NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Theil–Sen Median Trend Analysis
2.3.2. Mann–Kendall Test
2.3.3. Hurst Index
2.3.4. Analysis of Correlation
2.3.5. Geographic Detector
3. Results
3.1. Spatial Distribution and Trend Change of NDVI
3.2. Impact Factor of Land Use Change on the NDVI
3.3. Impact Climate Factors of the NDVI
3.4. Detection of the Impact of Key Factors on NDVI
3.4.1. Detection Factor Influence
3.4.2. Detection Factor Interaction Analysis
4. Discussion
4.1. Analysis of the Spatial Distribution Trend of NDVI
4.2. NDVI Variation and Land Use Change
4.3. Impact Climatic Factors of NDVI Variation
4.4. Influence of Factor Interaction on NDVI
4.5. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of Boreal Forest Vegetation on Global Climate. Nature 1992, 359, 716–718. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and Mapping the Human Appropriation of Net Primary Production in Earth’s Terrestrial Ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.R.; Bai, X.Y.; Zhao, C.; Tan, Q.; Luo, G.; Wu, L.; Xi, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s Carbon Budget Inventory from 1997 to 2017 and Its Challenges to Achieving Carbon Neutral Strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Zheng, H.; Wu, S. Time Lag of Vegetation Growth on the Loess Plateau in Response to Climate Factors: Estimation, Distribution, and Influence. Sci. Total Environ. 2020, 744, 140726. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Myneni, R.B. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Mao, Z.G.; Yang, L.Y.; Liu, Z.; Han, J.C.; Wanag, H.Y.; He, W. Impacts of Climate Change and Afforestation on Vegetation Dynamic in the Mu Us Desert, China. Ecol. Indic. 2021, 129, 108020. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y.J. Evaluating Temporal Consistency of Long-Term Global NDVI Datasets for Trend Analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Tan, L.H.; Sun, Y.W.; Wu, Y.J.; Duan, Z.; Xu, Y.; Gao, C. Impacts of Climate Change and Anthropogenic Activities on Vegetation Change: Evidence from Typical Areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791. [Google Scholar] [CrossRef]
- Piao, S.L.; Friedlingstein, P.; Ciais, P.; Zhou, L.M.; Chen, A.B. Effect of Climate and CO2 Changes on the Greening of the Northern Hemisphere over the Past Two Decades. Geophys. Res. Lett. 2006, 33, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Rogier, D.J.; Jan, V.; Achim, Z.; Michael, S. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Braswell, B.H.; Schimel, D.S.; Under, E.; Iii, B.M. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science 1997, 278, 870–872. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, J.Y.; Wang, X.Y.; Wang, Y.S. Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Bogaert, J. Evidence for a Persistent and Extensive Greening Trend in Eurasia Inferred from Satellite Vegetation Index Data. J. Geophys. Res. Atmos. 2002, 107, ACL 4-1–ACL 4-14. [Google Scholar] [CrossRef]
- Shen, M.G.; Piao, S.L.; Cong, N.; Zhang, G.G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cheng, G.; Li, W.; Sha, Y.; Yang, Y. On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau. Remote Sens. 2013, 5, 1894–1911. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Y.; Shi, H.D.; Wang, X.R. Impact of Climate Change and Human Activities on Vegetation Coverage in the Mongolian Plateau. Arid Zone Res. 2014, 31, 604–610. (In Chinese) [Google Scholar]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes over Multiple Time Scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D.; Wang, G.G.; Qiong, M.A.; Zhang, G.B.; Ding-Min, J.I. Vegetation cover change over the southwest China and its relation to climatic factors. Resour. Environ. Yangtze Basin. 2015, 24, 956–964. (In Chinese) [Google Scholar]
- Du, C.C.; Bai, X.Y.; Li, Y.B.; Tan, Q.; Zhao, C.W.; Luo, G.J.; Wu, L.H.; Chen, F.; Li, C.J.; Ran, C.; et al. Inventory of China’s Net Biome Productivity since the 21st Century. Land 2022, 11, 1244. [Google Scholar] [CrossRef]
- Yao, J.Q.; Li, M.Y.; Zheng, J.H. Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China. Remote Sens. 2021, 13, 4651. [Google Scholar] [CrossRef]
- Guo, E.L.; Wang, Y.F.; Wang, C.L.; Sun, Z.Y.; Bao, Y.L.; Mandula, N.; Jirigala, B.; Bao, Y.H.; Li, H. NDVI Indicates Long-Term Dynamics of Vegetation and Its Driving Forces from Climatic and Anthropogenic Factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Williams, A.P.; Allen, C.D.; Macalady, A.K. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyze the causes of aeolian desertification in Mu Us Sandy Land. China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.L.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landse Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Fu, H.; Shao, Z.; Fu, P.; Cheng, Q. The Dynamic Analysis between Urban Nighttime Economy and Urbanization Using the DMSP/OLS Nighttime Light Data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.Q.; Wei, L.M.; Chen, Z.R.; Zhang, C.G. A Preliminary Study on Biomass Components of Karst Forest in Maolan of Guizhou Province, China. ACTA Phytoecol. Sin. 1995, 19, 358. (In Chinese) [Google Scholar]
- Liu, Y.; Liu, C.; Wang, S.; Guo, K.; Yang, J.; Zhang, X.; Li, G. Organic Carbon Storage in Four Ecosystem Types in the Karst Region of Southwestern China. PLoS ONE 2013, 8, e56443. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Luo, D.H.; Xia, J.; Zhang, Z.H.; Hu, G. Vegetation in Karst Terrain of Southwestern China Allocates More Biomass to Roots. Solid Earth Discuss. 2015, 7, 1209–1235. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.L.; Yang, J. Study on biomass of the karst scrub community in central region of Guizhou province. Carsol. Sin. 1995, 3, 199–208. (In Chinese) [Google Scholar]
- Huang, Q.H.; Cai, Y.L. Spatial Pattern of Karst Rock Desertification in the Middle of Guizhou Province, Southwestern China. Environ. Geol. 2007, 52, 1325–1330. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Liu, L.B.; Guo, C.Z.; Zhang, Z.H.; Hu, G.; Ni, J. Low carbon storage of woody debris in a karst forest in southwestern China. Acta Geochim. 2019, 38, 576–586. [Google Scholar] [CrossRef]
- Chen, F.; Bai, X.Y.; Liu, F.; Luo, G.J.; Tian, Y.C.; Qin, L.Y.; Li, Y.; Xu, Y.; Wang, J.F.; Wu, L.H.; et al. Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China. Land 2022, 11, 1349. [Google Scholar] [CrossRef]
- Yang, J.L.; Dong, J.W.; Xiao, X.M.; Dai, J.H.; Wu, C.Y.; Xia, J.Y.; Zhao, G.S.; Zhao, M.M.; Li, Z.L.; Zhang, Y.; et al. Divergent Shifts in Peak Photosynthesis Timing of Temperate and Alpine Grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1990 to 2021 [Data set]. Earth Syst. Sci. Data 2022, 13, 3907–3925. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Zhi, L. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.S.; Zhu, Q.; Zhu, C.F. Monthly Precipitation Data Set with 1 km Resolution in China from 1960 to 2020. Available online: https://www.scidb.cn/en/detail?dataSetId=ff7ee051d2d44ab4a221cd810bf37251 (accessed on 18 August 2022).
- Chen, Y.Z.; Feng, X.M.; Fu, B.J. An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018. Earth Syst. Sci. Data 2021, 13, 1–31. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Jiang, W.G.; Yuan, L.H.; Wang, W.J.; Cao, R.; Zhang, Y.F.; Shen, W.M. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Eco. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Tosic, I. Spatial and Temporal Variability of Winter and Summer Precipitation over Serbia and Montenegro. Theor. Appl. Climatol. 2004, 77, 47–56. [Google Scholar] [CrossRef]
- Correa-Díaz, A.; Romero-Sánchez, M.E.; Villanueva-Díaz, J. The greening effect characterized by the Normalized Difference Vegetation Index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. For. Ecol. Manag. 2021, 496, 119402. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Deng, X.J.; Hu, S.; Zhan, C.H. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow. Environ. Sci. Pollut. Res. 2022, 29, 44693–44708. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Wang, K.L.; Zhang, C.; Yue, Y.M.; Tian, R.C.; Fan, F.D. Spatio-Temporal Evolution of Rocky Desertification and Its Driving Forces in Karst Areas of Northwestern Guangxi, China. Environ. Geol. 2011, 64, 383–393. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Chen, F.; Li, C.J.; Ran, C.; Zhang, S.R. Identifying the Multi-Scale Influences of Climate Factors on Runoff Changes in a Typical Karst Watershed Using Wavelet Analysis. Land 2022, 11, 1284. [Google Scholar] [CrossRef]
- Hou, W.J.; Gao, J.B.; Wu, S.H.; Dai, E.F. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.B.; Li, S.C.; Zhao, Z.Q.; Cai, Y.L. Investigating Spatial Variation in the Relationships between NDVI and Environmental Factors at Multi-Scales: A Case Study of Guizhou Karst Plateau, China. Int. J. Remote Sens. 2012, 33, 2112–2129. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Zhang, Y.; Chen, Z.J.; Hu, F.N. Impacts of Ecological Migration on Land Use and Vegetation Restoration in Arid Zones. Land 2022, 11, 891. [Google Scholar] [CrossRef]
- Muradyan, V.; Tepanosyan, G.; Asmaryan, S.; Saghatelyan, A.; Dell’Acqua, F. Relationships between NDVI and climatic factors in mountain ecosystems: A case study of Armenia. Remote Sens. Appl. Soc. Environ. 2019, 14, 158–169. [Google Scholar] [CrossRef]
- Snyder, K.A.; Tartowski, S.L. Multi-Scale Temporal Variation in Water Availability: Implications for Vegetation Dynamics in Arid and Semi-Arid Ecosystems. J. Arid Environ. 2006, 65, 219–234. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.B.; Liu, J.; Liang, W.; Miao, C.Y. Hydrogeomorphic Ecosystem Responses to Natural and AnthropogenicChanges in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2016, 45, 223–243. [Google Scholar] [CrossRef]
- Cairns, J.J. Ecosystem Services: An Essential Component of Sustainable Use. Environ. Health Perspect. 1995, 103, 534. [Google Scholar] [CrossRef]
- Ma, S.B.; An, Y.L.; Yang, G.; Zhang, Y. The Analysis of the Difference Vegetation Variation and Driver Factors on NDVI Change in Karst Region: A Case on Guizhou. Ecol. Environ. Sci. 2016, 25, 1106–1114. [Google Scholar] [CrossRef]
- Hua, W.J.; Chen, H.S.; Zhou, L.M.; Xie, Z.H.; Qin, M.H.; Li, X.; Ma, H.D.; Huang, Q.H.; Sun, S.L. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Chen, C.; Lin, S.G.; Yuan, H.W.; Chen, D.L.; Zhang, Y.F.; Guo, L.L.; Zhao, X.; Liu, X.B.; Piao, S.L.; et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl. Sci. Rev. 2022, 9, nwab150. [Google Scholar] [CrossRef] [PubMed]
- Du, X.L.; Wang, S.J. Space-time distribution of soil water in a karst area: A case south of the Wangjiazhai catchment, Qingzhen, Guizhou province. Earth Environ. 2008, 3, 193–201. (In Chinese) [Google Scholar]
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Y.L. Multi-scale anthropogenic driving forces of karst rocky desertification in southwest China. Land Degrad. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Deng, Y.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Tian, S.Q. Characteristics of Soil Moisture Storage from 1979 to 2017 in the Karst Area of China. Geocarto Int. 2019, 36, 903–917. [Google Scholar] [CrossRef]
- Yang, X.D.; Ali, A.; Xu, Y.L.; Jiang, L.M.; Lv, G.H. Soil Moisture and Salinity as Main Drivers of Soil Respiration across Natural Xeromorphic Vegetation and Agricultural Lands in an Arid Desert Region. Catena 2019, 177, 126–133. [Google Scholar] [CrossRef]
- Li, S.X.; Wu, Q. Effects of China’s ecological restoration on economic development based on Night-Time Light and NDVI data. Environ. Sci. Pollut. Res. 2021, 28, 65716–65730. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How industrialization and urbanization process impact on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Massmann, A.; Gentine, P.; Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.Z.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef] [PubMed]
Data Type | Factors | Time | URL |
---|---|---|---|
Vegetation | NDVI | 2000–2020 | https://code.earthengine.google.com |
Climate | Precipitation seasonality(Coefficient of variation) | 2000–2018 | https://www.worldclim.org/data/ |
Precipitation of wettest quarter | 2000–2018 | ||
Mean annual precipitation | 2000–2020 | http://www.rescdc.cn | |
Mean annual temperature | 2000–2020 | ||
Vapor pressure deficit | 2000–2020 | https://climate.northwestknowledge.net/ | |
Soil | Soil moisture | 2003–2018 | https://doi.org/10.1594/PANGAEA.912597 |
Landform | Elevation | 2020 | http://www.gscloud.cn/ |
Topography | Karst | 2010 | http://www.csdata.org/ |
Non-karst | 2010 | ||
Human activity | Land use change | 2000–2020 | https://zenodo.org/ |
Night light index | 2000–2020 | https://ngdc.noaa.gov/ |
Slope | p | Trend | Slope | p | Trend |
---|---|---|---|---|---|
Slope < 0 | p < 0.01 | significant decrease | Slope > 0 | p < 0.01 | significant increase |
Slope < 0 | 0.01 < p < 0.05 | minimal decrease | Slope > 0 | 0.01 < p < 0.05 | moderate increase |
Slope < 0 | p > 0.05 | non-significant decrease | Slope > 0 | p > 0.05 | non-significant increase |
Factors | Mean | Correlation Coefficient Range | Extremely Significant Positive Correlation (%) | Significant Positive Correlation (%) | Non-Significant Correlation (%) | Significant Negative Correlation (%) | Extremely Significant Negative Correlation (%) |
---|---|---|---|---|---|---|---|
X1 | 0.32 | −0.63~0.82 | 64.5 | 13 | 10.1 | 8.7 | 3.7 |
X2 | −0.26 | −0.68~0.76 | 11.4 | 7.5 | 9.2 | 17.2 | 54.7 |
X3 | 0.23 | −0.57~0.66 | 23.6 | 34.6 | 16.9 | 18.7 | 6.2 |
X4 | 0.21 | −0.67~0.79 | 49.2 | 5 | 17.7 | 19.1 | 9.1 |
X5 | 0.17 | −0.58~0.66 | 40.2 | 13.5 | 15.1 | 14.2 | 17 |
X6 | 0.15 | −0.59~0.65 | 15.3 | 32.2 | 25.4 | 12.5 | 15.3 |
Factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q value | 0.355 | 0.322 | 0.243 | 0.21 | 0.17 | 0.155 | 0.272 | 0.173 | 0.125 | 0.331 | 0.401 | 0.397 | 0.422 |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yang, J.; Li, S.; Guo, C.; Yang, X.; Xu, Y.; Yue, F.; Peng, H.; Chen, Y.; Gu, L.; et al. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land 2023, 12, 1267. https://doi.org/10.3390/land12071267
Wu Y, Yang J, Li S, Guo C, Yang X, Xu Y, Yue F, Peng H, Chen Y, Gu L, et al. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land. 2023; 12(7):1267. https://doi.org/10.3390/land12071267
Chicago/Turabian StyleWu, Yangyang, Jinli Yang, Siliang Li, Chunzi Guo, Xiaodong Yang, Yue Xu, Fujun Yue, Haijun Peng, Yinchuan Chen, Lei Gu, and et al. 2023. "NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China" Land 12, no. 7: 1267. https://doi.org/10.3390/land12071267
APA StyleWu, Y., Yang, J., Li, S., Guo, C., Yang, X., Xu, Y., Yue, F., Peng, H., Chen, Y., Gu, L., Shi, Z., & Luo, G. (2023). NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land, 12(7), 1267. https://doi.org/10.3390/land12071267