Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks
Abstract
:1. Introduction
2. Derivation of Criteria for the Composition of Bee-Friendly Site-Adapted Seed Mixtures for Solar Parks
- Step 1: General criteria for solar parks
- Step 2: Site-specific requirements
- Step 3: Seed market and economic considerations
- Step 4: Biodiversity aspects
3. Development of a Seed Mixture-Pollinator Feeding Index (SM-PFI)
4. Application of SM-PFI to Seed Mixtures Specifically Designed for Solar Parks
5. Discussion
5.1. Criteria for the Composition of Pollinator-Friendly Site-Adapted Seed Mixtures for Solar Parks
5.2. Seed Mixture-Pollinator Feeding Index (SM-PFI)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Areas with Solar Panels | Marginal Areas without Solar Panels * | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar Park Number | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |||||||||||||||
Species Richness | Species-Poor (19–20) | Species-Poor (19–20) | Species-Rich (34–37) | Species-Rich (35–36) | |||||||||||||||||||||||
Forbs (Weight %) | 30% | 70% | 70% | 100% | |||||||||||||||||||||||
Flowering Period | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | |||||||||||||||
G/F | N | P | Flowering Month | SM-PFI | 120 | 118 | 111 | 279 | 274 | 260 | 515 | 500 | 485 | 762 | 762 | 744 | |||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | Species | |||||||||||||||
G | Briza media | x | x | x | x | ||||||||||||||||||||||
G | Festuca rubra | x | x | x | x | x | x | x | x | x | |||||||||||||||||
G | Festuca rupicola | x | x | x | x | x | x | x | |||||||||||||||||||
G | Phleum phleoides | x | x | x | x | ||||||||||||||||||||||
G | Poa angustifolia | x | x | x | |||||||||||||||||||||||
G | Trisetum flavescens | x | x | x | |||||||||||||||||||||||
F | 1 | 2 | x | x | x | x | x | Achillea millefolium | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
F | 2 | 2 | x | x | x | x | Agrimonia eupatoria | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
F | 2 | 1 | x | x | x | x | Ajuga reptans | x | x | ||||||||||||||||||
F | 2 | 2 | x | x | x | x | Anthyllis vulneraria | x | |||||||||||||||||||
F | 2 | 1 | x | x | x | Barbarea vulgaris | x | x | x | x | |||||||||||||||||
F | 3 | 1 | x | x | Betonica officinalis | x | x | x | x | x | x | ||||||||||||||||
F | 2 | 2 | x | x | x | x | Campanula rapunculoides | x | x | x | |||||||||||||||||
F | 1 | 1 | x | x | x | x | Cerastium holosteoides | x | x | x | x | x | x | x | x | x | |||||||||||
F | 3 | 3 | x | x | x | x | Cichorium intybus | x | x | x | x | ||||||||||||||||
F | 2 | 1 | x | x | x | Clinopodium vulgare | x | x | x | x | x | x | |||||||||||||||
F | 2 | 2 | x | x | x | x | Crepis biennis | x | x | x | |||||||||||||||||
F | 2 | 2 | x | x | x | x | Daucus carota | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
F | 1 | 2 | x | x | x | x | Dianthus carthusianorum | x | x | x | x | x | x | x | |||||||||||||
F | 3 | 2 | x | x | Dipsacus fullonum | x | x | x | |||||||||||||||||||
F | 3 | 2 | x | x | x | Echium vulgare | x | x | x | ||||||||||||||||||
F | 2 | 1 | x | x | x | Falcaria vulgaris | x | x | x | ||||||||||||||||||
F | 0 | 3 | x | x | Filipendula vulgaris | x | x | x | x | x | |||||||||||||||||
F | 1 | 1 | x | x | x | x | Galium album | x | x | x | x | x | x | x | |||||||||||||
F | 1 | 1 | x | x | x | x | Galium verum | x | x | x | x | x | x | ||||||||||||||
F | 1 | 1 | x | x | Galium wirtgenii | x | x | ||||||||||||||||||||
F | 1 | 2 | x | x | x | x | x | Helianthemum nummularium | x | ||||||||||||||||||
F | 0 | 3 | x | x | Hypericum perforatum | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||
F | 2 | 2 | x | x | x | x | Hypochaeris radicata | x | x | x | |||||||||||||||||
F | 1 | 1 | x | x | Knautia arvensis | x | x | x | x | x | x | ||||||||||||||||
F | 2 | 1 | x | x | x | Lathyrus pratensis | x | ||||||||||||||||||||
F | 2 | 1 | x | x | x | Lathyrus tuberosus | x | x | |||||||||||||||||||
F | 2 | 1 | x | x | x | x | Leonurus cardiaca | x | x | x | |||||||||||||||||
F | 2 | 1 | x | x | x | x | x | Leucanthemum vulgare | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
F | 2 | 1 | x | x | x | x | x | Linaria vulgaris | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
F | 3 | 1 | x | x | x | Lotus corniculatus | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||
F | 2 | 2 | x | x | x | Lychnis viscaria | x | x | x | x | |||||||||||||||||
F | 2 | 1 | x | x | x | x | x | Malva moschata | x | x | x | ||||||||||||||||
F | 2 | 1 | x | x | x | x | x | Malva sylvestris | x | x | x | ||||||||||||||||
F | 3 | 2 | x | x | x | Origanum vulgare | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||
F | 0 | 3 | x | x | x | x | x | Plantago media | x | x | x | ||||||||||||||||
F | 1 | 2 | x | x | x | x | x | Potentilla argentea | x | x | x | x | x | x | |||||||||||||
F | 1 | 2 | x | x | x | Potentilla neumanniana | x | x | x | x | x | x | x | x | x | ||||||||||||
F | 1 | 2 | x | x | x | Potentilla reptans | x | x | x | ||||||||||||||||||
F | 2 | 1 | x | x | x | x | Prunella vulgaris | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
F | 1 | 1 | x | x | x | Ranunculus bulbosus | x | x | |||||||||||||||||||
F | 1 | 1 | x | x | x | Ranunculus lanuginosus | x | x | x | x | x | x | |||||||||||||||
F | 2 | 3 | x | x | x | x | x | Reseda lutea | x | ||||||||||||||||||
F | 2 | 3 | x | x | x | x | Reseda luteola | x | x | ||||||||||||||||||
F | 3 | 1 | x | x | x | x | Salvia pratensis | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
F | 1 | 1 | x | x | x | x | Saponaria officinalis | x | x | x | |||||||||||||||||
F | 2 | 1 | x | x | x | x | Scabiosa ochroleuca | x | x | x | x | x | |||||||||||||||
F | 1 | 1 | x | x | x | x | x | x | Silene dioica | x | x | x | x | x | x | x | x | ||||||||||
F | 1 | 1 | x | x | x | x | Silene latifolia subsp. alba | x | x | x | |||||||||||||||||
F | 1 | 1 | x | x | x | x | x | Silene vulgaris | x | x | x | x | x | x | x | x | x | ||||||||||
F | 3 | 1 | x | x | x | x | x | Stachys recta | x | x | x | x | x | ||||||||||||||
F | 3 | 3 | x | x | x | x | Trifolium pratense | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
F | 1 | 3 | x | x | x | Verbascum densiflorum | x | x | x | ||||||||||||||||||
F | 1 | 3 | x | x | x | x | Verbascum nigrum | x | x | x | |||||||||||||||||
F | 2 | 2 | x | x | x | Veronica maritima | x | x |
Solar Park Number | 1 | 2 | 3 |
---|---|---|---|
County | Mansfeld-Südharz | Salzlandkreis | Halle (Saale)/Saalekreis |
Size (ha) | 2.2 | 1 | 13.3 |
Size covered with panels (ha) | 1.3 | 0.4 | 6.3 |
Type of solar panels | Monofacial, south facing | Monofacial, south facing | Monofacial, south facing |
Under-edge of the panels (cm) | 80 | 80 | 80 |
Inclination of the panels | 17° | 20° | 15° |
Distance between module rows (m) | 3.1 | 4 | 2.4 |
Previous use | De-sealed soil of former farm buildings | Abandoned area | Ash dump covered with soil substrate |
Preparation for seeding | No tillage | Rotary tilling | Rotary tilling |
Surrounding land use | Biogas plant, residential and production buildings, non-irrigated arable land | Residential buildings, industrial complexes, abandoned extraction sites (limestone) | Non-irrigated arable land, covered ash dump, industrial complexes |
References
- Rinder, T.; Neuber, F.; Von Hagke, C. Fighting symptom or root cause?-The need for shifting the focus in climate politics from greenhouse gases to environmental protection. EarthArXiv 2022. preprint, 1–8. [Google Scholar] [CrossRef]
- Duda, J.; Kusa, R.; Pietruszko, S.; Smol, M.; Suder, M.; Teneta, J.; Wójtowicz, T.; Żdanowicz, T. Development of Roadmap for Photovoltaic Solar Technologies and Market in Poland. Energies 2022, 15, 174. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Rev. 2020, 126, 109836. [Google Scholar] [CrossRef]
- Wolniak, R.; Skotnicka-Zasadzień, B. Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels. Energies 2022, 15, 662. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörrenz, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Semeraro, T.; Pomes, A.; Del Giudice, C.; Negro, D.; Aretano, R. Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy 2018, 117, 218–227. [Google Scholar] [CrossRef]
- Walston, L.J.; Mishra, S.K.; Hartmann, H.M.; Hlohowskyj, I.; McCall, J.; Macknick, J. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States. Environ. Sci. Technol. 2018, 52, 7566–7576. [Google Scholar] [CrossRef]
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S.N. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.; Lloyd, H.; Field, C. Evidence Review of the Impact of Solar Farms on Birds, Bats and General Ecology, 1st ed.; Manchester Metropolitan University: Manchester, UK, 2017. [Google Scholar] [CrossRef]
- Moore-O’Leary, K.A.; Hernandez, R.R.; Johnston, D.S.; Abella, S.R.; Tanner, K.E.; Swanson, A.C.; Kreitler, J.; Lovich, J.E. Sustainability of utility-scale solar energy–critical ecological concepts. Front. Ecol. Environ. 2017, 15, 385–394. [Google Scholar] [CrossRef]
- Carvalho, F.; Treasure, L.; Robinson, S.J.; Blaydes, H.; Exley, G.; Hayes, R.; Howell, B.; Keith, A.; Montag, H.; Parker, G.; et al. Towards a standardized protocol to assess natural capital and ecosystem services in solar parks. Ecol. Solut. Evid. 2023, 4, e12210. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; White, P.C.L.; Cruz, J.; Parker, G.; Montag, H.; Scurlock, J.; Armstrong, A. Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach. Renew. Sustain. Energy Rev. 2020, 125, 109775. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno-ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Montag, H.; Parker, G.; Clarkson, T. The Effects of Solar Farms on Local Biodiversity: A Comparative Study; Clarkson and Woods and Wychwood Biodiversity: Blackford, United Kingdom, 2016; ISBN 978-1-5262-0223-9. [Google Scholar]
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef]
- Taylor, R.; Conway, J.; Gabb, O.; Gillespie, J. Potential ecological impacts of groundmounted photovoltaic solar panels. An introduction and literature review. BSG Ecol. 2019, 1–19. Available online: https://www.bsg-ecology.com/wp-content/uploads/2019/04/Solar-Panels-and-Wildlife-Review-2019.pdf (accessed on 18 April 2023).
- Høiaas, I.; Grujic, K.; Imenes, A.G.; Burud, I.; Olsen, E.; Belbachir, N. Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies. Renew. Sustain. Energy Rev. 2022, 161, 112353. [Google Scholar] [CrossRef]
- Kristinof, R.E.; Collingwood, B. Challenges and opportunities in solar farm construction. In Proceedings of the 13th Australia New Zealand Conference on Geomechanics, Perth, WA, Australia, 1–3 April 2019; Acosta-Martinez, H.E., Lehane, B.M., Eds.; Australian Geomechanics Society: Sydney, Australia, 2019; pp. 1289–1295, ISBN 978-0-9946261-0-3. [Google Scholar]
- Peschel, R.; Peschel, T. Photovoltaik und Biodiversität–Integration statt Segregation!-Solarparks und das Synergiepotenzial für Förderung und Erhalt biologischer Vielfalt. Nat. Und Landsch. 2023, 55, 18–25. [Google Scholar] [CrossRef]
- Kiehl, K.; Kirmer, A.; Donath, T.W.; Rasran, L.; Hölzel, N. Species introduction in restoration projects–Evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 2010, 11, 285–299. [Google Scholar] [CrossRef]
- Auestad, I.; Rydgren, K.; Austad, I. Near-natural methods promote restoration of species-rich grassland vegetation-revisiting a road verge trial after 9 years. Restor. Ecol. 2016, 24, 381–389. [Google Scholar] [CrossRef]
- Mitchley, J.; Jongepierová, I.; Fajmon, K. Regional seed mixtures for the re-creation of species-rich meadows in the W hite C arpathian M ountains: Results of a 10-yr experiment. Appl. Veg. Sci. 2012, 15, 253–263. [Google Scholar] [CrossRef]
- Török, P.; Deák, B.; Vida, E.; Valkó, O.; Lengyel, S.; Tóthmérész, B. Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 2010, 143, 806–812. [Google Scholar] [CrossRef]
- Ebeling, A.; Klein, A.M.; Schumacher, J.; Weisser, W.W.; Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 2008, 117, 1808–1815. [Google Scholar] [CrossRef]
- Walston, L.J.; Li, Y.; Hartmann, H.M.; Macknick, J.; Hanson, A.; Nootenboom, C.; Lonsdorf, E.; Hellmann, J. Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States. Ecosyst. Serv. 2021, 47, 101227. [Google Scholar] [CrossRef]
- Biesmeijer, K.; van Kolfschoten, L.; Wit, F.; Moens, M. The effects of solar parks on plants and pollinators: The case of Shell Moerdijk. Nat. Biodivers. Cent. 2020, 1–28. Available online: https://www.naturalis.nl/system/files/inline/Report%20The%20effects%20of%20solar%20parks%20on%20plants%20and%20pollinators%20-%20the%20case%20of%20Shell%20Moerdijk%20_0.pdf (accessed on 18 April 2023).
- Kiehl, K. Renaturierung von Kalkmagerrasen. In Renaturierung von Ökosystemen in Mitteleuropa; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; pp. 265–282. ISBN 978-3-662-48517-0. [Google Scholar]
- Scotton, M.; Kirmer, A.; Krautzer, B. Practical Handbook for Seed Harvest and Ecological Restoration of Species-Rich Grasslands; Cooperativa Liberia Editrice Università di Padova: Padova, Italy, 2012; ISBN 978-88-6129-800-2. [Google Scholar]
- Auestad, I.; Austad, I.; Rydgren, K. Nature will have its way: Local vegetation trumps restoration treatments in semi-natural grassland. Appl. Veg. Sci. 2015, 18, 190–196. [Google Scholar] [CrossRef]
- Baasch, A.; Engst, K.; Schmiede, R.; May, K.; Tischew, S. Enhancing success in grassland restoration by adding regionally propagated target species. Ecol. Eng. 2016, 94, 583–591. [Google Scholar] [CrossRef]
- John, H.; Dullau, S.; Baasch, A.; Tischew, S. Re-introduction of target species into degraded lowland hay meadows: How to manage the crucial first year? Ecol. Eng. 2016, 86, 223–230. [Google Scholar] [CrossRef]
- Kaulfuß, F.; Rosbakh, S.; Reisch, C. Grassland restoration by local seed mixtures: New evidence from a practical 15-year restoration study. Appl. Veg. Sci. 2022, 25, e12652. [Google Scholar] [CrossRef]
- Schmidt, A.; Kirmer, A.; Kiehl, K.; Tischew, S. Seed mixture strongly affects species-richness and quality of perennial flower strips on fertile soil. Basic Appl. Ecol. 2020, 42, 62–72. [Google Scholar] [CrossRef]
- Kopp, J.; Frajer, J.; Pavelková, R. Driving forces of the development of suburban landscape–A case study of the Sulkov site west of Pilsen. Quaest. Geogr. 2015, 34, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Oudes, D.; Stremke, S. Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe. Renew. Sustain. Energy Rev. 2021, 145, 111101. [Google Scholar] [CrossRef]
- Szabó, S.; Bódis, K.; Kougias, I.; Moner-Girona, M.; Jäger-Waldau, A.; Barton, G.; Szabó, L. A methodology for maximizing the benefits of solar landfills on closed sites. Renew. Sustain. Energy Rev. 2017, 76, 1291–1300. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N. Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Glob. Change Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.; Ostle, N.; Whitaker, J. Solar park microclimate and vegetation management effects on grassland carbon cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef] [Green Version]
- Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Lambert, Q.; Bischoff, A.; Cueff, S.; Cluchier, A.; Gros, R. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. Land Degrad. Dev. 2021, 32, 5190–5202. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Huang, Z.; Cheng, Z.; López-Vicente, M.; Ma, X.; Wu, G. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degrad. Dev. 2019, 30, 2177–2186. [Google Scholar] [CrossRef]
- Vervloesem, J.; Marcheggiani, E.; Choudhury, M.; Muys, B. Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability 2022, 14, 7493. [Google Scholar] [CrossRef]
- Schmidt, A.; Kirmer, A.; Hellwig, N.; Kiehl, K.; Tischew, S. Evaluating CAP wildflower strips: High-quality seed mixtures significantly improve plant diversity and related pollen and nectar resources. J. Appl. Ecol. 2022, 59, 860–871. [Google Scholar] [CrossRef]
- Lambert, Q.; Gros, R.; Bischoff, A. Ecological restoration of solar park plant communities and the effect of solar panels. Ecol. Eng. 2022, 182, 106722. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Bao, J.; Wu, T.; Chai, B. Effect of Light Heterogeneity Caused by Photovoltaic Panels on the Plant-Soil-Microbial System in Solar Park. Land 2023, 12, 367. [Google Scholar] [CrossRef]
- Walston, L.J.; Barley, T.; Bhandari, I.; Campbell, B.; McCall, J.; Hartmann, H.M.; Dolezal, A.G. Opportunities for agrivoltaic systems to achieve synergistic food-energy-environmental needs and address sustainability goals. Front. Sustain. Food Syst. 2022, 6, 374. [Google Scholar] [CrossRef]
- Baughman, B.O.W.; Kulpa, S.M.; Sheley, R.L. Four paths toward realizing the full potential of using native plants during ecosystem restoration in the Intermountain West. Rangelands 2022, 44, 218–226. [Google Scholar] [CrossRef]
- Bucharova, A.; Bossdorf, O.; Hölzel, N.; Kollmann, J.; Prasse, R.; Durka, W. Mix and match: Regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 2019, 20, 7–17. [Google Scholar] [CrossRef]
- Durka, W.; Michalski, S.G.; Berendzen, K.W.; Bossdorf, O.; Bucharova, A.; Hermann, J.M.; Hölzel, N.; Kollmann, J. Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J. Appl. Ecol. 2017, 54, 127–136. [Google Scholar] [CrossRef]
- Durka, W.; Bossdorf, O.; Bucharova, A.; Frenzel, M.; Hermann, J.M.; Hölzel, N.; Kollmann, J.; Michalski, S.G. Regionales Saatgut von Wiesenpflanzen: Genetische Unterschiede, regionale Anpassung und Interaktion mit Insekten. Nat. Und Landsch. 2019, 94, 146–153. [Google Scholar] [CrossRef]
- Nagel, R.; Durka, W.; Bossdorf, O.; Bucharova, A. Rapid evolution in native plants cultivated for ecological restoration: Not a general pattern. Plant Biol. 2019, 21, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Ssymank, A. Neue Anforderungen im europäischen Naturschutz: Das Schutzgebietssystem Natura 2000 und die FFH-Richtlinie der EU. Nat. Und Landsch. 1994, 69, 395–406. [Google Scholar]
- Höfner, J.; Klein-Raufhake, T.; Lampei, C.; Mudrak, O.; Bucharova, A.; Durka, W. Populations restored using regional seed are genetically diverse and similar to natural populations in the region. J. Appl. Ecol. 2022, 59, 2234–2244. [Google Scholar] [CrossRef]
- Pedrini, S.; Dixon, K.W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 2020, 28, 286–303. [Google Scholar] [CrossRef]
- Tischew, S.; Youtie, B.; Kirmer, A.; Shaw, N. Farming for Restoration: Building Bridges for Native Seeds. Ecol. Restor. 2011, 29, 219–222. [Google Scholar] [CrossRef]
- Bucharova, A.; Lampei, C.; Conrady, M.; May, E.; Matheja, J.; Meyer, M.; Ott, D. Plant provenance affects pollinator network: Implications for ecological restoration. J. Appl. Ecol. 2022, 59, 373–383. [Google Scholar] [CrossRef]
- Nevill, P.G.; Cross, A.T.; Dixon, K.W. Ethical seed sourcing is a key issue in meeting global restoration targets. Curr. Biol. 2018, 28, R1378–R1379. [Google Scholar] [CrossRef] [Green Version]
- Mainz, A.K.; Wieden, M. Ten years of native seed certification in Germany-a summary. Plant Biol. 2019, 21, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Feistel, U.; Kettner, S.; Ebermann, J.; Müller, F. Wie PV-Freiflächenanlagen den Bodenwasserhaushalt verändern–Begleitforschung im größten Solarpark Deutschlands. Forum Hydrol. Wasserbewirtsch. 2022, 43, 43–52. [Google Scholar] [CrossRef]
- Feistel, U.; Werisch, S.; Marx, P.; Kettner, S.; Ebermann, J.; Wagner, L. Assessing the impact of shading by solar panels on evapotranspiration and plant growth using lysimeters. AIP Conf. Proc. 2022, 2635, 150001. [Google Scholar] [CrossRef]
- Fischer, H.S.; Michler, B.; Ziche, D.; Fischer, A. Plants as indicators of soil chemical properties. In Status and Dynamics of Forests in Germany. Ecological Studies; Wellbrock, N., Bolte, A., Eds.; Springer: Cham, Germany, 2019; Volume 237, pp. 295–309. ISBN 978-3-030-15732-6. [Google Scholar]
- Ramos, S.J.; Gastauer, M.; Mitre, S.K.; Caldeira, C.F.; Silva, J.R.; Furtini Neto, A.E.; Oliveira, G.; Souza Filho, P.W.M.; Siqueira, J.O. Plant growth and nutrient use efficiency of two native Fabaceae species for mineland revegetation in the eastern Amazon. J. For. Res. 2020, 31, 2287–2293. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Wang, Q.; Li, X.; Liu, Y.; Huang, Q. Effects of soil nutrients on reproductive traits of invasive and native annual Asteraceae plants. Biodivers. Sci. 2021, 29, 1–9. [Google Scholar] [CrossRef]
- Graham, M.; Ates, S.; Melathopoulos, A.P.; Moldenke, A.R.; DeBano, S.J.; Best, L.R.; Higgins, C.W. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci. Rep. 2021, 11, 7452. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Pedrini, S.; D’Agui, H.M.; Arya, T.; Turner, S.; Dixon, K.W. Seed quality and the true price of native seed for mine site restoration. Restor. Ecol. 2022, 30, e13638. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Buchmann, N.; Steiner, V.; Klaus, V.H. The costs of diversity: Higher prices for more diverse grassland seed mixtures. Environ. Res. Lett. 2021, 16, 094011. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Buchmann, N.; Steiner, V.; Klaus, V.H.; Klaus, V. Data: German and Swiss seed mixture prices and characteristics. ETH Zur. 2021. [Google Scholar] [CrossRef]
- Merritt, D.J.; Dixon, K.W. Restoration seed banks—A matter of scale. Science 2011, 332, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, N.E.; Flint, S.A.; Shaw, R.G. Factors limiting the availability of native seed for reconstructing Minnesota’s prairies: Stakeholder perspectives. Restor. Ecol. 2022, 30, e13554. [Google Scholar] [CrossRef]
- Bundesministerium für Naturschutz (Ed.) Gesetz über Naturschutz und Landschaftspflege. Bundesnaturschutzgesetz–BNatSchG, Berlin. 2009. Available online: https://www.bmuv.de/gesetz/gesetz-ueber-naturschutz-und-landschaftspflege (accessed on 2 March 2023).
- Erickson, V.J.; Halford, A. Seed planning, sourcing, and procurement. Restor. Ecol. 2020, 28, 219–227. [Google Scholar] [CrossRef]
- Pedrini, S.; Gibson-Roy, P.; Trivedi, C.; Gálvez-Ramírez, C.; Hardwick, K.; Shaw, N.; Frischie, S.; Laverack, G.; Dixon, K. Collection and production of native seeds for ecological restoration. Restor. Ecol. 2020, 28, 228–238. [Google Scholar] [CrossRef]
- Barak, R.S.; Ma, Z.; Brudvig, L.A.; Havens, K. Factors influencing seed mix design for prairie restoration. Restor. Ecol. 2022, 30, e13581. [Google Scholar] [CrossRef]
- Begosh, A.; Smith, L.M.; McMurry, S.T. Major land use and vegetation influences on potential pollinator communities in the High Plains of Texas. J. Insect Conserv. 2022, 26, 231–241. [Google Scholar] [CrossRef]
- Cely-Santos, M.; Philpott, S.M. Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. J. Insect Conserv. 2019, 23, 133–146. [Google Scholar] [CrossRef]
- Schubert, L.F.; Hellwig, N.; Kirmer, A.; Schmid-Egger, C.; Schmidt, A.; Dieker, P.; Tischew, S. Habitat quality and surrounding landscape structures influence wild bee occurrence in perennial wildflower strips. Basic Appl. Ecol. 2022, 60, 76–86. [Google Scholar] [CrossRef]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native Wildflower Plantings Support Wild Bee Abundance and Diversity in Agricultural Landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipiak, M.; Filipiak, Z.M. Application of ionomics and ecological stoichiometry in conservation biology: Nutrient demand and supply in a changing environment. Biol. Conserv. 2022, 272, 109622. [Google Scholar] [CrossRef]
- Rittschof, C.C.; Denny, A.S. The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integr. Comp. Biol. 2023, icad009. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Torres, J.; O’Neal, M.E. Can Solar Energy Fuel Pollinator Conservation? Environ. Entomol. 2021, 50, 757–761. [Google Scholar] [CrossRef]
- Wood, T.J.; Holland, J.M.; Goulson, D. Providing foraging resources for solitary bees on farmland: Current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 2017, 54, 323–333. [Google Scholar] [CrossRef]
- Pritsch, G. Bienenweide: 200 Trachtpflanzen Erkennen und Bewerten, 1st ed.; Franckh-Kosmos Verlag: Stuttgart, Germany, 2018; ISBN 9783440159910. [Google Scholar]
- Nichols, R.N.; Holland, J.M.; Goulson, D. Can novel seed mixes provide a more diverse, abundant, earlier, and longer-lasting floral resource for bees than current mixes? Basic Appl. Ecol. 2022, 60, 34–47. [Google Scholar] [CrossRef]
- Jäger, E.J. (Ed.) Rothmaler–Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband, 1st ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-49708-1. [Google Scholar]
- Kuppler, J.; Neumüller, U.; Mayr, A.V.; Hopfenmüller, S.; Weiss, K.; Prosi, R.; Schanowski, A.; Schwenninger, H.R.; Ayasse, M.; Burger, H. Favourite plants of wild bees. Agric. Ecosyst. Environ. 2023, 342, 108266. [Google Scholar] [CrossRef]
- Al Heib, M.; Cherkaoui, A. Assessment of the Advantages and Limitations of Installing PV Systems on Abandoned Dumps. Mater. Proc. 2021, 5, 68. [Google Scholar] [CrossRef]
- Pavlovic, N.; Ignjatovic, D.; Subaranovic, T. Possibility of Using Wind and Solar Sources for Electric Power Generation on Serbian Opencast Coal Mines. Mater. Proc. 2021, 5, 50. [Google Scholar] [CrossRef]
- Li, P.; Kleijn, D.; Badenhausser, I.; Zaragoza-Trello, C.; Gross, N.; Raemakers, I.; Scheper, J. The relative importance of green infrastructure as refuge habitat for pollinators increases with local land-use intensity. J. Appl. Ecol. 2020, 57, 1494–1503. [Google Scholar] [CrossRef]
- Török, P.; Vida, E.; Deák, B.; Lengyel, S.; Tóthmérész, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 2011, 20, 2311–2332. [Google Scholar] [CrossRef]
- Schaumberger, S.; Blaschka, A.; Krautzer, B.; Graiss, W.; Klingler, A.; Pötsch, E.M. Successful transfer of species-rich grassland by means of green hay or threshing material: Does the method matter in the long term? Appl. Veg. Sci. 2021, 24, e12606. [Google Scholar] [CrossRef]
- Hancock, N.; Gibson-Roy, P.; Driver, M.; Broadhurst, L. The Australian Native Seed Survey Report; Australian Network for Plant Conservation: Canberra, Australia, 2020. [Google Scholar]
- Ladouceur, E.; Jiménez-Alfaro, B.; Marin, M.; De Vitis, M.; Abbandonato, H.; Iannetta, P.P.M.; Bonomi, C.; Pritchard, H.W. Native Seed Supply and the Restoration Species Pool. Conserv. Lett. 2018, 11, e12381. [Google Scholar] [CrossRef]
- Nichols, R.N.; Goulson, D.; Holland, J.M. The best wildflowers for wild bees. J. Insect Conserv. 2019, 23, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Seitz, N.; VanEngelsdorp, D.; Leonhardt, S.D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities? Ecol. Evol. 2020, 10, 12838–12850. [Google Scholar] [CrossRef] [PubMed]
- Von Königslöw, V.; Fornoff, F.; Klein, A.M. Pollinator enhancement in agriculture: Comparing sown flower strips, hedges and sown hedge herb layers in apple orchards. Biodivers. Conserv. 2022, 31, 433–451. [Google Scholar] [CrossRef]
- Grašič, M.; Šabić, A.; Lukač, B. A review of methodology for grassland restoration and management with practical examples. Acta Biol. Slov. 2023, 66, 1–26. [Google Scholar] [CrossRef]
- Blaydes, H.; Potts, S.; Whyatt, D.; Armstrong, A. On-site floral resources and surrounding landscape characteristics impact pollinator biodiversity on solar parks. In Proceedings of the EGU General Assembly 2022 (EGU22-2180), Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Rieger-Hofmann GmbH. 24 Mischung Solarpark. Available online: https://www.rieger-hofmann.de/sortiment-shop/mischungen/wiesen-und-saeume-fuer-die-freie-landschaft/01-blumenwiese/detailansicht-blumenwiese.html?tt_products%5BbackPID%5D=181&tt_products%5Bproduct%5D=712&tt_products%5Bsword%5D=SOLARPARK&cHash=440a1ab678029f4f100a735ea8184b63 (accessed on 16 April 2023).
- Meine Blumenwiese. Wildblumenmischung für PV (Photovoltaik-Mischung) 5 kg, 10 kg. Available online: https://meineblumenwiese.at/products/wildblumenmischung-fur-pv-photovoltaikmischung-ab-300m2 (accessed on 16 April 2023).
- Fountain, M.T. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects 2022, 13, 304. [Google Scholar] [CrossRef]
- Venjakob, C.; Ruedenauer, F.A.; Klein, A.-M.; Leonhardt, S.D. Variation in nectar quality across 34 grassland plant species. Plant. Biol. 2022, 24, 134–144. [Google Scholar] [CrossRef]
- Davis, A.E.; Bickel, D.J.; Saunders, M.E.; Rader, R. Crop-pollinating Diptera have diverse diet and habitat needs in both larval and adult stages. Ecol. Appl. 2023, e2859. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annu. Rev. Ecol. Evol. Syst. 2023, 48, 353–376. [Google Scholar] [CrossRef] [Green Version]
- IPBES (The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Bonn, H.T.N., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; ISBN 978-92-807-3567-3. [Google Scholar]
- Filipiak, Z.M.; Denisow, B.; Stawiarz, E.; Filipiak, M. Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. Sci. Total Environ. 2022, 820, 153326. [Google Scholar] [CrossRef]
- Milberg, P.; Andersson, L.; Thompson, K. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 2000, 10, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Warzecha, D.; Diekötter, T.; Wolters, V.; Jauker, F. Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Insect Conserv. Divers. 2018, 11, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Shaw, N.; Barak, R.S.; Campbell, R.E.; Kirmer, A.; Pedrini, S.; Dixon, K.; Frischie, S. Seed use in the field: Delivering seeds for restoration success. Restor. Ecol. 2020, 28, 276–285. [Google Scholar] [CrossRef]
- Glidden, A.J.; Sherrard, M.E.; Meissen, J.C.; Myers, M.C.; Elgersma, K.J.; Jackson, L.L. Planting time, first-year mowing, and seed mix design influence ecological outcomes in agroecosystem revegetation projects. Restor. Ecol. 2022, 31, e13818. [Google Scholar] [CrossRef]
- Kiehl, K.; Kirmer, A.; Shaw, N.; Tischew, S. (Eds.) Guidelines for Native Seed Production and Grassland Restoration; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2014; ISBN 978-1-4438-5900-4. [Google Scholar]
- Blaydes, H.; Gardner, E.; Whyatt, J.D.; Potts, S.G.; Armstrong, A. Solar park management and design to boost bumble bee populations. Environ. Res. Lett. 2022, 17, 044002. [Google Scholar] [CrossRef]
- Klotz, S.; Kühn, I.; Durka, W. (Eds.) BIOLFLOR-Eine Datenbank zu Biologisch-Ökologischen Merkmalen der Gefäßpflanzen in Deutschland; Bundesamt für Naturschutz, Schriftenreihe für Vegetationskunde: Bonn, Germany, 2002; Volume 38. [Google Scholar]
- Stiftung Naturschutz Schleswig-Holstein. Trachtenkalender 2016. Nutzpflanzen. Trachtenkalender für Schleswig-Holstein. Available online: https://www.stiftungsland.de/fileadmin/pdf/Trachtkalender/SN_Trachtkalender_LandNutz_A4_20160526_A.pdf (accessed on 18 April 2023).
Areas with Solar Panels | Marginal Areas without Solar Panels | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar Park Number | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Species richness | Species-poor (19–20 species) | Species-poor (19–20 species) | Species-rich (34–37 species) | Species-rich (35–36 species) | ||||||||
Forbs % | 30% | 70% | 70% | 100% | ||||||||
SM-PFI | 120 | 118 | 111 | 279 | 274 | 260 | 515 | 500 | 485 | 762 | 762 | 744 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, M.H.; Dullau, S.; Scholz, P.; Meyer, M.A.; Tischew, S. Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks. Land 2023, 12, 1265. https://doi.org/10.3390/land12061265
Meyer MH, Dullau S, Scholz P, Meyer MA, Tischew S. Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks. Land. 2023; 12(6):1265. https://doi.org/10.3390/land12061265
Chicago/Turabian StyleMeyer, Maren Helen, Sandra Dullau, Pascal Scholz, Markus Andreas Meyer, and Sabine Tischew. 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks" Land 12, no. 6: 1265. https://doi.org/10.3390/land12061265
APA StyleMeyer, M. H., Dullau, S., Scholz, P., Meyer, M. A., & Tischew, S. (2023). Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks. Land, 12(6), 1265. https://doi.org/10.3390/land12061265