Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Data Source and Pre-Processing of the Remote Sensing Data
2.2.2. Sample Point Selection and Validation
2.2.3. Carbon Density Data
2.3. Method
2.3.1. Random Forest Algorithm
2.3.2. Precision Evaluation Method
2.3.3. InVEST Model
2.3.4. Correlation Analysis
3. Results
3.1. Analysis of LULC Classification Mapping Results for the NLR Basin
3.2. Spatial and Temporal Changes in LULC in the NLR Basin
3.3. Spatial and Temporal Changes in LULC Carbon Storage in the NLR Basin
3.4. The Effect of LULC Change on Carbon Storage in the NLR Basin
4. Discussion
4.1. Spatial and Temporal Changes in Wetlands in the NLR Basin Based on the GEE Platform
4.2. Effects of Temporal and Spatial Variation in Wetlands on Carbon Storage in the NLR Basin
4.3. Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Lu, X.; Yonghe, S.; Zhike, C.; Wu, H.; Zhao, Y. Hydrological evolution of wetland in Naoli River Basin and its driving mechanism. Water Resour. Manag. 2012, 26, 1455–1475. [Google Scholar] [CrossRef]
- Li, J. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecol. Sin. 2020, 40, 8928–8935. [Google Scholar]
- Min, R.; Haibo, W. Landscape Patterns Change of the Heihe Wetland of Zhangye and Its Value Assessment of Carbon Storage in Recent 15 Years. J. Arid. Meteorol. 2020, 38, 828. [Google Scholar]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, L13402. [Google Scholar] [CrossRef]
- Mu, C.; Wang, B.; Lu, H.; Bao, X.; Cui, W. Carbon storage of natural wetland ecosystem in Daxing’anling of China. Acta Ecol. Sin. 2013, 33, 4956–4965. [Google Scholar]
- Whiting, G.J.; Chanton, J.P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B 2001, 53, 521–528. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Nahlik, A.; Wolski, P.; Bernal, B.; Zhang, L.; Ramberg, L. Tropical wetlands: Seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl. Ecol. Manag. 2010, 18, 573–586. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M.; Geng, L. Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin. Nat. Hazards 2015, 79, 1753–1772. [Google Scholar] [CrossRef]
- Hai-Bo, W.; Ming-Guo, M. A Review of Monitoring Change in Lake Water Areas Based on Remote Sensing. Remote Sens. Technol. Appl. 2010, 24, 674–684. [Google Scholar]
- Sreekanth, P.; Krishnan, P.; Rao, N.; Soam, S.; Srinivasarao, C. Mapping surface-water area using time series landsat imagery on Google Earth Engine: A case study of Telangana, India. Curr. Sci. 2021, 120, 1491–1499. [Google Scholar] [CrossRef]
- Yin, H.; Hu, Y.; Liu, M.; Li, C.; Chang, Y. Evolutions of 30-year spatio-temporal distribution and influencing factors of Suaeda salsa in Bohai Bay, China. Remote Sens. 2022, 14, 138. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, S.; Xie, F.; Zhu, S.; Zhang, S. Extraction of long time series wetland information based on Google Earth Engine and random forest algorithm for a plateau lake basin—A case study of Dianchi Lake, Yunnan Province, China. Ecol. Indic. 2023, 146, 109813. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Yao, X.; Liu, Y.; Xie, S.; Sheng, Y.; Luan, Z. Carbon Storage Estimation of Coastal Wetlands in China. Acta Pedol. Sin. 2022, 60, 800–814. [Google Scholar] [CrossRef]
- Xiaomin, Z.; Nanshan, Z.; Yun, Q.; Shun, C. Inversing of Vegetation Biomass Based on GPS-R. Bull. Surv. Mapp. 2018, 25, 129–132. [Google Scholar] [CrossRef]
- Cao, L.; Xu, T.; Shen, X. Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests. J. Remote Sens. 2016, 20, 665–678. [Google Scholar]
- Cui, L.-J.; Ma, Q.-F.; Song, H.-T.; Luan, J.-W. Estimation methods of wetland ecosystem carbon storage: A review. Chin. J. Ecol. 2012, 31, 2673. [Google Scholar]
- Wantai, Y.; Yongqiang, Y. Advances in the research of underground biomass. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2001, 12, 927–932. [Google Scholar]
- Dorrepaal, E.; Cornelissen, J.H.; Aerts, R.; Wallen, B.; Van Logtestijn, R.S. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J. Ecol. 2005, 93, 817–828. [Google Scholar] [CrossRef]
- Jiao, Y.; Hu, H. Carbon storage and its dynamics of forest vegetations in Heilongjiang Province. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2005, 16, 2248–2252. [Google Scholar]
- Long, Y.; Jiang, F.; Sun, H.; Wang, T.; Zou, Q.; Chen, C. Estimating vegetation carbon storage based on optimal bandwidth selected from geographically weighted regression model in Shenzhen City. Acta Ecol. Sin. 2022, 42, 4933–4945. [Google Scholar] [CrossRef]
- Miao, L.; Guohua, L. Impact factors and uncertainties of the estimation on soil organic carbon storage. Ecol. Environ. Sci. 2014, 23, 1222–1232. [Google Scholar]
- Yin, S.; Yang, Q.; Liu, X. Distribution and accumulation of organic carbon in typical annular wetlands of the Sanjiang Plain. Chin. J. Soil Sci. 2006, 37, 659–661. [Google Scholar]
- Mao, D.; Wang, Z.; Li, L.; Miao, Z.; Ma, W.; Song, C.; Ren, C.; Jia, M. Soil organic carbon in the Sanjiang Plain of China: Storage, distribution and controlling factors. Biogeosciences 2015, 12, 1635–1645. [Google Scholar] [CrossRef]
- Yang, a.; Miao, z.; Qiu, f.; Yang, q.; Wang, z.; Ma, d. A Study on Storage and Distribution of Soil Organic Carbon in SanjiangPlain Based on GIS. Bull. Soil Water Conserv. 2015, 35, 155–158. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhou, D.; Ma, J.; Dang, R.; Ma, J.; Zhu, X. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model. Acta Ecol. Sin 2021, 41, 4052–4065. [Google Scholar]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Gou, A. Habitat quality evolution characteristics and multi-scenario prediction in Shenzhen based on PLUS and InVEST models. Front. Environ. Sci. 2023, 11, 210. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, X.; Wu, M.; Wen, J.; Zou, J. Assessing the Water Conservation Function Based on the InVEST Model: Taking Poyang Lake Region as an Example. Land 2022, 11, 2228. [Google Scholar] [CrossRef]
- Dan, W.; Wei, H.; Shuwen, Z.; Kun, B.; Bao, X.; Yi, W.; Yue, L. Processes and prediction of land use/land cover changes (LUCC) driven by farm construction: The case of Naoli River Basin in Sanjiang Plain. Environ. Earth Sci. 2015, 73, 4841–4851. [Google Scholar] [CrossRef]
- Mahamat, A.-A.A.; Al-Hurban, A.; Saied, N. Change Detection of Lake Chad Water Surface Area Using Remote Sensing and Satellite Imagery. J. Geogr. Inf. Syst. 2021, 13, 561–577. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, G.; Zhang, H.; Li, J. Spatiotemporal dynamics of land and water resources matching of cultivated land use based on micro scale in Naoli River Basin. Trans. Chin. Soc. Agric. Eng. 2019, 35, 185–194. [Google Scholar]
- Liu, X.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Trop. Geogr. 2019, 39, 397–409. [Google Scholar]
- Qu, C.; Li, W.; Xu, J.; Shi, S. Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China. Int. J. Environ. Res. Public Health 2023, 20, 3154. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Song, Q.; Chen, X.; Gao, H.; Wang, X. Biomass carbon stocks and dynamics of forests in Heilongjiang Province from 1973 to 2013. China Environ. Sci. 2018, 38, 4678–4686. [Google Scholar]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 90–96. [Google Scholar]
- Yu, R.; Zhao, G.; Chang, C.; Yuan, X.; Wang, Z. Random forest classifier in remote sensing information extraction: A review of applications and future development. Remote Sens. Infoumation 2019, 34, 8–14. [Google Scholar]
- Ning, X.; Chang, W.; Wang, H.; Zhang, H.; Zhu, Q. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. Natl. Remote Sens. Bull. 2022, 26, 386–396. [Google Scholar]
- López-Tapia, S.; Ruiz, P.; Smith, M.; Matthews, J.; Zercher, B.; Sydorenko, L.; Varia, N.; Jin, Y.; Wang, M.; Dunn, J.B. Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102581. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Mainali, K.; Evans, M.; Saavedra, D.; Mills, E.; Madsen, B.; Minnemeyer, S. Convolutional neural network for high-resolution wetland mapping with open data: Variable selection and the challenges of a generalizable model. Sci. Total Environ. 2023, 861, 160622. [Google Scholar] [CrossRef]
- Zi-yun, W.; Jian-wei, L.; Xi, W.; Ying-xin, D.; Tian-liang, W. Degradation Characteristics and Quantitative Research on the Driving Factors of Marshes in Naoli River Basin in Recent 40 Years. China Rural. Water Hydropower 2023, 10, 47–55. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Sheng, L.; Liu, Y. Landscape pattern change of marsh and its response to human disturbance in the small Sanjiang Plain, 1955–2010. Sci. Geogr. Sin. 2016, 36, 879–887. [Google Scholar]
- Hou, W.; Zhang, S.; Zhang, Y.; Kuang, W. Analysis on the shrinking process of wetland in Naoli River Basin of Sanjiang Plain since the 1950s and its driving forces. J. Nat. Resour. 2004, 19, 725–731. [Google Scholar]
- Liu, H.; Zhang, S.; Li, Z.; Lu, X.; Yang, Q. Impacts on wetlands of large-scale land-use changes by agricultural development: The small Sanjiang Plain, China. AMBIO J. Hum. Environ. 2004, 33, 306–310. [Google Scholar] [CrossRef]
- Tang, R.; Peng, K. lmpact of land use change on regional land carbon storage: A review. Jiangsu Agric. Sci. 2018, 46, 5–11. [Google Scholar] [CrossRef]
- Shuqi, L.; Xiaomeng, H.; Yuan, S.; Cai, Y.; Xin, Z. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model. Chin. J. Eco-Agric. 2023, 31, 300–314. [Google Scholar]
- Chang, S.; Wang, Z.; Song, K. Impact of land use and land cover change on the vegetation carbon storage in Sanjiang Plain. Ecol. Sci. 2010, 29, 207–214. [Google Scholar]
- Wang, L.; Song, C.; Ge, R.; Song, Y.; Liu, D. Soil organic carbon storage under different land-use types in Sanjiang Plain. China Environ. Sci. 2009, 29, 656–660. [Google Scholar]
- Bravo-Martin, S.; Mejías, M.; García-Navarro, F.J.; Jiménez-Ballesta, R. Current status of Las Tablas de Daimiel National Park wetland and actions required for conservation. Environments 2019, 6, 75. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Maanan, M.; Maanan, M.; Karim, M.; Ait Kacem, H.; Ajrhough, S.; Rueff, H.; Snoussi, M.; Rhinane, H. Modelling the potential impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. Int. J. Sustain. Dev. World Ecol. 2019, 26, 560–570. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022. [Google Scholar] [CrossRef]
Land Type | Cabove | Cbelow | Csoil | Cdead | Ctotal | Reference |
---|---|---|---|---|---|---|
Water | 8.72 | 2.21 | 23.01 | 0 | 33.94 | [32,33] |
Woodland | 11.46 | 31.32 | 173.9 | 2.02 | 218.7 | [33,34] |
Wetland | 45.11 | 92.71 | 147.84 | 0 | 258.66 | [24,35] |
Cropland | 10.1 | 26.8 | 147 | 0 | 183.9 | [32,33] |
Build | 8.75 | 4.39 | 27.78 | 1.16 | 41.68 | [32,33] |
1993 | 1998 | 2003 | 2008 | 2013 | 2018 | 2022 | |
---|---|---|---|---|---|---|---|
Overall accuracy | 96.18% | 96.74% | 96.34% | 97.10% | 97.30% | 97.63% | 96.73% |
Kappa | 0.9449 | 0.9532 | 0.9456 | 0.9578 | 0.9607 | 0.9619 | 0.9473 |
Year | Water | Woodland | Wetland | Cropland | Build | Total |
---|---|---|---|---|---|---|
1993 | 0.06 | 15.77 | 8.12 | 21.54 | 0.05 | 45.54 |
1998 | 0.07 | 13.77 | 5.41 | 24.85 | 0.07 | 44.17 |
2003 | 0.05 | 13.12 | 4.09 | 26.13 | 0.12 | 43.51 |
2008 | 0.05 | 13.54 | 5.67 | 24.89 | 0.09 | 44.24 |
2013 | 0.06 | 14.14 | 4.02 | 25.43 | 0.09 | 43.74 |
2018 | 0.02 | 13.36 | 5.70 | 25.29 | 0.06 | 44.43 |
2022 | 0.05 | 13.18 | 3.85 | 26.39 | 0.09 | 43.56 |
1993–2022 | Area/km² | Change of Carbon Storage/105 t | Subtotal/105 t |
---|---|---|---|
Water–woodland | 2.81 | 0.51 | |
Water–wetland | 38.39 | 5.24 | 30.72 |
Water–cropland | 110.93 | 24.93 | |
Water–build | 1.02 | 0.04 | |
Woodland–water | 14.83 | −0.38 | |
Woodland–wetland | 1.16 | 0.15 | −336.21 |
Woodland–cropland | 1491.72 | −335.27 | |
Woodland–build | 9.73 | −0.71 | |
Wetland–water | 11.78 | −0.3 | |
Wetland–woodland | 0.58 | −0.10 | −437.5 |
Wetland–cropland | 1943.96 | −436.91 | |
Wetland–build | 2.62 | −0.19 | |
Cropland–water | 78.49 | −2.04 | |
Cropland–woodland | 328.93 | 60.13 | 105.29 |
Cropland–wetland | 416.42 | 56.88 | |
Cropland–build | 131.37 | −9.68 | |
Build–water | 1.63 | −0.04 | |
Build–woodland | 2.82 | 0.51 | 11.68 |
Build–wetland | 3.36 | 0.45 | |
Build–cropland | 47.92 | 10.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Wang, Y.; Li, X.; Wang, K.; Zhou, J.; Ni, H. Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China. Land 2023, 12, 1300. https://doi.org/10.3390/land12071300
Dai X, Wang Y, Li X, Wang K, Zhou J, Ni H. Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China. Land. 2023; 12(7):1300. https://doi.org/10.3390/land12071300
Chicago/Turabian StyleDai, Xilong, Yue Wang, Xinhang Li, Kang Wang, Jia Zhou, and Hongwei Ni. 2023. "Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China" Land 12, no. 7: 1300. https://doi.org/10.3390/land12071300
APA StyleDai, X., Wang, Y., Li, X., Wang, K., Zhou, J., & Ni, H. (2023). Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China. Land, 12(7), 1300. https://doi.org/10.3390/land12071300