Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
- Verification of the effectiveness of SWAT-FEM simulation model for Chennai River catchment.
- Evaluating climatological responses (precipitation and temperature) under present and future climate conditions.
- Assessment of hydrological responses (stream flows, groundwater storages, and water use) under present and future climate conditions.
2.1. Study Site
2.2. Datasets
2.3. Verifying SWAT-FEM Simulation Model
2.4. Land Use Land Cover and Climate Change Scenarios
- GFDL Baseline Scenario (1981–2000)
- GFDL A1B Scenario (2081–2100)
- CCSM4 Baseline Scenario (1986–2005)
- CCSM4 A1B Scenario (2081–2100)
2.5. Assessment of Impacts of LCS
2.5.1. Evaluating Land-Climate Responses
2.5.2. Evaluating Hydrological Responses
3. Results
3.1. Sensitivity Analysis Results of SWAT-FEM Model
3.2. Climatic Responses
3.2.1. Temperature
3.2.2. Rainfall
3.3. Hydrological Responses
3.3.1. Stream Flows
3.3.2. Flow Duration Curves
3.3.3. Groundwater Storage
3.3.4. Water Use
4. Discussion
4.1. Impacts of LCS on Water Resources and Regional Watersheds
4.2. Limitations and Challenges
- (1)
- The spatial and temporal resolution of the observed data (daily) and the modeled predictions (monthly) might be inconsistent.
- (2)
- The groundwater flow and all the geologic formations are assumed to be horizontal.
- (3)
- The prediction of future hydrological responses of stream flows, groundwater storage, and water use did not capture the dynamics of the annual land use land cover variations in the basin from 2081 to 2100.
- (4)
- The confounding point and non-point sources of pollution in the future are not considered.
- (1)
- The temporal spans of the four climate change scenarios (20 years) put forth some biases for long-term evaluation of climate change effects in surface and ground hydrology.
- (2)
- The implementation of suitable policies for cognizing climate change impacts demands extensive calibration and validation of the study models to adopt the best management practices in the study area [70].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, T.R. Procedural knowledge for integrated modelling: Towards the modelling playground. Environ. Model Softw. 2013, 39, 135–148. [Google Scholar] [CrossRef]
- Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Hughes, A. Integrated environmental modeling: A vision and roadmap for the future. Environ. Model Softw. 2013, 39, 3–23. [Google Scholar] [CrossRef]
- Joseph, N.; Preetha, P.P.; Narasimhan, B. Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son river in the Ganga basin. Ecol. Ind. 2021, 121, 107110. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Multi-level pedotransfer modification functions of the USLE-K factor for annual soil erodibility estimation of mixed landscapes. Model. Earth Syst. Environ. 2019, 5, 767–779. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z.; Anderson, M.D. Assessment of climate variability and short term land use land cover change effects on water quality of Cahaba river basin. Int. J. Hydrol. Sci. Technol. 2019, 11, 54. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river catchments. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Jylhä, K.; Fronzek, S.; Tuomenvirta, H.; Carter, T.R.; Ruosteenoja, K. Changes in frost, snow and Baltic Sea ice by the end of the twenty-first century based on climate model projections for Europe. Clim. Chang. 2008, 86, 441–462. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. A union of dynamic hydrological modeling and satellite remotely-sensed data for spatiotemporal assessment of sediment yields. Remote Sens. 2022, 14, 400. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Synergy of remotely sensed data in spatiotemporal dynamic modeling of the crop and cover management factor. Pedosphere 2022, 32, 381–392. [Google Scholar] [CrossRef]
- Brouyère, S.; Carabin, G.; Dassargues, A. Climate change impacts on groundwater resources: Modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol. J. 2004, 12, 123–134. [Google Scholar] [CrossRef]
- Almazroui, M. Temperature variability over Saudi Arabia during the period 1978–2010 and its association with global climate indices. J. King Abdulaziz Univ. Met Env. Arid. Land Agric. Sci. 2012, 23, 85–108. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, M., II; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Huang, S.; Krysanova, V.; Osterle, H.; Hattermann, F.F. Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrol. Process. 2010, 24, 3289–3306. [Google Scholar] [CrossRef]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on ground water recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef]
- Kingston, D.G.; Taylor, R.G. Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrol. Earth Syst. Sci. 2010, 14, 1297–1308. [Google Scholar] [CrossRef]
- Jha, M.; Arnold, J.G.; Gassman, P.W.; Gu, R. Climate change sensitivity assessment on Upper Mississippi River Catchment streamflows using SWAT. Center for Agricultural and Rural Development Iowa State University Ames, Iowa. J. Am. Water Resour. Assoc. 2004, 42, 50011–51070. [Google Scholar]
- Hoekema, D.J.; Jin, X.; Sridhar, V. Climate change and the Payette river catchment. Collab. Manag. Integr. Catchments 2010, 1053–1067. [Google Scholar]
- Ghosh, S.; Das, D.; Kao, S.C.; Ganguly, A.R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat. Clim. Chang. 2012, 2, 86–91. [Google Scholar] [CrossRef]
- Zhang, R.; Srinivasan, F.H. Predicting hydrologic response to climate change in the Luohe River Catchment using the SWAT model. Am. Soc. Agric. Biol. Eng. 2007, 50, 901–910. [Google Scholar]
- Xu, H.; Taylor, R.G.; Xu, Y. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China. Hydrol. Earth Syst. Sci. 2011, 15, 333–344. [Google Scholar] [CrossRef]
- Takle, E.S.; Jha, M.; Lu, E.; Arritt, R.W.; Gutowski, W.J. Streamflow in the upper Mississippi river catchment as simulated by SWAT driven by 20th century contemporary results of global climate models and NARCCAP regional climate models. Meteorol. Z. 2010, 19, 341–346. [Google Scholar] [CrossRef]
- Nagraj, S.; Patil, A.; Gosain, K. GIS framework to evaluate the impact of climate change on water resources. Curr. Sci. 2011, 101, 3. [Google Scholar]
- Lakshmanan, V.; Geethalakshmi, R.; Sekhar, S.N.U.; Annamalai, H. Climate change adaptation strategies in Bhavani basin using SWAT model. J. Appl. Eng. Agric. 2011, 27, 887–893. [Google Scholar] [CrossRef]
- Nourani, V.; Rouzegari, N.; Molajou, A.; Baghanam, A.H. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. J. Hydrol. 2020, 587, 125018. [Google Scholar] [CrossRef]
- Sivaraman, K.R.; Thillaigovidarajan, S. Chennai River Basin Micro Level Report. 2012. Available online: http://www.rainwaterharvesting.org (accessed on 22 November 2012).
- Nair, M.R.; Ramya, G.R.; Sivakumar, P.B. Usage and analysis of Twitter during 2015 Chennai flood towards disaster management. Procedia Comput. Sci. 2017, 115, 350–358. [Google Scholar] [CrossRef]
- Shanmugam, P.; Neelamani, S.; Yu-Hwan, A.; Philip, L.; Gi-Hoon, H. Assessment of the levels of coastal marine pollution of Chennai city Southern India. Water Resour. Manag. 2007, 21, 187–1206. [Google Scholar] [CrossRef]
- Jayaprakash, M.; Urban, B.; Velmurugan, P.M.; Srinivasalu, S. Accumulation of total trace metals due to rapid urbanization in microtidal zone of Pallikaranai marsh, South of Chennai, India. Environ. Monit. Assess. 2010, 170, 609–629. [Google Scholar] [CrossRef]
- Preetha, P.P.; Joseph, N.; Narasimhan, B. Quantifying surface water and groundwater interactions using a coupled SWAT_FEM model: Implications of management practices on hydrological. Water Resour. Manag. 2021, 35, 2781–2797. [Google Scholar] [CrossRef]
- CGIARCSI. Data from: SRTM 90m DEM. SRTM 90m Digital Elevation Database v4.1: Consortium for Spatial Information (CGIARCSI). 2018. Available online: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1 (accessed on 15 June 2018).
- TNAU. Data from: TNAU Agritech Portal: Downloads. Tamil Nadu Agricultural University, Coimbatore. 2018. Available online: http://agritech.tnau.ac.in/downloads.html (accessed on 3 March 2018).
- FAOSTAT. Data from: Soil data 2007. The Food and Agriculture Organization of the United States (FAO) Database. 2018. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 April 2018).
- Indian Meteorological Department. Data from: Meteorological Centre: Season’s Rainfall. IMD: Season’s Rainfall 1986–2010 Meteorological Centre, Tamil Nadu. 2018. Available online: https://imdtvm.gov.in/index.php?option=com_content&task=view&id=29&Itemid=43 (accessed on 15 March 2023).
- Green, C.H.M.; Griensven, A. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale catchments. Environ. Model. Softw. 2018, 23–24, 422–434. [Google Scholar]
- Preetha, P.P.; Johns, M. A review of recent water quality assessments in watersheds of southeastern United States using continuous time models. Global J. Eng. Sci. 2022, 9, 1–4. [Google Scholar] [CrossRef]
- Preetha, P.P.; Maclin, K. Evaluation of Hydrogeological Models and Big Data for Quantifying Groundwater Use in Regional River Systems. In Environmental Processes and Management. Water Science and Technology Library; Shukla, P., Singh, P., Singh, R.M., Eds.; Springer: Cham, Germany, 2023; Volume 120. [Google Scholar] [CrossRef]
- NRSC. Data from: Geophysical Products/Land Products. Indian Space Research Organization: Natural Remote Sensing Centre (NRSC) Database. 2018. Available online: https://nrsc.gov.in/Geophysical_Products (accessed on 17 May 2018).
- IWMI. Data from: Land Products. International Water Management Institute (IWMI): Global Irrigated Area Mapping (GIAM) Database. 2018. Available online: http://www.iwmi.cgiar.org/ (accessed on 18 May 2018).
- Annamalai, H.; Hamilton, K.; Sperber, K.R. South Asian Summer Monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Clim. 2007, 20, 1071–1092. [Google Scholar] [CrossRef]
- Meehl, G.; Arblaster, J.; Caron, J.; Annamalai, H.; Jochum, M.; Chakraborty, A.; Murtugudde, R. Monsoon regimes and processes in CCSM4, Part 1: The Asian-Australian monsoon. J. Clim. 2012, 25, 2583–2608. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Saravanakumar, V.; Boomiraj, K. Chapter 4-Ecological Footprints of and Climate Change Impact on Rice Production in India. In The Future Rice Strategy for India; Elsevier: Amsterdam, The Netherlands, 2017; pp. 69–106. [Google Scholar]
- Sperber, K.R.; Annamalai, H.; Kang, I.-S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian Summer Monsoon: An Intercomparison of CMIP5 vs. CMIP3 Simulations of the Late 20th Century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Rao, K.P.C.; Ndegwa, W.G.; Kizito, K.; Oyoo, A. Climate variability and change: Farmer perceptions and understanding of intra-seasonal variability in rainfall and associated risk in semi-arid Kenya. Exp. Agric. 2011, 47, 267–291. [Google Scholar] [CrossRef]
- Miles, E.L.; Snover, A.K.; Hamlet, A.F.; Callahan, B.; Fluharty, D. Pacific Northwest Regional Assessment: The Impacts of Climate Variability and Climate Change on the Water Resources of the Columbia River Basin. J. Am. Water Resour. Assoc. JAWRA 2000, 36, 399–420. [Google Scholar] [CrossRef]
- Mishra, P.K.; Kuhlman, K.L. Unconfined aquifer flow theory: From Dupuit to present, chap 9. In Advances in Hydrogeology; Springer: Heidelberg, Germany, 2013; pp. 185–202. [Google Scholar]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef]
- Dixon, K.W.; Delworth, T.; Knutson, T.; Spelman, M.; Stouffer, R. A comparison of climate change simulations produced by two GFDL coupled climate models. Glob. Planet. Change 2003, 37, 81–102. [Google Scholar] [CrossRef]
- Delworth, T.; Stouffer, R.; Dixon, K.; Spelman, M.; Knutson, T.; Broccoli, A.; Kushner, P.; Wetherald, R. Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Clim. Dyn. 2002, 19, 555–574. [Google Scholar]
- Wasko, C.; Sharma, S.A. Westra Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 2016, 43, 4026–4032. [Google Scholar] [CrossRef]
- Sharma, A.; Wasko, D.P.C. Lettenmaier If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Menon, A.; Levermann, A.; Schewe, J.; Lehmann, J.; Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 2013, 4, 287–300. [Google Scholar] [CrossRef]
- Vinnarasi, R.C.T. Dhanya Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall. J. Geophys. Res. Atmos. 2016, 121, 2146–2160. [Google Scholar] [CrossRef]
- Vittal, H.; Ghosh, S.; Karmakar, S.; Pathak, A.; Murtugudde, R. Lack of dependence of Indian summer monsoon rainfall extremes on temperature: An observational evidence. Sci. Rep. 2016, 6, 31039. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.N.; Sridharan, B.; Kuiry, S.N. Impact of Urban Sprawl on Future Flooding in Chennai City, India Impact of Urban Sprawl on Future Flooding in Chennai City. India. J. Hydrol. 2019, 574, 486–496. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef]
- Paul, S.; Ghosh, S.; Oglesby, R.; Pathak, A.; Chandrasekharan, A.; Ramsankaran, R. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover. Sci. Rep. 2016, 6, 32177. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep. 2017, 7, 1228. [Google Scholar] [CrossRef]
- Dulal, K.N.; Takeuchi, K.; Ishidaira, H. Evaluation of the Influence of Uncertainty in Rainfall and Discharge Data on Hydrological Modeling. Annu. J. Hydraul. Eng. 2007, 51, 31–36. [Google Scholar] [CrossRef]
- Daniel, J.A.; Staricka, J.A. Frozen soil impact on ground water–surface water interaction. J. Am. Water Resour. Assoc. 2000, 36, 151–160. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- IS 10500; Indian Standard Drinking Water Specification (Second Revision). Bureau of Indian Standards (BIS): New Delhi, India, 2012.
- Chinnasamy, P.; Agoramoorthy, G. Groundwater Storage and Depletion Trends in Tamil Nadu State, India. Water Resour. Manag. 2015, 29, 2139–2152. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Vinodh, K.; Babu, G.J.; Gowtham, B.; Arulprakasam, V. Integrated seawater intrusion study of coastal region of Thiruvallur district, Tamil Nadu, South India. Appl. Water Sci. 2019, 9, 124. [Google Scholar] [CrossRef]
- Magistrali, I.C.; Delgado, R.C.; dos Santos, G.L.; Pereira, M.G.; de Oliveira, E.C.; Neves, L.D.O.; de Souza, L.P.; Teodoro, P.E.; Junior, C.A.S. Performance of CCCma and GFDL climate models using remote sensing and surface data for the state of Rio de Janeiro-Brazil. Remote Sens. Appl. Soc. Environ. 2021, 21, 100446. [Google Scholar] [CrossRef]
- YoosefDoost, A.; Sadeghian, M.S.; Farahani, M.A.N.; Rasekhi, A. Comparison between performance of statistical and low cost ARIMA model with GFDL, CM2. 1 and CGM 3 atmosphere-ocean general circulation models in assessment of the effects of climate change on temperature and precipitation in Taleghan Basin. Am. J. Water Resour. 2017, 5, 92–99. [Google Scholar] [CrossRef]
- Jury, M.R. Statistical evaluation of CMIP5 climate change model simulations for the Ethiopian highlands. Int. J. Climatol. 2015, 35, 37–44. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Developing Nitrate-Nitrogen Transport Models using Remotely-Sensed Geospatial Data of Soil Moisture Profiles and Wet Depositions. J. Environ. Sci. Health Part A 2020, 55, 615–628. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Integrating finite-element-model and remote-sensing data into SWAT to estimate transit times of nitrate in groundwater. Hydrogeol. J. 2020, 28, 1–19. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, G.; Mai, Y.; Chen, W. Optimizing the cost-effectiveness of low impact development (LID) practices using an analytical probabilistic approach. Urban Water J. 2017, 2, 136–143. [Google Scholar] [CrossRef]
Parameters | Descriptions | Ranges | Fitted Values |
---|---|---|---|
ESCO | evapotranspiration adjustment factor | 0.85–1.00 | 0.920 |
SURLAG | coefficient of runoff | 0–4 | 2 |
A | the fraction of impervious area | 0–100 | 26 |
SOL_ZMX | the upper limit of soil moisture | 0–100 mm | 50 mm |
ALPHA_BF | base flow recession rate | 0.10–0.30 | 0.265 |
GWQ_RCO | code of upper limit of groundwater storage and routing | 0 or 1 | 0 |
Climate Variable | Temperature (°C) | Rainfall (mm) | Rainy Days | |||
---|---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | |
IMD | 24 | 32 | 10 | 183 | 1 | 10 |
Base GFDL | 23.6 | 33.2 | 43 | 212 | 1 | 11 |
Base CCSM4 | 23.3 | 33.6 | 42 | 167 | 1 | 9 |
A1B GFDL | 28 | 33 | 49.6 | 343 | 3 | 14 |
A1B CCSM4 | 26.5 | 34 | 16.2 | 187 | 2 | 9 |
Month | Water Use (mm) | Variability (mm) | ||||
---|---|---|---|---|---|---|
Base GFDL | A1B GFDL | Base CCSM4 | A1B CCSM4 | GFDL | CCSM4 | |
1 | 21.17 | 35.86 | 24.73 | 4.64 | 14.69 | −20.09 |
2 | 5.28 | 8.10 | 2.29 | 1.16 | 2.82 | −1.13 |
3 | 0.09 | 6.92 | −0.72 | 0.70 | 6.83 | 1.42 |
4 | 6.78 | 36.55 | 5.29 | 5.07 | 29.77 | −0.22 |
5 | 10.40 | 30.66 | 14.09 | 39.53 | 20.26 | 25.44 |
6 | 7.85 | 12.66 | 17.87 | 19.02 | 4.81 | 1.15 |
7 | 26.25 | 10.88 | 35.18 | 40.14 | −15.37 | 4.96 |
8 | 66.04 | 43.04 | 43.97 | 46.32 | −23.00 | 2.35 |
9 | 34.65 | 83.16 | 30.15 | 69.90 | 48.51 | 39.75 |
10 | 115.10 | 238.90 | 97.13 | 58.52 | 123.80 | −38.61 |
11 | 208.60 | 359.03 | 161.58 | 202.87 | 150.43 | 41.29 |
12 | 87.87 | 345.20 | 60.68 | 61.47 | 257.33 | 0.79 |
Water Use Statistics | ||||||
Water use | Base GFDL | A1B GFDL | Base CCSM4 | A1B CCSM4 | ||
Annual | 590.08 | 1210.96 | 492.24 | 549.34 | ||
Mean | 49.17 | 100.91 | 41.02 | 45.78 | ||
Standard deviation | 62.092 | 133.369 | 46.9777 | 55.4549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preetha, P.; Hasan, M. Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios. Land 2023, 12, 938. https://doi.org/10.3390/land12050938
Preetha P, Hasan M. Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios. Land. 2023; 12(5):938. https://doi.org/10.3390/land12050938
Chicago/Turabian StylePreetha, Pooja, and Mahbub Hasan. 2023. "Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios" Land 12, no. 5: 938. https://doi.org/10.3390/land12050938
APA StylePreetha, P., & Hasan, M. (2023). Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios. Land, 12(5), 938. https://doi.org/10.3390/land12050938