Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. CO2 Fluxes and Soil Temperature Measurements
2.3. Modeling Soil Respiration
3. Results
3.1. Measured Soil Respiration Fluxes
3.2. Weather Conditions and Soil Temperature
3.3. Model Calibration
3.3.1. Basic Models
3.3.2. Model Modification A
3.3.3. Model Modification B
3.4. Modeled Soil Respiration Fluxes
4. Discussion
4.1. Observed CO2 Fluxes
4.2. Soil Respiration Models
4.3. Apparent Temperature Sensitivity Coefficient, Q10
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kudeyarov, V.N. Soil respiration and biogenic carbon dioxide sink in the territory of Russia: An analytical review. Eurasian Soil Sci. J. 2018, 51, 599–612. [Google Scholar] [CrossRef]
- Reichstein, M.; Beer, C. Soil respiration across scales: The importance of a model-data integration framework for data interpretation. J. Plant Nutr. Soil Sci. 2008, 171, 344–354. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p. [Google Scholar]
- Wang, X.; Fan, K.; Yan, Y.; Chen, B.; Yan, R.; Xin, X.; Li, L. Controls of Seasonal and Interannual Variations on Soil Respiration in a Meadow Steppe in Eastern Inner Mongolia. Agronomy 2023, 13, 20. [Google Scholar] [CrossRef]
- Azizi-Rad, M.; Guggenberger, G.; Ma, Y.; Sierra, C.A. Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biol. Biochem. 2022, 165, 108488. [Google Scholar] [CrossRef]
- Zeeshan, M.; Wenjun, Z.; Chuansheng, W.; Yan, L.; Azeez, P.A.; Qinghai, S.; Yuntong, L.; Yiping, Z.; Zhiyun, L.; Liqing, S. Soil heterotrophic respiration in response to rising temperature and moisture along an altitudinal gradient in a subtropical forest ecosystem, Southwest China. Sci. Total Environ. 2022, 816, 151643. [Google Scholar] [CrossRef]
- Suleau, M.; Moureaux, C.; Dufranne, D.; Buysse, P.; Bodson, B.; Destain, J.P.; Heinesch, B.; Debacq, A.; Aubinet, M. Respiration of three Belgian crops: Partitioning of total ecosystem respiration in its heterotrophic, above- and below-ground autotrophic components. Agric. For. Meteorol. 2011, 151, 633–643. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.N.; Sapronov, D.V.; Zhmurin, V.A.; Kudeyarov, V.N. Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-Terrasny biosphere reserve in the perspective of current climate trends. Eurasian Soil Sci. 2020, 53, 1421–1436. [Google Scholar] [CrossRef]
- Čapek, P.; Starke, R.; Hofmockel, K.S.; Bond-Lamberty, B.; Hess, N. Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass. Soil Biol. Biochem. 2019, 135, 286–293. [Google Scholar] [CrossRef]
- Makhnykina, A.V.; Prokushkin, A.S.; Menyailo, O.V.; Verkhovets, S.V.; Tychkov, I.I.; Urban, A.V.; Rubtsov, A.V.; Koshurnikova, N.N.; Vaganov, E.A. The Impact of Climatic Factors on CO2 Emissions from Soils of Middle-Taiga Forests in Central Siberia: Emission as a Function of Soil Temperature and Moisture. Russ. J. Ecol. 2020, 51, 46–56. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Für Phys. Chem. 1889, 4, 226. [Google Scholar] [CrossRef]
- van’t Hoff, J.H. Lectures on Theoretical and Physical Chemistry. Part 1: Chemical Dynamics; Lehfeldt, R.A., Translator; Edward Arnold: London, UK, 1898. [Google Scholar]
- Ali, R.S.; Poll, C.; Kandeler, E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biol. Biochem. 2018, 127, 60–70. [Google Scholar] [CrossRef]
- Rowson, J.G.; Worrall, F.; Evans, M.G. Predicting soil respiration from peatlands. Sci. Total Environ. 2013, 442, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Khomik, M.; Altaf Arain, M.; Liaw, K.L.; McCaughey, J.H. Debut of a flexible model for simulating soil respiration-soil temperature relationship: Gamma model. J. Geophys. Res. Biogeosci. 2009, 114, G03004. [Google Scholar] [CrossRef]
- Rodeghiero, M.; Cescatti, A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob. Change Biol. 2005, 11, 1024–1041. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Jenkinson, D.S. The turnover of organic carbon and nitrogen in soil. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1990, 329, 361–368. [Google Scholar]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Reichstein, M.; Carvalhais, N.; Lasslop, G.; Lange, H.; Seneviratne, S.I.; Vargas, R.; Ammann, C.; Arain, M.A.; Cescatti, A.; et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 2010, 329, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Subke, J.A.; Bahn, M. On the ‘temperature sensitivity’ of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biol. Biochem. 2010, 42, 1653–1656. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, B.D.; Gogo, S.; Laggoun-Défarge, F.; Moing, F.; Jégou, F.; Guimbaud, C. Soil temperature synchronisation improves representation of diel variability of ecosystem respiration in Sphagnum peatlands. Agric. For. Meteorol. 2016, 223, 95–102. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Controlling factors. In Soil Respiration and the Environment; Luo, Y., Zhou, X., Eds.; Academic Press: Burlington, MA, USA, 2006; pp. 79–105. [Google Scholar] [CrossRef]
- Swails, E.; Hertanti, D.; Hergoualc’h, K.; Verchot, L.; Lawrence, D. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 2019, 142, 37–51. [Google Scholar] [CrossRef]
- Ma, Y.; McCormick, M.K.; Szlavecz, K.; Filley, T.R. Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages. Soil Biol. Biochem. 2019, 134, 90–99. [Google Scholar] [CrossRef]
- Wang, Y.; Song, C.; Yu, L.; Mi, Z.; Wang, S.; Zeng, H.; Fang, C.; Li, J.; He, J.S. Convergence in temperature sensitivity of soil respiration: Evidence from the Tibetan alpine grasslands. Soil Biol. Biochem. 2018, 122, 50–59. [Google Scholar] [CrossRef]
- Golovatskaya, E.A.; Dyukarev, E.A. The influence of environmental factors on the CO2 emission from the surface of oligotrophic peat soils in West Siberia. Eurasian Soil Sci. J. 2012, 45, 588–597. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Qin, Y.; Yi, S.; Chen, J.; Ren, S.; Wang, X. Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau. Cold Reg. Sci. Technol. 2015, 115, 77–84. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of organic-matter decomposition—Still a topic of debate. Soil Biol. Biochem. 2006, 38, 2510–2518. [Google Scholar] [CrossRef]
- Hamdi, S.; Moyano, F.; Sall, S.; Bernoux, M.; Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 2013, 58, 115–126. [Google Scholar] [CrossRef]
- Dyukarev, E.A. Partitioning of net ecosystem exchange using chamber measurements data from bare soil and vegetated sites. Agric. For. Meteorol. 2017, 239, 236–248. [Google Scholar] [CrossRef]
- LI-COR Biosciences: LI-8100A Automated Soil CO2 Flux System & LI-8150 Multiplexer Instruction Manual. 2010. Available online: http://envsupport.licor.com/docs/LI-8100A_Manual.pdf (accessed on 16 January 2023).
- Kiselev, M.V.; Voropay, N.N.; Dyukarev, E.A.; Kurakov, S.A.; Kurakova, P.S.; Makeev, E.A. Automatic meteorological measuring systems for microclimate monitoring. IOP Conf. Ser. Earth Environ. Sci. 2018, 190, 012031. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, L.; Hou, X.; Schellenberg, M.P. Soil respiration in semiarid temperate grasslands under various land management. PLoS ONE 2016, 11, e0147987. [Google Scholar]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation photosynthesis and respiration model (VPRM). Glob. Biogeochem. Cycles 2008, 22, GB2005. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Kudeyarov, V.N. CO2 emission from soils of various ecosystems of the Southern Taiga zone: Data analysis of continuous 12-year monitoring. Doklady Biol. Sci. 2011, 1, 56–58. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Savage, K.E.; Davidson, E.A.; Abramoff, R.Z.; Finzi, A.C.; Giasson, M.A. Partitioning soil respiration: Quantifying the artifacts of the trenching method. Biogeochemistry 2018, 140, 53–63. [Google Scholar] [CrossRef]
- Díaz-Pinés, E.; Schindlbacher, A.; Pfeffer, M.; Jandl, R.; Zechmeister-Boltenstern, S.; Rubio, A. Root trenching: A useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur. J. For. Res. 2010, 129, 101–109. [Google Scholar] [CrossRef]
- Bahn, M.; Rodeghiero, M.; Anderson-Dunn, M.; Dore, S.; Gimeno, C.; Drösler, M.; Williams, M.; Ammann, C.; Berninger, F.; Flechard, C.; et al. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 2008, 11, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Aronson, E.L.; Goulden, M.L.; Allison, S.D. Greenhouse gas fluxes under drought and nitrogen addition in a Southern California grassland. Soil Biol. Biochem. 2019, 131, 19–27. [Google Scholar] [CrossRef]
- Lohila, A.; Aurela, M.; Regina, K.; Laurila, T. Soil and total ecosystem respiration in agricultural fields: Effect of soil and crop type. Plant Soil 2003, 251, 303–317. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, Y.; Qi, Y.; Xiao, S.; He, Y.; Ma, T. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia, China. Environ. Earth Sci. 2011, 62, 1163–1171. [Google Scholar] [CrossRef]
- Decina, S.M.; Hutyra, L.R.; Gately, C.K.; Getson, J.M.; Reinmann, A.B.; Short Gianotti, A.G.; Templer, P.H. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area. Environ. Pollut. 2016, 212, 433–439. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.S.; Wu, B.; Zhang, Y.Q.; Gong, J.N.; Qin, S.G.; Chen, G.P.; Qian, D.; Kellomäki, S.; Peltola, H. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences 2014, 11, 4679–4693. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Zhang, Y.; Sha, L.; Song, Q.; Zhou, W.; Balasubramanian, D.; Palingamoorthy, G.; Gao, J.; Lin, Y.; et al. Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China. Soil Biol. Biochem. 2019, 138, 107564. [Google Scholar] [CrossRef]
- Vesala, T.; Järvi, L.; Launiainen, S.; Sogachev, A.; Rannik, Ü.; Mammarella, I.; Siivola, E.; Keronen, P.; Rinne, J.; Riikonen, A.; et al. Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 2008, 60, 188–199. [Google Scholar] [CrossRef]
- Kordowski, K.; Kuttler, W. Carbon dioxide fluxes over an urban park area. Atmos. Environ. 2010, 23, 2722–2730. [Google Scholar] [CrossRef]
- Chen, X.; Post, W.M.; Norby, R.J.; Classen, A.T. Modeling soil respiration and variations in source components using a multi-factor global climate change experiment. Clim. Change 2011, 107, 459–480. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Res. Assoc. 2005, 41, 361–375. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Tucker, C.L.; McHugh, T.A.; Howell, A.; Gill, R.; Weber, B.; Belnap, J.; Grote, E.; Reed, S.C. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry 2017, 135, 239–249. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O. Contribution of abiotic factors to CO2 emission from soils in the freeze–thaw cycles. Eurasian Soil Sci. J. 2015, 48, 1009–1015. [Google Scholar] [CrossRef]
- Osipov, A.F. Effect of interannual difference in weather conditions of the growing season on the CO2 emission from the soil surface in the middle-taiga cowberry–lichen pine forest (Komi republic). Eurasian Soil Sci. J. 2018, 51, 1419–1426. [Google Scholar] [CrossRef]
- Ludwig, J.; Meixner, F.X.; Vogel, B.; Förstner, J. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry 2001, 52, 225–257. [Google Scholar] [CrossRef]
- Liu, Y.; He, N.; Zhu, J.; Xu, L.; Yu, G.; Niu, S.; Sun, X.; Wen, X. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Glob. Change Biol. 2017, 23, 3393–3402. [Google Scholar] [CrossRef]
- Juhász, C.; Huzsvai, L.; Kovács, E.; Kovács, G.; Tuba, G.; Sinka, L.; Zsembeli, J. Carbon Dioxide Efflux of Bare Soil as a Function of Soil Temperature and Moisture Content under Weather Conditions of Warm, Temperate, Dry Climate Zone. Agronomy 2022, 12, 3050. [Google Scholar] [CrossRef]
- Xiao, J.F.; Davis, K.J.; Urban, N.M.; Keller, K.; Saliendra, N.Z. Upscaling car- bon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates. J. Geophys. Res. Atmos. 2011, 116, G00J06. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Pendall, E.; Pei, J.; Noh, N.J.; He, J.S.; Li, B.; Nie, M.; Fang, C. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biol. Biochem. 2018, 126, 82–90. [Google Scholar] [CrossRef]
- Bader, C.; Müller, M.; Schulin, R.; Leifeld, J. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature. Biogeosciences 2018, 15, 703–719. [Google Scholar] [CrossRef]
- Wohlfahrt, G.; Galvagno, M. Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning. Agric. For. Meteorol. 2017, 237–238, 135–142. [Google Scholar] [CrossRef]
- Hibbard, K.A.; Law, B.F.; Reichstein, M.; Sulzman, J. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 2005, 73, 29–70. [Google Scholar] [CrossRef]
- Zhou, X.; Wan, S.; Luo, Y. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Glob. Change Biol. 2007, 13, 761–775. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Novak, M.D.; Gaumont-Guay, D.; Nesic, Z. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob. Change Biol. 2008, 14, 1305–1318. [Google Scholar] [CrossRef]
- Qiu, C.; Zhu, D.; Ciais, P.; Guenet, B.; Krinner, G.; Peng, S.; Aurela, M.; Bernhofer, C.; Brümmer, C.; Bret-Harte, S.; et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Mod. Dev. 2018, 11, 497–519. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Lou, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Change Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature-dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Carrasco, J.J.; Neff, J.C.; Harden, J.W. Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. J. Geophys. Res. Biogeosci. 2006, 111, G02004. [Google Scholar] [CrossRef]
- Hogg, E.H.; Lieffers, V.J.; Wein, R.W. Potential carbon losses from peat profiles: Effects of temperature, drought cycles, and fire. Ecol. Appl. 1992, 2, 298–306. [Google Scholar] [CrossRef]
- Hardie, S.M.L.; Garnett, M.H.; Fallick, A.E.; Rowland, A.P.; Ostle, N.J.; Flowers, T.H. Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and δ13C) composition of peat-respired CO2. Soil Biol. Biochem. 2011, 43, 2432–2440. [Google Scholar] [CrossRef]
- Jiang, J.; Guo, S.; Zhang, Y.; Liu, Q.; Wang, R.; Wang, Z.; Li, N.; Li, R. Changes in temperature sensitivity of soil respiration in the phases of a three-year crop rotation system. Soil Tillage Res. 2015, 150, 139–146. [Google Scholar] [CrossRef]
- Fierer, N.; Colman, B.P.; Schimel, J.P.; Jackson, R.B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 2006, 20, GB3026. [Google Scholar] [CrossRef]
- Mamkin, V.; Kurbatova, J.; Avilov, V.; Ivanov, D.; Kuricheva, O.; Andrej, V.; Yaseneva, I.; Olchev, A. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agric. For. Meteorol. 2019, 265, 252–268. [Google Scholar] [CrossRef]
- Schipper, L.A.; Hobbs, J.K.; Rutledge, S.; Arcus, V.L. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Change Biol. 2014, 20, 3578–3586. [Google Scholar] [CrossRef]
- Kurganova, I.; Teepe, R.; Loftfield, N. Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use. Carbon Balance Manag. 2007, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Matzner, E.; Borken, W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 2008, 59, 274–284. [Google Scholar] [CrossRef]
- Janssens, I.A.; Lankreijer, H.; Matteucci, G.; Kowalski, A.S.; Buchmann, N.; Epron, D.; Pilegaard, K.; Kutsch, W.; Longdoz, B.; Grunwald, T.; et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Change Biol. 2001, 7, 269–278. [Google Scholar] [CrossRef]
Model | Equation | Reference |
---|---|---|
1. Linear | [39,40,41] | |
2. Q10 | [11,13] | |
3. Exponential | [11,13] | |
4. Arrhenius | [19,20] | |
5. Lloyd and Taylor | [2,20] | |
6. Power | [19] | |
7. Logistic | [17,22] | |
8. Sigmoid | [19,21] | |
9. Gamma | [11,16] |
Experiment ID | Begin | End | 24 h Mean SR | Day Mean SR | Night Mean SR |
---|---|---|---|---|---|
1 | 14.04 18:00 | 21.04 15:00 | 1.99 ± 0.82 | 2.72 ± 0.57 | 1.50 ± 0.47 |
2 | 05.05 16:00 | 08.05 21:00 | 1.84 ± 0.75 | 2.37 ± 0.84 | 1.39 ± 0.13 |
3 | 12.05 10:40 | 13.05 07:20 | 2.94 ± 0.58 | 3.29 ± 0.25 | 2.34 ± 0.21 |
4 | 06.06 14:00 | 10.06 08:40 | 2.76 ± 0.59 | 2.82 ± 0.82 | 2.75 ± 0.45 |
5 | 20.06 13:40 | 23.06 13:40 | 6.98 ± 1.09 | 7.55 ± 0.66 | 6.52 ± 1.22 |
6 | 04.07 13:20 | 09.07 09:20 | 9.04 ± 1.17 | 9.91 ± 0.54 | 8.28 ± 0.63 |
7 | 12.07 15:20 | 13.07 19:40 | 9.87 ± 2.54 | 7.92 ± 1.55 | 10.98 ± 1.73 |
8 | 18.08 10:00 | 21.08 11:20 | 3.29 ± 0.56 | 3.54 ± 0.51 | 3.23 ± 0.49 |
9 | 15.09 14:40 | 17.09 08:20 | 1.13 ± 0.18 | 1.17 ± 0.18 | 1.12 ± 0.12 |
10 | 03.10 15:40 | 06.10 09:00 | 0.94 ± 0.17 | 0.90 ± 0.19 | 0.95 ± 0.14 |
11 | 08.10 10:20 | 10.10 14:00 | 0.21 ± 0.12 | 0.16 ± 0.08 | 0.24 ± 0.14 |
Depth, cm | Annual T, °C | Max T, °C | Min T, °C | Annual Amplitude, °C | Diurnal Amplitude, °C | Time Lag, Hours or Days |
---|---|---|---|---|---|---|
0 | 6.2 | 31.7 | −1.0 | 32.8 | 12.6 | |
5 | 6.3 | 28.7 | −0.8 | 29.5 | 7.4 | 0 h |
10 | 6.3 | 26.4 | −0.7 | 27.1 | 5.8 | 2 h |
20 | 6.3 | 23.3 | −0.3 | 23.6 | 2.7 | 4 h |
40 | 6.1 | 19.5 | 0.0 | 19.5 | 0.9 | 9 h |
60 | 5.9 | 17.3 | 0.2 | 17.2 | 0.6 | 11 h |
80 | 5.7 | 15.6 | 0.8 | 14.8 | 0 | 12.1 d |
120 | 5.6 | 13.3 | 1.2 | 12.0 | 0 | 14.5 d |
240 | 5.5 | 9.5 | 2.9 | 6.7 | 0 | 34.9 d |
320 | 5.4 | 8.2 | 3.8 | 4.3 | 0 | 73.5 d |
Base Model | ||||||
---|---|---|---|---|---|---|
Model | r | k | p | NSE | R | MAE |
1 | 0.703 | 0.171 | 0.715 | 0.846 | 0.742 | |
2 | 2.303 | 1.638 | 0.691 | 0.832 | 0.787 | |
3 | 1.406 | 0.049 | 0.691 | 0.832 | 0.787 | |
4 | 6.81 × 106 | 3.51 × 104 | 0.698 | 0.836 | 0.776 | |
5 | 2.320 | 202.5 | 0.715 | 0.846 | 0.743 | |
6 | 0.084 | 1.180 | –7.001 | 0.716 | 0.846 | 0.739 |
7 | 7.153 | 0.111 | 6.419 | 0.722 | 0.849 | 0.730 |
8 | 3.369 | 3.023 | 0.471 | 0.722 | 0.849 | 0.730 |
9 | 9.416 | 0.113 | –30.359 | 0.721 | 0.849 | 0.731 |
Modification A | ||||||
Model | r | k = k0 + k1 × T2 | p | NSE | R | MAE |
1A | 0.638 | 0.294–0.026 × Ts320 | - | 0.794 | 0.891 | 0.627 |
2A | 2.321 | 3.040–0.128 × Ts120 | - | 0.837 | 0.915 | 0.571 |
3A | 0.938 | 0.104–0.001 × Ts240 | - | 0.813 | 0.902 | 0.637 |
4A | 1.99 × 107 | 3.63 × 104 + 308.5 × Ts320 | - | 0.775 | 0.880 | 0.656 |
5A | 2.314 | 460.6–23.6 × Ts120 | - | 0.820 | 0.906 | 0.611 |
6A | 2.757 | 1.656–0.029 × Ts240 | –8.459 | 0.804 | 0.897 | 0.624 |
7A | 20.296 | 0.113–0.007 × Ts240 | 17.147 | 0.815 | 0.903 | 0.625 |
8A | 2.487 | 3.525–0.162 × Ts120 | 0.073 | 0.837 | 0.915 | 0.570 |
9A | 9.546 | 0.096 + 0.002 × Ts240 | –31.334 | 0.815 | 0.903 | 0.605 |
Modification B | ||||||
Model | r = r0 + r1 × T3 | k = k0 + k1 × T2 | p | NSE | R | MAE |
1B | –0.092 + 0.120 × Ts20 | 0.255–0.023 × Ts240 | - | 0.821 | 0.906 | 0.594 |
2B | 1.269 + 0.105 × Ts10 | 2.459–0.108 × Ts120 | - | 0.858 | 0.927 | 0.549 |
3B | 0.473 + 0.091 × Ts20 | 0.088–0.005 × Ts240 | - | 0.864 | 0.930 | 0.542 |
4B | 6.98 × 107–3.74 × 106 × Ts60 | 4.17 × 104–298.8 × Ts80 | - | 0.854 | 0.924 | 0.582 |
5B | 1.233 + 0.109 × Ts10 | 402.4–28.4 × Ts120 | - | 0.841 | 0.918 | 0.593 |
6B | –4416 + 32.368 × Ts240 | 2.207–0.106 × Ts240 | –16.492 | 0.862 | 0.929 | 0.547 |
7B | 14.581–0.783 × Ts120 | 0.016 + 0.008 × Ts20 | 8.191 | 0.866 | 0.931 | 0.524 |
8B | 1.311 + 0.107 × Ts10 | 2.54–0.115 × Ts120 | 0.028 | 0.858 | 0.926 | 0.549 |
9B | 6.457–0.071 × Ts60 | –0.071 + 0.003 × Ts120 | –26.753 | 0.857 | 0.926 | 0.558 |
Model ID | Mean | Median | STD | Min | Max |
---|---|---|---|---|---|
Base Model | |||||
1 | 2.54 | 2.39 | 1.61 | −1.47 | 6.86 |
2 | 2.65 | 2.29 | 1.26 | 0.75 | 8.29 |
3 | 2.65 | 2.29 | 1.26 | 0.75 | 8.29 |
4 | 2.64 | 2.29 | 1.29 | 0.63 | 8.04 |
5 | 2.61 | 2.30 | 1.42 | 0.20 | 7.29 |
6 | 2.58 | 2.35 | 1.50 | 0.00 | 7.06 |
7 | 2.62 | 2.27 | 1.49 | 0.26 | 6.39 |
8 | 2.62 | 2.27 | 1.49 | 0.26 | 6.39 |
9 | 2.60 | 2.30 | 1.51 | 0.10 | 6.40 |
Modification A | |||||
1A | 2.40 | 2.20 | 1.60 | −1.36 | 7.01 |
2A | 2.60 | 2.30 | 1.62 | 0.31 | 13.46 |
3A | 2.47 | 2.06 | 1.44 | 0.60 | 9.93 |
4A | 2.42 | 2.19 | 1.44 | 0.33 | 8.17 |
5A | 2.55 | 2.29 | 1.72 | 0.04 | 10.90 |
6A | 2.36 | 2.08 | 1.60 | 0.00 | 7.96 |
7A | 2.45 | 2.04 | 1.46 | 0.48 | 8.88 |
8A | 2.58 | 2.30 | 1.63 | 0.25 | 12.02 |
9A | 2.37 | 2.05 | 1.61 | 0.06 | 7.85 |
Modification B | |||||
1B | 2.30 | 2.07 | 1.71 | −1.78 | 6.99 |
2B | 2.58 | 2.28 | 1.68 | 0.27 | 12.58 |
3B | 2.46 | 2.00 | 1.71 | 0.28 | 12.14 |
4B | 2.55 | 2.10 | 1.60 | 0.38 | 10.94 |
5B | 2.54 | 2.27 | 1.76 | 0.05 | 11.01 |
6B | 2.45 | 2.12 | 1.57 | 0.00 | 8.32 |
7B | 2.44 | 1.82 | 1.67 | 0.57 | 8.91 |
8B | 2.58 | 2.28 | 1.67 | 0.27 | 12.34 |
9B | 2.41 | 1.94 | 1.59 | 0.40 | 9.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyukarev, E.A.; Kurakov, S.A. Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland. Land 2023, 12, 939. https://doi.org/10.3390/land12050939
Dyukarev EA, Kurakov SA. Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland. Land. 2023; 12(5):939. https://doi.org/10.3390/land12050939
Chicago/Turabian StyleDyukarev, Egor A., and Sergey A. Kurakov. 2023. "Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland" Land 12, no. 5: 939. https://doi.org/10.3390/land12050939
APA StyleDyukarev, E. A., & Kurakov, S. A. (2023). Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland. Land, 12(5), 939. https://doi.org/10.3390/land12050939