Factors Influencing Four Decades of Forest Change in Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Land-Use Data
2.2.2. Forest-Change Drivers
2.3. Methods
2.3.1. Data Preprocessing
2.3.2. Analysis of Drivers
3. Results
3.1. Spatio-Temporal Patterns of Forest Change in Guizhou Province
3.1.1. Forest Transition
3.1.2. Spatial Changes
3.2. Possible Drivers of Forest Change
3.2.1. Land-Use Change
3.2.2. Population Effects
3.2.3. GDP
3.2.4. Accessibility
3.2.5. Karstification Intensity
3.2.6. Drought Index (DI)
3.2.7. Slope
3.3. Relative Importance of Drivers Changes over Time
4. Discussion
4.1. Validation of Forest Change in Guizhou through Comparison with Other Data Sources
4.2. The Effects of Ecological Restoration Policy on Forest Change
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, C.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L.; Dargusch, P.; Nordin, H.; Sheil, D. Forest loss and Borneo’s climate. Environ. Res. Lett. 2018, 13, 044009. [Google Scholar] [CrossRef]
- Viña, A.; McConnell, W.J.; Yang, H.; Xu, Z.; Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2016, 2, e1500965. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Gay, J.; Sonter, L.J.; Sánchez, L.E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 2020, 67, 101662. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Hong, Y.; Du, M. Greening Efforts Push China’s Forest Coverage Rate to over 23 Pct. Available online: http://en.people.cn/n3/2021/0629/c90000-9866358.html (accessed on 30 December 2021).
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Guizhou Statistics Bureau. Guizhou Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Huang, L.; Wang, B.; Niu, X.; Gao, P.; Song, Q. Changes in ecosystem services and an analysis of driving factors for China’s Natural Forest Conservation Program. Ecol. Evol. 2019, 9, 3700–3716. [Google Scholar] [CrossRef]
- Xiong, Q.; Li, L.; Luo, X.; He, X.; Zhang, L.; Pan, K.; Liu, C.; Sun, H. Driving forces for recovery of forest vegetation after harvesting a subalpine oak forest in eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2021, 28, 67748–67763. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, H.; Li, X. Forest Transition and Its Driving Forces in the Qian-Gui Karst Mountainous Areas. J. Resour. Ecol. 2020, 11, 59–68. [Google Scholar]
- Sitters, J.; Holmgren, M.; Stoorvogel, J.J.; López, B.C. Rainfall-Tuned Management Facilitates Dry Forest Recovery. Restor. Ecol. 2012, 20, 33–42. [Google Scholar] [CrossRef]
- Bronson, D.R.; Gower, S.T.; Tanner, M.; Van Herk, I. Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob. Change Biol. 2009, 15, 1534–1543. [Google Scholar] [CrossRef]
- Wang, H.; Lv, Z.; Gu, L.; Wen, C. Observations of China’s forest change (2000–2013) based on Global Forest Watch dataset. Biodivers. Sci. 2015, 23, 575–582. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Liu, W.; Wenjun, L. Clearance and fragmentation of tropical rain forest in Xishuangbanna, SW, China. Biodivers. Conserv. 2009, 18, 3421–3440. [Google Scholar] [CrossRef]
- Zhai, D.; Xu, J.; Dai, Z.; Cannon, C.H.; Grumbine, R.E. Increasing tree cover while losing diverse natural forests in tropical Hainan, China. Reg. Environ. Change 2013, 14, 611–621. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in karst areas in southwest China. Solid Earth 2016, 7, 83–91. [Google Scholar] [CrossRef]
- Xiong, K. Remote-Sensing and GIS-Based Typical Study of Rock Desertification in Karst Areas; Chinese Geological Press: Beijing, China, 2002. [Google Scholar]
- Wang, S.; Ji, H.; Ouyang, Z.; Zhou, D.; Zhen, L.; Li, T. Preliminary study on carbonate rock weathering pedogenesis. Sci. China 1999, 42, 572–581. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X. Integrated Restoration of Small Watershed in Karst Regions of Southwest China. AMBIO 2012, 41, 907–912. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Y. Multi-scale anthropogenic driving forces of karst rocky desertification in southwest China. Land Degrad. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Chen, H.; Zheng, L.; Wen, L.; Wang, K. Forage grass cultivation increases soil organic carbon and nitrogen pools in a karst region, southwest China. Land Degrad. Dev. 2018, 29, 4397–4404. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Wu, M.; Ye, Y.; Wang, K.; Li, D. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degrad. Dev. 2019, 30, 60–72. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Wang, P.; Li, C.; Shao, H. Surface erosion and underground leakage of yellow soil on slopes in karst regionS of southwest China. Land Degrad. Dev. 2018, 29, 2438–2448. [Google Scholar] [CrossRef]
- Bai, X.Y.; Zhang, X.B.; Chen, H.; He, Y.B. Using Cs-137 fingerprinting technique to estimate sediment deposition and erosion rates from Yongkang depression in the karst region of Southwest China. Land Degrad. Dev. 2010, 21, 474–479. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Zhao, L.; Shao, H.; Yang, Z. Effects of underground pore fissures on soil erosion and sediment yield on karst slopes: Soil erosion and sediment on karst slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, G.; Yuan, D.; Polk, J.S. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 2013, 69, 2427–2435. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Heistermann, M.; Müller, C.; Ronneberger, K. Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agric. Ecosyst. Environ. 2006, 114, 141–158. [Google Scholar] [CrossRef]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling Land-Use and Land-Cover Change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. [Google Scholar] [CrossRef]
- Baker, W.L. A review of models of landscape change. Landsc. Ecol. 1989, 2, 111–133. [Google Scholar] [CrossRef]
- Brown, D.G.; Walker, R.; Manson, S.; Seto, K. Modeling Land Use and Land Cover Change. In Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., Cochrane, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 395–409. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. Earth Environ. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Kaimowitz, D.; Angelsen, A. Economic Models of Tropical Deforestation: A Review; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 1989. [Google Scholar]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Burlington, NJ, USA, 2002. [Google Scholar]
- Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.A.; van Vliet, J. Beyond land cover change: Towards a new generation of land use models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Regasa, M.S.; Nones, M.; Adeba, D. A Review on Land Use and Land Cover Change in Ethiopian Basins. Land 2021, 10, 585. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon neutrality capacity index for evaluating carbon sink contributions. Environ. Sci. Ecotechnol. 2023, 15, 100237. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, F.; Cao, G.; Li, W.; Zhao, X. Temporal and spatial analysis of precipitation in Guizhou based on TRMM 3B42 satellite data. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012076. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Bai, X.; Luo, G.; Xu, Y. Trade-offs among ecosystem services in a typical Karst watershed, SW China. Sci. Total Environ. 2016, 566–567, 1297–1308. [Google Scholar] [CrossRef]
- China’s State Forestry Administration. The Bulletin of Rocky Desertification in China; China’s State Forestry Administration: Beijing, China, 2012. [Google Scholar]
- Zhao, L.; Hou, R. Human causes of soil loss in rural karst environments: A case study of Guizhou, China. Sci. Rep. 2019, 9, 3225. [Google Scholar] [CrossRef]
- Guizhou Statistics Bureau. Guizhou Statistical Yearbook; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC); Resource and Environment Data Registration and Publishing System: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Baltaci, U.; Yildirim, F. Effect of Slope on the Analysis of Forest Fire Risk. Hacet. J. Biol. Chem. 2020, 48, 373–379. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Padilla, F.M.; Vidal, B.; Sanchez, J.; Pugnaire, F.I. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. J. Environ. Manag. 2010, 91, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Rao, C.; Yan, B. Study on the interactive influence between economic growth and environmental pollution. Environ. Sci. Pollut. Res. 2020, 27, 39442–39465. [Google Scholar] [CrossRef]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Urban, D.L.; Wallin, D.O. Introduction to Markov models. In Learning Landscape Ecology: A Practical Guide to Concepts and Techniques; Gergel, S.E., Turner, M.G., Eds.; Springer: New York, NY, USA, 2017; pp. 129–142. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2018, 646, 930–939. [Google Scholar] [CrossRef]
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Wang, J.; Guo, J.; Qing, J. Application of a kind of k drought index in the spring drought analysis in northwest China. J. Nat. Resour. 2011, 22, 709–717. [Google Scholar] [CrossRef]
- Araromi, D.O.; Majekodunmi, O.T.; Adeniran, J.A.; Salawudeen, T.O. Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression. Environ. Monit. Assess. 2018, 190, 495. [Google Scholar] [CrossRef]
- Mather, A.S. The Forest Transition. Area 1992, 24, 367–379. [Google Scholar]
- Oliveira, T.M.; Guiomar, N.; Baptista, F.O.; Pereira, J.M.C.; Claro, J. Is Portugal’s forest transition going up in smoke? Land Use Policy 2017, 66, 214–226. [Google Scholar] [CrossRef]
- Yu, X. Environmental development and governance in western China since 2000: A case from Guizhou Province. Int. J. Environ. Stud. 2016, 73, 791–805. [Google Scholar] [CrossRef]
- Zhang, X.; Zha, T.; Zhao, Y.; Qin, J.; Lyv, Z.; Ma, Z.; Yu, H.; Zhu, Y.; Wang, G.; Tettenborn, F.; et al. Sustainable effects of small hydropower substituting firewood program in Majiang County, Guizhou Province, China. Sustainability 2017, 9, 988. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, Y.; Li, X. Spatial Differentiation Characteristics and Driving Forces of Forest Transition: A Case Study of Zunyi City, Guizhou. J. Resour. Ecol. 2018, 9, 341–351. [Google Scholar]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Lei, G.; Li, A.; Bian, J.; Zhang, Z. The roles of criteria, data and classification methods in designing land cover classification systems: Evidence from existing land cover data sets. Int. J. Remote Sens. 2020, 41, 5062–5082. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L. Evaluation of the 2010 MODIS Collection 5.1 Land Cover Type Product over China. Remote Sens. 2015, 7, 1981–2006. [Google Scholar] [CrossRef]
- Wu, B.; Yuan, Q.; Yan, C.; Wang, Z.; Xinfang, Y.; Li, A.; Ma, R.; Huang, J.; Chen, J.; Chang, C.; et al. Land Cover Changes of China Form 2000 to 2010. Quat. Sci. 2014, 34, 723–731. [Google Scholar]
- Yan, X.; Li, Y.; Xia, Y.; Hu, Y.; Yang, C. Analysis of characteristics and causes of persistent drought in Guizhou during 1961—2016. Mid-Low Latit. Mt. Meteorol. 2019, 43, 1–7. [Google Scholar]
- Han, G.; Liu, C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- An, H.; Liu, M. Analysis on the benefits of Grain for Green Project and sustainable development of Guizhou Province. Subtrop. Soil Water Conserv. 2008, 20, 1–4. [Google Scholar]
- Zhang, B.; Nie, C.; Zhu, J.; Yao, Y.; Mo, S.-g.; Luo, Y.; Cen, G. Dynamic change of forest resources in Guizhou province. Geogr. Res. 2003, 22, 725–732. [Google Scholar]
- Han, D.; Yang, T.; Pan, T.; Chen, T.; Zhang, X. Analysis on measures of forest resources growth and change in guizhou province. Agric. Technol. 2020, 40, 73–75. [Google Scholar]
- Sabir, M.; Ali, Y.; Khan, I.; Salman, A. Plants Species Selection for Afforestation: A Case Study of the Billion Tree Tsunami Project of Pakistan. J. Sustain. For. 2022, 41, 537–549. [Google Scholar] [CrossRef]
- Dey, D.C.; Gardiner, E.S.; Kabrick, J.M.; Stanturf, J.A.; Jacobs, D.F. Innovations in afforestation of agricultural bottomlands to restore native forests in the eastern USA. Scand. J. For. Res. 2010, 25, 31–42. [Google Scholar] [CrossRef]
- Cunningham, S.C.; Mac Nally, R.; Baker, P.J.; Cavagnaro, T.R.; Beringer, J.; Thomson, J.R.; Thompson, R.M. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 301–317. [Google Scholar] [CrossRef]
- Babintseva, R.M.; Titova, Y.V. Effects of Fire on the Regeneration of Larch Forests in the Lake Baikal Basin. In Fire in Ecosystems of Boreal Eurasia; Goldammer, J.G., Furyaev, V.V., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 358–365. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Furyaev, V.V. Fire in Ecosystems of Boreal Eurasia: Ecological Impacts and Links to the Global System. In Fire in Ecosystems of Boreal Eurasia; Goldammer, J.G., Furyaev, V.V., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 1–20. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef]
- Xiao, S.-C.; Xiao, H.-L.; Peng, X.-M.; Tian, Q.-Y. Daily and seasonal stem radial activity of Populus euphratica and its association with hydroclimatic factors in the lower reaches of China’s Heihe River basin. Environ. Earth Sci. 2014, 72, 609–621. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Hernandez-Ramirez, G. Temperature and Moisture Effects on Microbial Biomass and Soil Organic Matter Mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [Google Scholar] [CrossRef]
Class l | Class 2/25 Land Use Sub-Types |
---|---|
Cropland | Paddy field, dryland |
Forest | Forest land, shrubland, sparse woods, other forest areas |
Grassland | Highly covered grassland, middle-covered grassland, low-covered grass land |
Water | Canals, lakes, reservoirs and ponds, permanent ice and snow, intertidal zone, shoals |
Built-up area | Urban land, rural residential land, other built-up areas |
Others | Sand, Gobi, saline–alkali land, marshland, bare land, bare rocky land, others |
Drivers | Original Data | Source | Processing Method | Period |
---|---|---|---|---|
LUC | Landsat TM/ETM | Resource and Environment Data Cloud Platform | Markov model and R | 1980, 1990, 2000, 2010, 2018 |
P | Land use, night light, settlement density | Resource and Environment Data Cloud Platform | Spatial analysis | 1995, 2000, 2010, 2015 |
GDP | GDP, land use, night light, settlement density | Resource and Environment Data Cloud Platform | Spatial analysis | 1995, 2000, 2010, 2015 |
A | State, county, and township roads | Guizhou Institute of Mountainous Resources | Spatial analysis | 2010 |
KI | Lithological data | Guizhou Institute of Mountainous Resources | Spatial analysis | 2010 |
DI, MAP, MAT | Precipitation, evaporation | Guizhou Institute of Mountainous Climate and Environment, Resource and Environment Data Cloud Platform | Spatial analysis | 1980–2015 |
S | DEM | Geospatial Data Cloud | Spatial analysis | 2009 |
Year | Cropland | Forest | Grassland | Water | Built-Up Area | Others | Total Area | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | (%) | Area (km2) | (%) | Area (km2) | (%) | Area (km2) | (%) | Area (km2) | (%) | Area (km2) | (%) | Area (km2) | |
1980 | 49,037 | 27.92 | 94,304 | 53.69 | 31,423 | 17.89 | 363 | 0.21 | 484 | 0.28 | 36 | 0.02 | 175,647 |
1990 | 48,926 | 27.85 | 94,413 | 53.75 | 31,366 | 17.86 | 380 | 0.22 | 517 | 0.29 | 44 | 0.03 | 175,646 |
2000 | 49,318 | 28.08 | 93,378 | 53.16 | 31,951 | 18.19 | 395 | 0.22 | 561 | 0.32 | 44 | 0.03 | 175,647 |
2010 | 49,184 | 28.01 | 94,540 | 53.84 | 30,718 | 17.49 | 467 | 0.27 | 641 | 0.37 | 37 | 0.02 | 175,587 |
2018 | 48,552 | 27.64 | 94,772 | 53.95 | 29,382 | 16.72 | 721 | 0.41 | 2225 | 1.27 | 30 | 0.02 | 175,682 |
Forest Subtypes | 1980 | 1990 | 2000 | 2010 | 2018 | Changes |
---|---|---|---|---|---|---|
Forest land | 24,038 | 24,048 | 23,673 | 23,818 | 24,392 | 354 |
Shrubland | 43,617 | 43,675 | 43,163 | 43,339 | 43,469 | −148 |
Sparse woods | 26,364 | 26,403 | 26,238 | 27,073 | 26,615 | 251 |
Other forest areas | 285 | 287 | 304 | 310 | 296 | 11 |
Year | 1980 | 1990 | 2000 | 2010 | 2018 | Changes |
---|---|---|---|---|---|---|
Anshun | 4442 | 4447 | 4417 | 4457 | 4432 | −10 |
Bijie | 11,388 | 11,397 | 11,380 | 11,548 | 11,590 | 202 |
Guiyang | 3872 | 3874 | 3869 | 3883 | 4010 | 138 |
Liupanshui | 3947 | 3959 | 3970 | 4021 | 3961 | 14 |
Qiandongnan | 18,563 | 18,587 | 18,458 | 18,773 | 19,041 | 478 |
Qiannan | 14,640 | 14,651 | 14,279 | 14,422 | 14,515 | −125 |
Qianxinan | 8010 | 8017 | 7948 | 8067 | 7980 | −30 |
Tongren | 10,155 | 10,156 | 9846 | 9972 | 9922 | −233 |
Zunyi | 19,287 | 19,325 | 19,211 | 19,397 | 19,321 | 34 |
Total | 94,304 | 94,413 | 93,378 | 94,540 | 94,772 | 468 |
Method | Correlation Analysis | Multiple-GLM Regression | |
---|---|---|---|
Variable | r | p | SS, % |
Drought index | 0.084 | 0.460 | 0.64 |
Karstification intensity | −0.097 | 0.394 | 0.85 |
Mean annual precipitation | −0.296 ** | 0.008 | 0.97 |
GDP | −0.255 * | 0.024 | 1.88 |
Population | −0.281 * | 0.012 | 2.23 |
Land-use change (LUC) | 0.580 ** | 0.000 | 2.27 |
Accessibility | 0.388 ** | 0.000 | 2.29 |
Slope of 15–25° | 0.882 ** | 0.000 | 88.87 |
Year | Variable | MAP | MAT | Population | GDP | LUC | |
---|---|---|---|---|---|---|---|
1990 | Correlation analysis | r | 0.095 | 0.064 | −0.379 ** | −0.150 | -- |
sig | 0.391 | 0.565 | 0.000 | 0.174 | -- | ||
Multiple-GLM regression | SS, % | 3.34% | 3.59% | 74.44% | 18.62% | -- | |
2000 | Correlation analysis | r | −0.013 | 0.095 | −0.283 ** | −0.261 * | -- |
sig | 0.908 | 0.391 | 0.009 | 0.016 | -- | ||
Multiple-GLM regression | SS, % | 25.63% | 11.12% | 63.08% | 0.18% | -- | |
2010 | Correlation analysis | r | 0.111 | 0.006 | −0.317 ** | −0.310 ** | 0.236 * |
sig | 0.345 | 0.960 | 0.006 | 0.007 | 0.042 | ||
Multiple-GLM regression | SS, % | 9.77% | 13.70% | 9.28% | 0.07% | 67.18% | |
2018 | Correlation analysis | r | −0.064 | 0.012 | −0.312 ** | −0.282 * | 0.784 ** |
sig | 0.583 | 0.921 | 0.006 | 0.014 | 0.000 | ||
Multiple-GLM regression | SS, % | 0.34% | 2.78% | 3.04% | 2.04% | 91.81% |
Data | Resolution | 1980 | 1990 | 2000 | 2010 | 2018 | Changes 2000–2018 | Changes 1980–2018 |
---|---|---|---|---|---|---|---|---|
CNLUCC (this study) | 1 km | 94,304 | 94,413 | 93,378 | 994,540 | 94,772 | 1394 | 468 |
GlobeLand30 | 30 m | -- | -- | 83,079 | 84,472 | 83,329 | 250 | -- |
GLASS-GLC | 5 km | 4868 | 6110 | 6270 | 6969 | 7018 | 748 | 2150 |
MODIS/006/MCD12Q1 | 500 m | -- | -- | 10,696 | 12,707 | 22,762 | 12,066 | -- |
Data | Spatial Resolution | Data Source | Classification Technique | Accuracy | Subclass or Description |
---|---|---|---|---|---|
CNLUCC | 1 km | HJ-1A/B, Landsat TM/ETM+/OLI | Visual interpretation | Above 75% | Forest land, shrubland, sparse woods, other forest areas |
GlobeLand30 | 30 m | Landsat TM/ETM+ | POK-based method | 2000/2010: 80.33 ± 0.2% 2020: 85.72% | Over 30% of land covered with trees and vegetation, including deciduous broad-leaved forests, evergreen broad-leaved forests, deciduous coniferous forests, evergreen coniferous forests, mixed forests, and sparse forests with crown coverage of 10–30% |
GLASS-GLC | 5 km | Landsat TM/ETM+ | Conventional maximum-likelihood classifier, J4.8 decision-tree classifier, Random Forest classifier, and support-vector-machine classifier | 82.81% | Broad leaf, leaf on; broad leaf, leaf-off; needle leaf, leaf on; needle leaf, leaf off; mixed leaf type, leaf on; mixed leaf type, leaf off. |
MODIS/006/MCD12Q1 | 500 m | MODIS | Decision-tree classification algorithm | 66.42% | Evergreen needleleaf forests; evergreen broadleaf forests; deciduous needleleaf forests; deciduous broadleaf forests; mixed forests; closed shrublands; open shrublands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Chen, R.; Meadows, M.E.; Li, Q.; Xia, Z.; Pan, Z. Factors Influencing Four Decades of Forest Change in Guizhou Province, China. Land 2023, 12, 1004. https://doi.org/10.3390/land12051004
Guo X, Chen R, Meadows ME, Li Q, Xia Z, Pan Z. Factors Influencing Four Decades of Forest Change in Guizhou Province, China. Land. 2023; 12(5):1004. https://doi.org/10.3390/land12051004
Chicago/Turabian StyleGuo, Xiaona, Ruishan Chen, Michael E. Meadows, Qiang Li, Zilong Xia, and Zhenzhen Pan. 2023. "Factors Influencing Four Decades of Forest Change in Guizhou Province, China" Land 12, no. 5: 1004. https://doi.org/10.3390/land12051004
APA StyleGuo, X., Chen, R., Meadows, M. E., Li, Q., Xia, Z., & Pan, Z. (2023). Factors Influencing Four Decades of Forest Change in Guizhou Province, China. Land, 12(5), 1004. https://doi.org/10.3390/land12051004