, D.Y.; Li, W.B.; Liu, S.H.; Zhu, Y.L.; Wu, W.J.; Zhou, Y.H. Decreased Landscape Ecological Security of Peri-Urban Cultivated Land Following Rapid Urbanization: An Impediment to Sustainable Agriculture. Sustainability 2018, 10, 394. [Google Scholar] [CrossRef]
- Cui, H.J.; Guo, P.; Li, M.; Guo, S.S.; Zhang, F. A multi-risk assessment framework for agricultural land use optimization. Stoch. Environ. Res. Risk Assess. 2018, 33, 563–579. [Google Scholar] [CrossRef]
- Duan, X.W.; Xie, Y.; Feng, Y.J.; Yin, S.Q. Study on the Method of Soil Productivity Assessment in Black Soil Region of Northeast China. Agric. Sci. China 2009, 8, 472–481. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lal, R.; Lorenz, K. Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China. Ecosyst. Health Sustain. 2020, 6, 1800415. [Google Scholar] [CrossRef]
- Li, D.; Zhai, Y.; Lei, Y.; Li, J.; Teng, Y.; Lu, H.; Xia, X.; Yue, W.; Yang, J. Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China. Ecotoxicol. Environ. Saf. 2021, 208, 111524. [Google Scholar] [CrossRef]
- Lu, Z.-J.; Song, Q.; Liu, K.-B.; Wu, W.-B.; Liu, Y.-X.; Xin, R.; Zhang, D.-M. Rice cultivation changes and its relationships with geographical factors in Heilongjiang Province, China. J. Integr. Agric. 2017, 16, 2274–2282. [Google Scholar] [CrossRef]
- Li, Z.G.; Tang, H.J.; Yang, P.; Wu, W.B.; Chen, Z.X.; Zhou, Q.B.; Zhang, L.; Zou, J.Q. Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J. Geogr. Sci. 2012, 22, 29–45. [Google Scholar] [CrossRef]
- Yang, X.; Lin, E.; Ma, S.M.; Ju, H.; Guo, L.P.; Xiong, W.; Li, Y.; Xu, Y.L. Adaptation of agriculture to warming in Northeast China. Clim. Chang. 2007, 84, 45–58. [Google Scholar] [CrossRef]
Criterion Layer | Index Layer | Indicator Type | Weights |
---|---|---|---|
Socioeconomic Drivers | Urbanization intensity (A1) | − | 0.0521 |
Greenery coverage of built-up areas (A2) | − | 0.0172 | |
Percentage of secondary industry GDP (A3) | − | 0.0326 | |
Agricultural GDP growth rate (A4) | + | 0.0691 | |
Human Activity Pressure | Population growth rate (B1) | − | 0.0306 |
Land carrying capacity (B2) | − | 0.0539 | |
Amount of chemical fertilizer per unit of cultivated land area (B3) | − | 0.0661 | |
Ecological State | Annual precipitation (C1) | + | 0.0726 |
Normalized difference vegetation index (C2) | + | 0.1066 | |
Habitat quality index (C3) | + | 0.0496 | |
Cultivated Land Response | Cultivated land area growth rate (D1) | + | 0.0867 |
Replanting index (D2) | + | 0.1307 | |
Land reclamation rate (D3) | + | 0.0890 | |
Grain yield per unit of cultivated land area (D4) | + | 0.1432 |
Indicator | Classical Field | Limited Field | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
No Warning | Light Warning | Moderate Warning | Severe Warning | Extreme Warning | ||
A1 | (23.24, 50.32) | (50.32, 59.18) | (59.18, 68.1) | (68.1, 76.13) | (76.13, 93.71) | (23.24, 97.71) |
A2 | (8.78, 33.96) | (33.96, 37.86) | (37.86, 42) | (42, 50.62) | (50.62, 78.33) | (8.78, 78.33) |
A3 | (11.32, 40.84) | (40.84, 48.05) | (48.05, 56.3) | (56.3, 70.66) | (70.66, 88.69) | (11.32, 88.69) |
A4 | (10.64, 54.37) | (3.38, 10.64) | (−4.32, 3.38) | (−17.85, −4.32) | (−38.62, −17.85) | (−38.62, 54.37) |
B1 | (−5.78, −0.22) | (−0.22, 0.19) | (0.19, 0.66) | (0.66, 1.52) | (1.52, 3.14) | (−5.78, 3.14) |
B2 | (8.84, 136.41) | (136.41, 200.67) | (200.67, 294.88) | (294.88, 414.39) | (414.39, 592.3) | (8.84, 592.3) |
B3 | (1.79, 31.07) | (31.07, 42.68) | (42.68, 53.75) | (53.75, 65.86) | (65.86, 85.4) | (1.79, 85.4) |
C1 | (19.95, 43.57) | (17.75, 19.95) | (15.24, 17.75) | (12.22, 15.24) | (7.3, 12.22) | (7.3, 43.57) |
C2 | (86.57, 129.18) | (70.24, 86.57) | (63.24, 70.24) | (54.13, 63.24) | (47.1, 54.13) | (47.1, 129.18) |
C3 | (0.66, 0.8) | (0.6, 0.66) | (0.54, 0.6) | (0.48, 0.54) | (0.38, 0.48) | (0.38, 0.8) |
D1 | (0.02, 15.06) | (−1.04, 0.02) | (−3.25, −1.04) | (−9.52, −3.25) | (−11.47, −9.52) | (−11.47, 15.06) |
D2 | (57.33, 94) | (50.21, 57.33) | (41.84, 50.21) | (30.99, 41.84) | (16.23, 30.99) | (16.23, 94) |
D3 | (53.15, 95.79) | (43.91, 53.15) | (32.21, 43.91) | (17.65, 32.21) | (4.59, 17.65) | (4.59, 95.79) |
D4 | (289.93, 670.96) | (233.76, 289.93) | (177.27, 233.76) | (112.86, 177.27) | (28.32, 112.86) | (28.32, 670.96) |
A1 | A2 | A3 | A4 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 | D4 | Integrated | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shenyang | V | V | III | I | III | V | IV | I | V | IV | I | I | II | I | I |
Dalian | IV | IV | III | II | III | V | V | I | III | IV | III | I | I | III | III |
Anshan | III | III | III | I | II | IV | IV | I | I | II | I | III | I | II | I |
Fushun | IV | II | IV | I | I | II | III | I | I | I | II | IV | I | II | I |
Benxi | IV | IV | IV | I | I | II | II | I | I | I | II | V | I | III | I |
Dandong | III | II | III | I | I | II | IV | I | I | II | II | IV | I | III | I |
Jinzhou | I | II | II | I | I | IV | IV | I | IV | IV | I | I | II | II | I |
Yingkou | II | III | III | I | III | V | V | I | II | III | II | III | I | I | I |
Fuxin | II | II | II | I | II | II | II | I | IV | IV | II | I | I | II | II |
Liaoyang | II | II | IV | II | II | IV | V | I | II | II | I | II | II | I | II |
Panjin | III | II | IV | II | IV | IV | III | I | V | IV | II | I | II | I | I |
Tieling | I | II | III | I | I | III | V | I | II | III | I | I | I | I | I |
Chaoyang | I | I | III | V | I | II | II | I | II | II | III | II | II | II | II |
Huludao | I | II | II | I | II | III | III | I | II | II | III | II | II | III | II |
Variable | IPS | HT | Result |
---|---|---|---|
y | −4.075 *** (0.000) | 0.233 *** (0.000) | Stationary |
A1 | −1.031 (0.151) | 0.604 (0.051) | Non-stationary |
A1(D1) | −14.663 *** (0.000) | −0.040 *** (0.000) | Stationary |
A2 | −1.338 (0.091) | 0.406 *** (0.000) | Non-stationary |
A2(D1) | −22.218 *** (0.000) | −0.283 *** (0.000) | Stationary |
A3 | 3.910 (1.000) | 0.781 (1.000) | Non-stationary |
A3(D1) | −12.056 *** (0.000) | 0.135 *** (0.000) | Stationary |
A4 | −15.696 *** (0.000) | −0.149 *** (0.000) | Stationary |
B1 | −6.052 *** (0.000) | 0.018 *** (0.000) | Stationary |
B2 | 8.415 (1.000) | 0.752 (0.997) | Non-stationary |
B2(D1) | −7.901 *** (0.000) | 0.139 *** (0.000) | Stationary |
B3 | 3.594 (1.000) | 0.617 (0.106) | Non-stationary |
B3(D1) | −15.06 *** (0.000) | −0.182 *** (0.000) | Stationary |
C1 | −11.643 *** (0.000) | −0.118 *** (0.000) | Stationary |
C2 | 2.404 (0.992) | 0.834 (1.000) | Non-stationary |
C2(D1) | −2.718 *** (0.000) | 0.482 *** (0.000) | Stationary |
C3 | −11.216 *** (0.000) | −0.089 *** (0.000) | Stationary |
D1 | −0.667 (0.252) | 0.429 *** (0.000) | Non-stationary |
D1(D1) | −18.393 *** (0.000) | −0.184 *** (0.000) | Stationary |
D2 | 3.300 (1.000) | 0.730 (0.983) | Non-stationary |
D2(D1) | −15.374 *** (0.000) | 0.032 *** (0.000) | Stationary |
D3 | 2.370 (0.991) | 0.772 (1.000) | Non-stationary |
D3(D1) | −10.638 *** (0.000) | 0.301 *** (0.000) | Stationary |
D4 | −1.804 ** (0.036) | 0.556 *** (0.001) | Stationary |
Data Type | Statistical Values | T | P |
---|---|---|---|
Raw data | Modified Dickey–Fuller t | −4.5754 | 0 |
Dickey–Fuller t | −8.0923 | 0 | |
Augmented Dickey–Fuller t | −3.158 | 0.008 | |
Raw data and first-order differential data | Modified Dickey–Fuller t | −8.4458 | 0 |
Dickey–Fuller t | −10.1816 | 0 | |
Augmented Dickey–Fuller t | −4.8681 | 0 |
Data Type | Test Method | Statistical Values | P | Hypothesis | Test Result | |
---|---|---|---|---|---|---|
H1 | H0 | |||||
Raw data | F test | 17.35 | 0 | FE | ME | H1: FE |
LM test | 869.58 | 0 | RE | ME | H1: RE | |
Hauman test | 62.33 | 0 | FE | RE | H1: FE | |
Raw data and first-order differential data | F test | 17.84 | 0 | FE | ME | H1: FE |
LM test | 1000.94 | 0 | RE | ME | H1: RE | |
Hauman test | 76.16 | 0 | FE | RE | H1: FE |
Part 1 | Part 2 | ||||||
---|---|---|---|---|---|---|---|
Variable | Models | Variables | Models | ||||
ME | RE | FE | ME | RE | FE | ||
A1 | −0.0023 ** | −0.0017 *** | −0.0008 | A1(D1) | 0.0001 | 0.0001 | 0.0000 |
(−2.6157) | (−3.2917) | (−1.3969) | (0.0456) | (0.1095) | (−0.0190) | ||
A2 | 0.0005 | −0.0020 *** | −0.0026 *** | A2(D1) | −0.0006 | −0.0004 | −0.0004 |
(0.3752) | (−3.3386) | (−4.1581) | (−0.7673) | (−0.5393) | (−0.5367) | ||
A3 | −0.0011 | −0.0010 ** | −0.0009 * | A3(D1) | −0.0020 | −0.0005 | −0.0002 |
(−1.1614) | (−2.0746) | (−1.7488) | (−1.6364) | (−0.4950) | (−0.1982) | ||
A4 | 0.0020 *** | 0.0017 *** | 0.0017 *** | A4 | 0.0021 *** | 0.0016 *** | 0.0015 *** |
(5.3208) | (5.3520) | (5.5239) | (4.8386) | (4.8551) | (4.4034) | ||
B1 | −0.0190 ** | −0.0123 *** | −0.0084 ** | B1 | −0.0189 ** | −0.0086 * | −0.0050 |
(−2.4192) | (−2.8537) | (−1.9654) | (−2.3687) | (−1.7511) | (−1.0120) | ||
B2 | −0.0002 | −0.0001 | −0.0020 *** | B2(D1) | −0.0059 *** | −0.0033 *** | −0.0030 *** |
(−0.9182) | (−0.9502) | (−4.0388) | (−3.0559) | (−3.1382) | (−2.9527) | ||
B3 | −0.0002 | −0.0022 ** | −0.0022 ** | B3(D1) | 0.0021 | −0.0007 | −0.0012 |
(−0.1777) | (−2.4536) | (−2.0449) | (1.3997) | (−0.4067) | (−0.7329) | ||
C1 | 0.0065 *** | 0.0076 *** | 0.0073 *** | C1 | 0.0021 | 0.0069 *** | 0.0073 *** |
(3.0641) | (8.3536) | (8.0117) | (1.1083) | (7.0800) | (7.3627) | ||
C2 | 0.0009 | 0.0022 | 0.0209 *** | C2(D1) | 0.0016 | −0.0299 | −0.0325 * |
(0.3985) | (1.2477) | (3.2691) | (0.0662) | (−1.5886) | (−1.7454) | ||
C3 | 0.5170 *** | 0.4168 *** | 0.4239 *** | C3 | 0.5382 *** | 0.4573 *** | 0.3960 *** |
(3.7052) | (4.9059) | (4.8351) | (4.9382) | (5.4798) | (4.3455) | ||
D1 | 0.0105 *** | 0.0108 *** | 0.0113 *** | D1(D1) | 0.0033 | 0.0032 | 0.0032 |
(2.9915) | (4.8716) | (5.2041) | (1.0419) | (1.2150) | (1.2449) | ||
D2 | 0.0032 *** | 0.0049 *** | 0.0052 *** | D2(D1) | 0.0034 *** | 0.0020 ** | 0.0015 |
(3.3978) | (7.1506) | (7.1650) | (3.5421) | (2.0031) | (1.5319) | ||
D3 | 0.0017 | 0.0030 * | 0.0167 *** | D3(D1) | 0.0442 *** | 0.0135 | 0.0093 |
(0.9046) | (1.8694) | (4.5051) | (3.4390) | (1.2861) | (0.8972) | ||
D4 | 0.0004 ** | 0.0008 *** | 0.0009 *** | D4 | 0.0007 *** | 0.0010 *** | 0.0011 *** |
(2.2789) | (9.3454) | (10.6688) | (5.8150) | (15.9082) | (15.7183) | ||
R2 | 0.562 | 0.654 | R2 | 0.471 | 0.582 |
Early Warning Level | Security Level | Number | Percentage (%) |
---|---|---|---|
No warning | Security | 544 | 69.74 |
Light warning | Proximity security | 148 | 18.97 |
Moderate warning | Critical Insecurity | 60 | 7.69 |
Severe warning | Insecurity | 27 | 3.46 |
Extreme warning | Extremely insecurity | 1 | 0.13 |
Type of Change | Number | Principle |
---|---|---|
Abrupt change | 6 | |
Gradual change | 6 | |
Stable change | 27 | Others |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, M.; Liu, X.; Wang, F.; Li, X.; Wang, J.; Hou, G.; Zhao, S. Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China. Land 2023, 12, 1005. https://doi.org/10.3390/land12051005
Liu Z, Wang M, Liu X, Wang F, Li X, Wang J, Hou G, Zhao S. Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China. Land. 2023; 12(5):1005. https://doi.org/10.3390/land12051005
Chicago/Turabian StyleLiu, Ziwei, Mingchang Wang, Xingnan Liu, Fengyan Wang, Xiaoyan Li, Jianguo Wang, Guanglei Hou, and Shijun Zhao. 2023. "Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China" Land 12, no. 5: 1005. https://doi.org/10.3390/land12051005
APA StyleLiu, Z., Wang, M., Liu, X., Wang, F., Li, X., Wang, J., Hou, G., & Zhao, S. (2023). Ecological Security Assessment and Warning of Cultivated Land Quality in the Black Soil Region of Northeast China. Land, 12(5), 1005. https://doi.org/10.3390/land12051005