Scale-Dependent Field Partition Based on Water Retention Functional Data
Abstract
:1. Introduction
Notation Box | |
---|---|
KS | Saturated hydraulic conductivity (ms−1) |
OC | Organic carbon (℅) |
BD | Bulk density (g cm−3) |
TS | Tensile strength of soil aggregates (kPa) |
θr | Asymptote of the equation, which is residual water content (cm3cm−3) |
A1 | Amount of matrix pore spaces (cm3cm−3) |
A2 | Amount of structural pore spaces (cm3cm−3) |
h1 and h2 | Characteristic pore water suctions at which the matrix and structural pore spaces start to empty, respectively (bar) |
2. Materials and Methods
2.1. Study Area and Experimental Site
2.2. Dexter’s Soil Water Retention Curve (Dexter’s Model)
Model Fitting
2.3. Soil Property Measurements
2.4. Aggregate Tensile Strength Measurement
2.5. Multivariate Geostatistical Analysis
- Fitting of Dexter’s model to determine its five parameters;
- Basic statistics of all study variables including Dexter’s model parameters and the selected soil properties;
- Normalization and standardization of all variables through Gaussian anamorphosis, if they show significant deviations from symmetrical data distribution;
- Fitting of a linear model of coregionalization (LMC) to the whole data set of the experimental direct and cross-variograms of the Gaussian transformed variables to model the spatial relationships of the curve parameters with each other and with soil properties;
- Testing the goodness of fitting through cross-validation;
- Ordinary cokriging on all Gaussian transformed variables and back transformation of the estimates of Gaussian transformed parameters using the anamorphosis Gaussian function previously determined;
- Mapping of soil properties for characterizing spatial variability, and of the curve parameters to draw SWRC in any point of the field;
- Factorial cokriging on Gaussian transformed variables and extraction of the regionalized factors at short and long ranges;
- Mapping of the retained regionalized factors at each scale with eigenvalue greater than 1, which cumulatively explains a good proportion of the spatial variability at that scale;
- Delineation of within-field zones with different hydraulic properties by using the retained regionalized factors.
2.5.1. Basic Statistics and Gaussian Anamorphosis
2.5.2. Spatial Interpolation
- Linear Model of Coregionalization
- Factorial Cokriging Analysis
- Cross-validation
3. Results and Discussion
3.1. Basic Statistics of Soil Properties
3.2. Basic Statistics of Dexter’s Water Retention Curve Model (SWRC)
3.3. Correlation Analysis
3.4. Factorial Cokriging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadas, A. Long-term tillage practice effects on soil aggregation modes and strength. Soil Sci. Soc. Am. J. 1987, 51, 191–197. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Tillage Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Dexter, A.; Richard, G.; Arrouays, D.; Czyż, E.; Jolivet, C.; Duval, O. Complexed organic matter controls soil physical properties. Geoderma 2008, 144, 620–627. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Jury, W.A.; Horton, R. Soil Physics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Botula, Y.-D.; Cornelis, W.; Baert, G.; Van Ranst, E. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (DR Congo). Agric. Water Manag. 2012, 111, 1–10. [Google Scholar] [CrossRef]
- Fredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117. [Google Scholar] [CrossRef]
- Omuto, C.; Gumbe, L. Estimating water infiltration and retention characteristics using a computer program in R. Comput. Geosci. 2009, 35, 579–585. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Bayat, H.; Neyshaburi, M.R.; Zare Abyaneh, H. Prediction capability of different soil water retention curve models using artificial neural networks. Arch. Agron. Soil Sci. 2014, 60, 859–879. [Google Scholar] [CrossRef]
- Giraldo, R.; Dabo-Niang, S.; Martinez, S. Statistical modeling of spatial big data: An approach from a functional data analysis perspective. Stat. Probab. Lett. 2018, 136, 126–129. [Google Scholar] [CrossRef]
- Giraldo, R.; Delicado, P.; Mateu, J. Continuous time-varying kriging for spatial prediction of functional data: An environmental application. J. Agric. Biol. Environ. Stat. 2010, 15, 66–82. [Google Scholar] [CrossRef]
- Belmonte, A.; Gadaleta, G.; Castrignanò, A. Use of Geostatistics for Multi-Scale Spatial Modeling of Xylella fastidiosa subsp. pauca (Xfp) Infection with Unmanned Aerial Vehicle Image. Remote Sens. 2023, 15, 656. [Google Scholar] [CrossRef]
- Heydari, L.; Bayat, H.; Castrignanò, A. Scale-dependent geostatistical modelling of crop-soil relationships in view of Precision Agriculture. Precis. Agric. 2023, 24, 1–27. [Google Scholar] [CrossRef]
- Cohen, S.; Cohen, Y.; Alchanatis, V.; Levi, O. Combining spectral and spatial information from aerial hyperspectral images for delineating homogenous management zones. Biosyst. Eng. 2013, 114, 435–443. [Google Scholar] [CrossRef]
- Johnson, C.K.; Mortensen, D.A.; Wienhold, B.J.; Shanahan, J.F.; Doran, J.W. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agron. J. 2003, 95, 303–315. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L.; Balzarini, M.; Angelini, H. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil Sci. 2013, 93, 205–218. [Google Scholar] [CrossRef]
- Yari, A.; Madramootoo, C.A.; Woods, S.A.; Adamchuk, V.I.; Huang, H.-H. Assessment of field spatial and temporal variabilities to delineate site-specific management zones for variable-rate irrigation. J. Irrig. Drain. Eng. 2017, 143, 04017037. [Google Scholar] [CrossRef]
- Reyes, J.; Wendroth, O.; Matocha, C.; Zhu, J.; Ren, W.; Karathanasis, A. Reliably mapping clay content coregionalized with electrical conductivity. Soil Sci. Soc. Am. J. 2018, 82, 578–592. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Grossman, R.; Reinsch, T. 2.1 Bulk density and linear extensibility. In Methods of Soil Analysis: Part 4 Physical Methods; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; Volume 5, pp. 201–228. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diff usivity: Laboratory methods. In Methods of Soil Analysis, 2nd ed.; ASA: Madison, WI, USA, 1986; pp. 687–732. [Google Scholar]
- Hillel, D. Fundamentals of Soil Physics; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kay, B.; Dexter, A. The influence of dispersible clay and wetting/drying cycles on the tensile strength of a red-brown earth. Soil Res. 1992, 30, 297–310. [Google Scholar] [CrossRef]
- Chesworth. Encyclopedia of Soil Science; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 765–766. [Google Scholar]
- Dexter, A.; Watts, C.W. Tensile strength and friability. In Soil and Environmental Analysis; CRC Press: Boca Raton, FL, USA, 2000; pp. 417–446. [Google Scholar]
- Rogowski, A.S. Strength of Soil Aggregates; Iowa State University: Ames, IA, USA, 1964. [Google Scholar]
- Dexter, A.; Kroesbergen, B. Methodology for determination of tensile strength of soil aggregates. J. Agric. Eng. Res. 1985, 31, 139–147. [Google Scholar] [CrossRef]
- Webster, R.; Welham, S.J.; Potts, J.; Oliver, M. Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis of variance and residual maximum likelihood. Comput. Geosci. 2006, 32, 1320–1333. [Google Scholar] [CrossRef]
- Chiles, J.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons Inc.: NewYork, NY USA; Toronto, ON, Canada, 2012. [Google Scholar]
- Goovaerts, P.; Webster, R.; Dubois, J.-P. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environ. Ecol. Stat. 1997, 4, 49–64. [Google Scholar] [CrossRef]
- Castrignanò, A.; Giugliarini, L.; Risaliti, R.; Martinelli, N. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 2000, 97, 39–60. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Geovariances. ISATIS Software: Technical References Release 2015; Geovariances and Ecole des Mines de Paris: Paris, France, 2015; 220p. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; Volume 561. [Google Scholar]
- Chiles, J.; Delfiner, P. Discrete exact simulation by the Fourier method. In Geostatistics Wollongong 96, Proceedings of the Fifth International Geostatistics Congress; Kluwer Academic: Wollongong, Australia; Dordrecht, The Netherlands, 1999; pp. 258–269. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? CSIRO Publishing: Melbourne, Australia, 2016. [Google Scholar]
- Manzione, R.L.; Castrignanò, A. A geostatistical approach for multi-source data fusion to predict water table depth. Sci. Total Environ. 2019, 696, 133763. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.; Wang, Q.; Fan, J.; Horton, R. Temporal changes of soil hydraulic properties under different land uses. Geoderma 2009, 149, 355–366. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Braunack, M.; Hewitt, J.; Dexter, A. Brittle fracture of soil aggregates and the compaction of aggregate beds. J. Soil Sci. 1979, 30, 653–667. [Google Scholar] [CrossRef]
- Macks, S.; Murphy, B.; Cresswell, H.; Koen, T. Soil friability in relation to management history and suitability for direct drilling. Soil Res. 1996, 34, 343–360. [Google Scholar] [CrossRef]
- Tomasella, J.; Pachepsky, Y.; Crestana, S.; Rawls, W. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci. Soc. Am. J. 2003, 67, 1085–1092. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Feng, H.; Peng, X.; Si, B. Using the double-exponential water retention equation to determine how soil pore-size distribution is linked to soil texture. Soil Tillage Res. 2016, 156, 119–130. [Google Scholar] [CrossRef]
- Stagnari, F.; Pagnani, G.; Galieni, A.; D’Egidio, S.; Matteucci, F.; Pisante, M. Effects of conservation agriculture practices on soil quality indicators: A case-study in a wheat-based cropping systems of Mediterranean areas. Soil Sci. Plant Nutr. 2020, 66, 624–635. [Google Scholar] [CrossRef]
- Dexter, A.; Czyż, E.; Richard, G.; Reszkowska, A. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma 2008, 143, 243–253. [Google Scholar] [CrossRef]
- Jabro, J.; Stevens, W. Soil-water characteristic curves and their estimated hydraulic parameters in no-tilled and conventionally tilled soils. Soil Tillage Res. 2022, 219, 105342. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil Tillage Res. 2021, 206, 104842. [Google Scholar] [CrossRef]
Min | Max | Mean | Std. Dev | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
KS (ms−1) | 0.33 | 34.59 | 8.73 | 5.93 | 1.58 | 7.04 |
OC (%) | 0.08 | 0.66 | 0.40 | 0.12 | −0.51 | 3.20 |
BD (gcm−3) | 1.21 | 1.73 | 1.42 | 0.11 | 0.50 | 2.98 |
TS (kPa) | 51.47 | 124.21 | 85.71 | 17.05 | 0.21 | 2.32 |
Min | Max | Mean | Std. Dev | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
θr (cm3cm−3) | 0.00 | 0.13 | 0.05 | 0.05 | 0.22 | 1.39 |
A1 (cm3cm−3) | 0.06 | 0.25 | 0.15 | 0.05 | 0.10 | 2.07 |
A2 (cm3cm−3) | 0.10 | 0.34 | 0.24 | 0.05 | −0.72 | 3.32 |
h1 (bar) | 0.27 | 43.51 | 14.74 | 10.91 | 0.38 | 2.00 |
h2 (bar) | 0.01 | 0.19 | 0.06 | 0.03 | 1.46 | 10.04 |
θr | A1 | A2 | h1 | h2 | KS | OC | BD | TS | |
---|---|---|---|---|---|---|---|---|---|
θr | 1.00 | −0.72 ** | −0.06 | −0.91 ** | −0.27 ** | 0.18 | −0.11 | −0.18 | −0.01 |
A1 | 1.00 | −0.01 | 0.60 ** | 0.07 | −0.11 | 0.29 ** | −0.06 | 0.08 | |
A2 | 1.00 | 0.11 | 0.19 | 0.16 | 0.29 ** | −0.38 ** | 0.12 | ||
h1 | 1.00 | 0.41 ** | −0.22 * | 0.11 | 0.14 | 0.10 | |||
h2 | 1.00 | −0.18 | 0.00 | −0.05 | 0.01 | ||||
KS | 1.00 | 0.10 | −0.29 ** | −0.15 | |||||
OC | 1.00 | −0.29 ** | 0.23 * | ||||||
BD | 1.00 | −0.06 | |||||||
TS | 1.00 |
gθr * | gA1 | gA2 | gh1 | gh2 | gKS | gOC | gBD | gTS | |
---|---|---|---|---|---|---|---|---|---|
ME | −0.03 | −0.03 | 0.03 | 0.01 | 0.01 | 0.03 | 0.03 | 0.002 | 0.05 |
RMSE | −0.06 | −0.06 | 0.04 | 0.03 | 0.01 | 0.03 | 0.04 | 0.004 | 0.07 |
RMSSE | 0.95 | 1.00 | 0.85 | 0.99 | 0.98 | 0.98 | 0.85 | 1.08 | 1.10 |
gθr* | gA1 | gA2 | gh1 | gh2 | gKS | gOC | gBD | gTS | Eigen val. | Var. perc. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Model Range | 508.64 m | |||||||||
F1short | 0.30 | −0.27 | −0.20 | −0.56 | −0.49 | 0.06 | −0.30 | 0.13 | −0.37 | 1.08 | 73.72 |
Spherical | Model Range | 3000 m | |||||||||
F1 long 1 | 0.35 | −0.04 | 0.36 | −0.36 | −0.18 | 0.31 | 0.40 | −0.57 | −0.05 | 2.95 | 68.79 |
F2 long | −0.24 | 0.36 | 0.36 | 0.22 | 0.30 | 0.19 | −0.01 | −0.03 | −0.71 | 1.03 | 24.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrignanò, A.; Heydari, L.; Bayat, H. Scale-Dependent Field Partition Based on Water Retention Functional Data. Land 2023, 12, 1106. https://doi.org/10.3390/land12051106
Castrignanò A, Heydari L, Bayat H. Scale-Dependent Field Partition Based on Water Retention Functional Data. Land. 2023; 12(5):1106. https://doi.org/10.3390/land12051106
Chicago/Turabian StyleCastrignanò, Annamaria, Ladan Heydari, and Hossein Bayat. 2023. "Scale-Dependent Field Partition Based on Water Retention Functional Data" Land 12, no. 5: 1106. https://doi.org/10.3390/land12051106
APA StyleCastrignanò, A., Heydari, L., & Bayat, H. (2023). Scale-Dependent Field Partition Based on Water Retention Functional Data. Land, 12(5), 1106. https://doi.org/10.3390/land12051106