Spatial and Temporal Distribution of the Ecosystem Provisioning Service and Its Correlation with Food Production in the Songhua River Basin, Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Calculation of the PSV
2.4. Moran Index
2.5. Data Analysis
3. Results
3.1. Land Use Change
3.2. Variations in the PSV of the SHRB
3.3. Spatial Distribution of Secondary Categories of the PSV and Their Change
3.4. Correlation between the PSV and Food Production
4. Discussion
4.1. Impacts of Climate Change on the PSV and Food Supply
4.2. Ecological Effects of Different Land Use Types
4.3. Impact of Cropping Systems on the PSV and Food Supply
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baude, M.; Meyer, B.C. Changes in landscape structure and ecosystem services since 1850 analyzed using landscape metrics in two German municipalities. Ecol. Indic. 2023, 152, 110365. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, S.; Yu, Y.; Tong, G.; Mo, L.; Yan, D.; Li, F. Spatiotemporal interaction between ecosystem services and urbanization: Case study of Nanjing City, China. Ecol. Indic. 2018, 95, 917–929. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Y.; Wang, X.; Zhou, Z. System dynamic relationship between service water and food: Case study at Jinghe River Basin. J. Clean. Prod. 2022, 330, 129794. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar, H.; Voigt, W. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecol. Inform. 2016, 32, 145–155. [Google Scholar] [CrossRef]
- Zhou, T. New physical science behind climate change: What does IPCC AR6 tell us? Innovation 2021, 2, 100173. [Google Scholar] [CrossRef]
- Lu, Y.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Gordon, I.J.; Song, S.; Huang, J.; Jia, S.; Zhang, F.; Liu, X.; et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv. 2015, 1, e1400039. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Vitousek, P. An experiment for the world. Nature 2013, 497, 33. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef] [PubMed]
- Small, N.; Munday, M.; Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang. 2017, 44, 57–67. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, L. Review of the value evaluation and realization mechanism of ecosystem services. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 84–94. [Google Scholar]
- Yin, N.; Wang, S.; Liu, Y. Ecosystem service value assessment: Research progress and prospects. Chin. J. Ecol. 2021, 40, 233–244. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Cao, Y.; Hua, L.; Tang, Q.; Liu, L.; Cai, C. Evaluation of monthly-scale soil erosion spatio-temporal dynamics and identification of their driving factors in Northeast China. Ecol. Indic. 2023, 150, 110187. [Google Scholar] [CrossRef]
- Wen, D.; Liang, W. Soil Fertility Quality and Agricultural Sustainable Development in the Black Soil Region of Northeast China. Environ. Dev. Sustain. 2001, 3, 31–43. [Google Scholar] [CrossRef]
- Liu, M.; Guo, Y.; Zhang, X.; Shen, Y.-J.; Zhang, Y.; Pei, H.; Min, L.; Wang, S.; Shen, Y. China’s Black Soil Granary is increasingly facing extreme hydrological drought threats. Sci. Bull. 2023, 68, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Yan, X. Study on Water-Land-Food (WLF) Nexus in Northeast China; Chinese Academy of Agricultural Sciences: Beijing, China, 2020. [Google Scholar]
- Zhang, Y.; Qu, J.; Wang, L. Spatial and temporal variation, and distribution uniformity of ESV. J. Fuzhou Univ. (Nat. Sci. Ed.) 2020, 48, 653–660. [Google Scholar]
- Wang, S.; Wang, Y.; Ran, L.; Su, T. Climatic and anthropogenic impacts on runoff changes in the Songhua River basin over the last 2015, 56 years (1955–2010), Northeastern China. CATENA 2015, 127, 258–269. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Wang, Y.; Ma, J. Effects of land use change on ecosystem services value in Guangxi section of the Pearl River-West River Economic Belt at the county scale. Acta Ecol. Sin. 2020, 40, 7826–7839. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Bo, W.; Xiao, Y.; Wang, L.; Wang, X.; Ouyang, Z. Assessment of the status of ecological assets and variation of its characteristics: A case study of Hinggan League, Inner Mongolia. Acta Ecol. Sin. 2019, 39, 5425–5432. [Google Scholar]
- Qiu, J.; Carpenter, S.R.; Booth, E.G.; Motew, M.; Zipper, S.C.; Kucharik, C.J.; Chen, X.; Loheide, S.P., II; Seifert, J.; Turner, M.G. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecol. Appl. 2018, 28, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Groffman, P.; Staudinger, M. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment. Clim. Chang. 2016, 135, 97–109. [Google Scholar] [CrossRef]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 2016, 54, 389–401. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since. Science 1980, 2011, 333. [Google Scholar]
- Briner, S.; Elkin, C.; Huber, R. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J. Environ. Manag. 2013, 129, 414–422. [Google Scholar] [CrossRef]
- Kunimitsu, Y. Regional impacts of long-term climate change on rice production and agricultural income: Evidence from computable general equilibrium analysis. J. Jpn. Soc. Civ. Eng. 2014, 70, 13–19. [Google Scholar] [CrossRef]
- Kuglerová, L.; Jyväsjärvi, J.; Ruffing, C.; Muotka, T.; Jonsson, A.; Andersson, E.; Richardson, J.S. Cutting edge: A comparison of contemporary practices of riparian buffer retention around small streams in Canada, Finland, and Sweden. Water Resour. Res. 2020, 56, e2019WR026381. [Google Scholar] [CrossRef]
- Chiang, L.; Lin, Y.; Huang, T.; Schmeller, D.; Verburg, P.; Liu, Y.; Ding, T. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landsc. Urban Plan. 2014, 122, 41–55. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, F.; Xu, Y.; Gao, Y.; Xie, Z. Evaluation of land reclamation and implications of ecological restoration for agro-pastoral ecotone: Case study of Horqin Left Back Banner in China. Chin. Geogr. Sci. 2017, 27, 772–783. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
Land Use Type | Forestland | Grassland | Water Body | Construction Land | Bare Land | Paddy Field | Dry Land | |
---|---|---|---|---|---|---|---|---|
Ecosystem provisioning service | Food supply | 0.67 | 0.22 | 0.53 | 0.02 | 0.00 | 1.36 | 0.85 |
Raw materials supply | 0.35 | 0.33 | 0.15 | 0.03 | 0.00 | 0.09 | 0.40 | |
Water supply | 2.20 | 0.18 | 6.25 | 0.08 | 0.00 | −2.63 | 0.02 |
Year | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Land Use Type | Area (104 km2) | Percent (%) | Area (104 km2) | Percent (%) | Area (104 km2) | Percent (%) |
Forestland | 21.88 | 39.44 | 21.85 | 39.40 | 21.54 | 38.90 |
Grassland | 6.66 | 12.01 | 6.66 | 12.00 | 5.94 | 10.72 |
Water body | 1.50 | 2.71 | 1.49 | 2.69 | 1.07 | 1.93 |
Construction land | 1.37 | 2.47 | 1.40 | 2.52 | 1.66 | 3.00 |
Bare land | 3.62 | 6.53 | 3.56 | 6.42 | 3.98 | 7.18 |
Paddy field | 2.60 | 4.69 | 2.58 | 4.65 | 3.15 | 5.68 |
Dry land | 17.82 | 32.13 | 17.92 | 32.32 | 18.05 | 32.59 |
2000 | 2020 | ||||||
---|---|---|---|---|---|---|---|
Forestland | Grassland | Water Body | Construction Land | Bare Land | Paddy Field | Dry Land | |
Forestland | 1737.32 | 137.64 | 12.01 | 11.60 | 67.52 | 18.11 | 200.93 |
Grassland | 163.55 | 303.25 | 6.44 | 8.51 | 63.22 | 10.33 | 109.84 |
Water body | 9.12 | 7.08 | 49.32 | 3.34 | 37.09 | 13.99 | 28.11 |
Construction land | 9.80 | 6.19 | 2.36 | 27.61 | 3.25 | 11.27 | 76.63 |
Bare land | 45.70 | 38.54 | 11.79 | 6.82 | 151.15 | 22.83 | 84.84 |
Paddy field | 18.13 | 3.50 | 5.02 | 15.07 | 6.70 | 135.65 | 75.73 |
Dry land | 170.17 | 97.53 | 19.78 | 93.05 | 68.51 | 102.32 | 1228.33 |
Ecosystem Services | PSV (1010 RMB) | PSV Change (1010 RMB) | ||||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | |
Provisioning services | 0.10 | 4.49 | 16.83 | 4.39 | 12.34 | 16.73 |
Food supply | 0.03 | 1.52 | 6.02 | 1.49 | 4.50 | 5.99 |
Raw materials supply | 0.02 | 0.74 | 2.87 | 0.72 | 2.13 | 2.85 |
Water supply | 0.05 | 2.23 | 7.94 | 2.18 | 5.71 | 7.89 |
Major Crops | Rice | Wheat | Corn | Soja |
---|---|---|---|---|
Total PSV | −0.016 | −0.028 | −0.086 | 0.091 |
Food supply | −0.093 | −0.014 | −0.087 | 0.024 |
Raw materials supply | −0.032 | −0.097 | −0.088 | 0.066 |
Water supply | 0.006 | −0.02 | −0.064 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Yang, H.; Zhu, C.; Cao, J. Spatial and Temporal Distribution of the Ecosystem Provisioning Service and Its Correlation with Food Production in the Songhua River Basin, Northeastern China. Land 2024, 13, 451. https://doi.org/10.3390/land13040451
Zhao Y, Yang H, Zhu C, Cao J. Spatial and Temporal Distribution of the Ecosystem Provisioning Service and Its Correlation with Food Production in the Songhua River Basin, Northeastern China. Land. 2024; 13(4):451. https://doi.org/10.3390/land13040451
Chicago/Turabian StyleZhao, Yuhan, Hui Yang, Chunyu Zhu, and Jiansheng Cao. 2024. "Spatial and Temporal Distribution of the Ecosystem Provisioning Service and Its Correlation with Food Production in the Songhua River Basin, Northeastern China" Land 13, no. 4: 451. https://doi.org/10.3390/land13040451
APA StyleZhao, Y., Yang, H., Zhu, C., & Cao, J. (2024). Spatial and Temporal Distribution of the Ecosystem Provisioning Service and Its Correlation with Food Production in the Songhua River Basin, Northeastern China. Land, 13(4), 451. https://doi.org/10.3390/land13040451