Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Standardized Precipitation Evapotranspiration Index (SPEI)
2.2.2. Land Cover and Land Use (LCLU) Maps
2.2.3. Normalized Difference Vegetation Index (NDVI)
2.2.4. Satellite Precipitation and Evapotranspiration Datasets
2.2.5. Ground-Based Observations
2.3. Methodology
2.3.1. Intercomparison of LPD Approaches without Climate Correction
2.3.2. Performance of TE-Based LPD Climate Correction Methods
2.3.3. Intercomparison of UNCCD-Recommended LPD Approaches and Observations
3. Results
3.1. Intercomparison between LPD from the TE, JRC-LPD, and FAO-WOCAT Approaches
3.2. Performance of TE-Based LPD Climate Correction Methods in Drought-Prone Subregions
3.3. Accuracy of the UNCCD-Recommended LPD Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A.; Pulwarty, R.S. Drought and Water Crises, 2nd ed.; Wilhite, D., Pulwarty, R.S., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- McCabe, G.J.; Wolock, D.M. Variability and Trends in Global Drought. Earth Space Sci. 2015, 2, 223–228. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under Multi-Year Droughts: How Severe Was the 2014–2018 Drought Period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Apurv, T.; Cai, X. Regional Drought Risk in the Contiguous United States. Geophys. Res. Lett. 2021, 48, e2020GL092200. [Google Scholar] [CrossRef]
- Erfanian, A.; Wang, G.; Fomenko, L. Unprecedented Drought over Tropical South America in 2016: Significantly under-Predicted by Tropical SST. Sci. Rep. 2017, 7, 5811. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Marengo, J.A.; Alves, L.M.; Sulca, J.C.; Takahashi, K.; Ferrett, S.; Collins, M. The Role of ENSO Flavours and TNA on Recent Droughts over Amazon Forests and the Northeast Brazil Region. Int. J. Climatol. 2021, 41, 3761–3780. [Google Scholar] [CrossRef]
- Cuartas, L.A.; do Amaral Cunha, A.P.M.; Alves, J.A.; Parra, L.M.P.; Deusdará-Leal, K.R.; Costa, L.C.M.; Molina, R.; Amore, D.; Broedel, E.; Seluchi, M.E.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought Preparedness in Brazil. Weather Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Marengo, J.A.; Bernasconi, M. Regional Differences in Aridity/Drought Conditions over Northeast Brazil: Present State and Future Projections. Clim. Change 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic Characteristics of the 2010–2016 Drought in the Semiarid Northeast Brazil Region. An. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Rossato, L.; dos Alvalá, R.C.S.; Marengo, J.A.; Zeri, M.; do Cunha, A.P.M.A.; Pires, L.B.M.; Barbosa, H.A. Impact of Soil Moisture on Crop Yields over Brazilian Semiarid. Front. Environ. Sci. 2017, 5, 73. [Google Scholar] [CrossRef]
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, Duration and Severity of Drought in the Semiarid Northeast Brazil Region. Int. J. Climatol. 2018, 38, 517–529. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-Use Change Affects Water Recycling in Brazil’s Last Agricultural Frontier. Global Change Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; dos Vianna, M.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A Review of Agricultural and Policy Adaptation Options for Food Security. Clim. Resil. Sustain. 2022, 1, e17. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Campos, J.; Carvalho, T. Drought and Water Policies in Northeast Brazil: Backgrounds and Rationale. Water Policy 2008, 10, 425–438. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- De Assis Souza Filho, F.; Formiga-Johnsson, R.M.; de Carvalho Studart, T.M.; Abicalil, M.T. From Drought to Water Security: Brazilian Experiences and Challenges. In Global Water Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 233–265. [Google Scholar]
- Park, S.-Y.; Sur, C.; Kim, J.-S.; Lee, J.-H. Evaluation of Multi-Sensor Satellite Data for Monitoring Different Drought Impacts. Stoch. Environ. Res. Risk Assess. 2018, 32, 2551–2563. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Kumar, T.V.L.; Thakur, M.K.; de Buriti, C.O.; Uzcátegui-Briceño, C. Drought Assessment in the São Francisco River Basin Using Satellite-Based and Ground-Based Indices. Remote Sens. 2021, 13, 3921. [Google Scholar] [CrossRef]
- Stanturf, J.A. Landscape Degradation and Restoration. In Soils and Landscape Restoration; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–159. [Google Scholar]
- Nachtergaele, F.O.F.; Licona-Manzur, C. The Land Degradation Assessment in Drylands (LADA) Project: Reflections on Indicators for Land Degradation Assessment. In The Future of Drylands; Springer: Dordrecht, The Netherlands, 2008; pp. 327–348. [Google Scholar]
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-Year Study of NDVI Variability over the Northeast Region of Brazil. J. Arid Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Grainger, A. Is Land Degradation Neutrality Feasible in Dry Areas? J. Arid Environ. 2015, 112, 14–24. [Google Scholar] [CrossRef]
- Sims, N.C.; England, J.R.; Newnham, G.J.; Alexander, S.; Green, C.; Minelli, S.; Held, A. Developing Good Practice Guidance for Estimating Land Degradation in the Context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 2019, 92, 349–355. [Google Scholar] [CrossRef]
- Diallo, H.A. United Nations Convention to Combat Desertification (UNCCD). In The Future of Drylands; Springer: Dordrecht, The Netherlands, 2008; pp. 13–16. [Google Scholar]
- Sims, N.C.; Barger, N.N.; Metternicht, G.I.; England, J.R. A Land Degradation Interpretation Matrix for Reporting on UN SDG Indicator 15.3.1 and Land Degradation Neutrality. Environ. Sci. Policy 2020, 114, 1–6. [Google Scholar] [CrossRef]
- Akhtar-Schuster, M.; Stringer, L.C.; Erlewein, A.; Metternicht, G.; Minelli, S.; Safriel, U.; Sommer, S. Unpacking the Concept of Land Degradation Neutrality and Addressing Its Operation through the Rio Conventions. J. Environ. Manag. 2017, 195, 4–15. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.; Giovannettone, J.; Kumar, T.V.L.; Thakur, M.K.; de Oliveira Buriti, C. Drought Variability and Land Degradation in the Amazon River Basin. Front. Earth Sci. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Barker, L.J.; Rickards, N.J.; Sarkar, S.; Hannaford, J.; King-Okumu, C.; Rees, G. Good Practice Guidance for National Reporting on UNCCD Strategic Objective 3: To Mitigate, Adapt to, and Manage the Effects of Drought in Order to Enhance Resilience of Vulnerable Populations and Ecosystems; United Nations Convention to Combat Desertification: New York, NY, USA, 2021. [Google Scholar]
- Guo, W.Q.; Yang, T.B.; Dai, J.G.; Shi, L.; Lu, Z.Y. Vegetation Cover Changes and Their Relationship to Climate Variation in the Source Region of the Yellow River, China, 1990–2000. Int. J. Remote Sens. 2008, 29, 2085–2103. [Google Scholar] [CrossRef]
- Rotllan-Puig, X.; Ivits, E.; Cherlet, M. LPDynR: A New Tool to Calculate the Land Productivity Dynamics Indicator. Ecol. Indic. 2021, 133, 108386. [Google Scholar] [CrossRef]
- Teich, I.; Roglich, M.G.; Corso, M.L.; García, C.L. Combining Earth Observations, Cloud Computing, and Expert Knowledge to Inform National Level Degradation Assessments in Support of the 2030 Development Agenda. Remote Sens. 2019, 11, 2918. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Overview of Land Degradation Neutrality (LDN) in Europe and Central Asia; FAO, Ed.; FAO: Roma, Italy, 2022. [Google Scholar]
- Barbosa, H.A.; Kumar, T.V.L. Influence of Rainfall Variability on the Vegetation Dynamics over Northeastern Brazil. J. Arid Environ. 2016, 124, 377–387. [Google Scholar] [CrossRef]
- De Oliveira, M.L.; dos Santos, C.A.C.; de Oliveira, G.; Silva, M.T.; da Silva, B.B.; de Cunha, J.E.B.L.; Ruhoff, A.; Santos, C.A.G. Remote Sensing-Based Assessment of Land Degradation and Drought Impacts over Terrestrial Ecosystems in Northeastern Brazil. Sci. Total Environ. 2022, 835, 155490. [Google Scholar] [CrossRef]
- Prince, S.D. Challenges for Remote Sensing of the Sustainable Development Goal SDG 15.3.1 Productivity Indicator. Remote Sens. Environ. 2019, 234, 111428. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can Human-Induced Land Degradation Be Distinguished from the Effects of Rainfall Variability? A Case Study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to Detectability of Land Degradation by Trend Analysis of Vegetation Index Data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- De Santiago, D.B.; Barbosa, H.A.; Filho, W.L.F.C.; de Oliveira-Júnior, J.F.; Paredes-Trejo, F.; de Oliveira Buriti, C. Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia. Sustainability 2022, 14, 16004. [Google Scholar] [CrossRef]
- Markos, A.; Sims, N.; Giuliani, G. Beyond the SDG 15.3.1 Good Practice Guidance 1.0 Using the Google Earth Engine Platform: Developing a Self-Adjusting Algorithm to Detect Significant Changes in Water Use Efficiency and Net Primary Production. Big Earth Data 2023, 7, 59–80. [Google Scholar] [CrossRef]
- Noojipady, P.; Prince, S.D.; Rishmawi, K. Reductions in Productivity Due to Land Degradation in the Drylands of the Southwestern United States. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Liu, R.; Yuan, Y.; Yu, T. Monitoring Land Degradation and Assessing Its Drivers to Support Sustainable Development Goal 15.3 in Central Asia. Sci. Total Environ. 2022, 807, 150868. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge Generation Using Satellite Earth Observations to Support Sustainable Development Goals (SDG): A Use Case on Land Degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Alamanos, A.; Linnane, S. Estimating SDG Indicators in Data-Scarce Areas: The Transition to the Use of New Technologies and Multidisciplinary Studies. Earth 2021, 2, 635–652. [Google Scholar] [CrossRef]
- Kang, W.; Wang, T.; Liu, S. The Response of Vegetation Phenology and Productivity to Drought in Semi-Arid Regions of Northern China. Remote Sens. 2018, 10, 727. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Maia, A.G.; Cesano, D.; Miyamoto, B.C.B.; Eusebio, G.S.; de Silva, P.A.O. Climate Change and Farm-Level Adaptation: The Brazilian Sertão. Int. J. Clim. Change Strateg. Manag. 2018, 10, 729–751. [Google Scholar] [CrossRef]
- Pilz, T.; Delgado, J.M.; Voss, S.; Vormoor, K.; Francke, T.; Costa, A.C.; Martins, E.; Bronstert, A. Seasonal Drought Prediction for Semiarid Northeast Brazil; Institut für Erd-und Umweltwissenschaften: Potsdam, Germany, 2019. [Google Scholar]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily Gridded Meteorological Variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Berry, P.A.M.; Garlick, J.D.; Smith, R.G. Near-Global Validation of the SRTM DEM Using Satellite Radar Altimetry. Remote Sens. Environ. 2007, 106, 17–27. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Xavier, A.C. An Update of Xavier, King and Scanlon (2016) Daily Precipitation Gridded Data Set for the Brazil. In Proceedings of the 18th Brazilian Symposium on Remote Sensing, Santos, SP, Brazil, 28–31 May 2017; pp. 28–33. [Google Scholar]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Neves, A.K.; Körting, T.S.; Fonseca, L.M.G.; Escada, M.I.S. Assessment of TerraClass and MapBiomas Data on Legend and Map Agreement for the Brazilian Amazon Biome. Acta Amaz. 2020, 50, 170–182. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Kumar, T.V.L.; de Oliveira Buriti, C.; Prieto, J. Assessing Satellite-Based Products in Characterizing Agricultural Drought Under Climate Change in Northeast Brazil. In Climate Change and Agriculture; Wiley: Hoboken, NJ, USA, 2022; pp. 426–442. [Google Scholar]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of Global Actual Evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Santana, M.O. Atlas Das Áreas Susceptíveis à Desertificação Do Brasil; Ministry of Environment of Brazil: Brasília, Brazil, 2007.
- Da Vieira, R.M.S.P.; Sestini, M.F.; Tomasella, J.; Marchezini, V.; Pereira, G.R.; Barbosa, A.A.; Santos, F.C.; Rodriguez, D.A.; do Nascimento, F.R.; Santana, M.O.; et al. Characterizing Spatio-Temporal Patterns of Social Vulnerability to Droughts, Degradation and Desertification in the Brazilian Northeast. Environ. Sustain. Indic. 2020, 5, 100016. [Google Scholar] [CrossRef]
- Cunha, A.P.M.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring Vegetative Drought Dynamics in the Brazilian Semiarid Region. Agric. For. Meteorol. 2015, 214–215, 494–505. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring Land Degradation at National Level Using Satellite Earth Observation Time-Series Data to Support SDG15—Exploring the Potential of Data Cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef]
- Tillé, Y.; Matei, A.; Matei, M.A.; Imports, M. Package ‘Sampling’. Surv. Sampling. Kasutatud 2016, 23, 2017. [Google Scholar]
- Fernández, J.C.; Carbonero, M.; Gutiérrez, P.A.; Hervás-Martínez, C. Multi-Objective Evolutionary Optimization Using the Relationship between F1 and Accuracy Metrics in Classification Tasks. Appl. Intell. 2019, 49, 3447–3463. [Google Scholar] [CrossRef]
- Ma, Y.Z. Statistical Analysis of Geoscience Data. In Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling; Springer: Cham, Switzerland, 2019; pp. 49–75. [Google Scholar]
- Boschetti, L.; Kunzle, A.; Brivio, P.; Mussio, L. Non Parametric Statistical Tests for the Analysis of Multiple-Sensor Time Series of Remotely Sensed Data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 200–203. [Google Scholar]
- Ripley, B.D. The R Project in Statistical Computing. MSOR Connect. 2001, 1, 23–25. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A Generalized Confusion Matrix for Assessing Area Estimates from Remotely Sensed Data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef]
- Schillaci, C.; Jones, A.; Vieira, D.; Munafò, M.; Montanarella, L. Evaluation of the United Nations Sustainable Development Goal 15.3.1 Indicator of Land Degradation in the European Union. Land Degrad. Dev. 2023, 34, 250–268. [Google Scholar] [CrossRef]
- Silva Pinto Vieira, R.M.D.; Tomasella, J.; Barbosa, A.A.; Martins, M.A.; Rodriguez, D.A.; Rezende, F.S.D.; Carriello, F.; Santana, M.D.O. Desertification Risk Assessment in Northeast Brazil: Current Trends and Future Scenarios. Land Degrad. Dev. 2021, 32, 224–240. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Neto, G.G.R.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing Drought in the Drylands of Northeast Brazil under Regional Warming Exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Vargha, A.; Delaney, H.D. Kruskal–Wallis Test. In The SAGE Encyclopedia of Communication Research Methods; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2017; Volume 23, pp. 170–192. [Google Scholar]
- Tomasella, J.; Silva Pinto Vieira, R.M.; Barbosa, A.A.; Rodriguez, D.A.; de Oliveira Santana, M.; Sestini, M.F. Desertification Trends in the Northeast of Brazil over the Period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Buriti, C.; Barbosa, H.A.; Paredes-Trejo, F.J.; Kumar, T.V.L.; Thakur, M.K.; Rao, K.K. Un Siglo de Sequías: ¿Por Qué Las Políticas de Agua No Desarrollaron La Región Semiárida Brasileña? Rev. Bras. Meteorol. 2020, 35, 683–688. [Google Scholar] [CrossRef]
- Da Jardim, A.M.R.F.; do Araújo Júnior, G.N.; da Silva, M.V.; dos Santos, A.; da Silva, J.L.B.; Pandorfi, H.; de Oliveira-Júnior, J.F.; de Teixeira, A.H.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Kumar, T.V.L.; Silva, L.R.M. Recent Trends in Vegetation Dynamics in the South America and Their Relationship to Rainfall. Nat. Hazards 2015, 77, 883–899. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Kumar, T.L.; Paredes, F.; Elliott, S.; Ayuga, J.G. Assessment of Caatinga Response to Drought Using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008–2016). ISPRS J. Photogramm. Remote Sens. 2019, 148, 235–252. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Balzter, H.; Kaduk, J.; Tucker, C. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Ding, C.; Huang, F. Phenology-Based Residual Trend Analysis of MODIS-NDVI Time Series for Assessing Human-Induced Land Degradation. Sensors 2018, 18, 3676. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting Dryland Degradation Using Time Series Segmentation and Residual Trend Analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Matarira, D.; Mutanga, O.; Dube, T. Landscape Scale Land Degradation Mapping in the Semi-Arid Areas of the Save Catchment, Zimbabwe. S. Afr. Geogr. J. 2021, 103, 183–203. [Google Scholar] [CrossRef]
Datasets | Temporal Resolution | Version | Pixel Size | Period | Spatial Extent | Source |
---|---|---|---|---|---|---|
SPEI | One day | 2 | 0.25° | 1980–2015 | All Brazil | https://bit.ly/3VNvNUF (accessed on 22 February 2023) |
LCLU | One year | 7 | 30 m | 1985–2021 | All Brazil | https://mapbiomas.org (accessed on 10 February 2023) |
CHIRPS | One day | 2 | 0.05° | 1981–present | 50° N–50° S | https://bit.ly/3GqMP5j (accessed on 10 February 2023) |
MOD13Q1 NDVI | 16 days | 6 | 250 m | 2001–present | Global | https://bit.ly/3GrvAB6 (accessed on 22 February 2023) |
SPOT-VGT NDVI | Ten days | 3 | 1 km | 1999–2019 | Global | https://bit.ly/3WTzVE7 (accessed on 20 February 2023) |
MOD16A2 ET | Eight days | 6 | 500 m | 2001–present | Global | https://bit.ly/3QnPh1a (accessed on 20 February 2023) |
LPD 1 | |||
---|---|---|---|
Degraded Land | Non-Degraded Land | ||
LPD 2 | Degraded land | a | b |
Non-degraded Land | c | d |
Mapbiomas’s Map or INSA’s Map | |||
---|---|---|---|
Degraded Land | Non-Degraded Land | ||
LPD | Degraded land | TP | FP |
Non-degraded Land | FN | TN |
Precipitation | LPD Dataset | TE | JRC-LPD | FAO-WOCAT |
---|---|---|---|---|
Low [P < 597 mm/yr.] N = 10,000 pixels | TE | - | 0.748 | 0.956 |
JRC-LPD | 0.748 | - | 0.757 | |
FAO-WOCAT | 0.956 | 0.757 | - | |
Moderate [P > 597 and < 855 mm/yr.] N = 10,000 pixels | TE | - | 0.778 | 0.971 |
JRC-LPD | 0.778 | - | 0.774 | |
FAO-WOCAT | 0.971 | 0.774 | - | |
High [P > 855 mm/yr.] N = 10,000 pixels | TE | - | 0.811 | 0.972 |
JRC-LPD | 0.811 | - | 0.814 | |
FAO-WOCAT | 0.972 | 0.814 | - |
Benchmark | TE | JRC | FAO-WOCAT | RUE-Based LPD | RESTREND-Based LPD | WUE-Based LPD |
---|---|---|---|---|---|---|
INSA | 0.218 ± 0.002 | 0.005 ± 0.001 | 0.219 ± 0.002 | 0.025 ± 0.001 | 0.224 ± 0.002 | 0.045 ± 0.001 |
MapBiomas | 0.403 ± 0.003 | 0.008 ± 0.001 | 0.401 ± 0.004 | 0.009 ± 0.002 | 0.394 ± 0.003 | 0.104 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Trejo, F.; Barbosa, H.A.; Daldegan, G.A.; Teich, I.; García, C.L.; Kumar, T.V.L.; Buriti, C.d.O. Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region. Land 2023, 12, 954. https://doi.org/10.3390/land12050954
Paredes-Trejo F, Barbosa HA, Daldegan GA, Teich I, García CL, Kumar TVL, Buriti CdO. Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region. Land. 2023; 12(5):954. https://doi.org/10.3390/land12050954
Chicago/Turabian StyleParedes-Trejo, Franklin, Humberto Alves Barbosa, Gabriel Antunes Daldegan, Ingrid Teich, César Luis García, T. V. Lakshmi Kumar, and Catarina de Oliveira Buriti. 2023. "Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region" Land 12, no. 5: 954. https://doi.org/10.3390/land12050954
APA StyleParedes-Trejo, F., Barbosa, H. A., Daldegan, G. A., Teich, I., García, C. L., Kumar, T. V. L., & Buriti, C. d. O. (2023). Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region. Land, 12(5), 954. https://doi.org/10.3390/land12050954