Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing
2.4. Methods
2.4.1. Land-Use Transfer Matrix and Dynamic Index
2.4.2. PLS-SEM
2.4.3. GWR Model
3. Results
3.1. Spatiotemporal Variations in the Wetland Area in Arid and Semiarid Regions of Northern China
3.2. Evolution of Wetland Areas in Arid and Semiarid Regions of Northern China
3.3. Driving Forces of Wetland Distribution Based on PLS-SEM
3.3.1. PLS-SEM Evaluation
3.3.2. Driving Forces of Natural Wetlands
3.3.3. Driving Forces of Constructed Wetlands
3.4. Influential Factors of Wetland Distribution
3.4.1. Spatial Heterogeneity of Driving Factors of Natural Wetlands
3.4.2. Spatial Heterogeneity of Driving Factors of Constructed Wetlands
4. Discussion
4.1. Spatiotemporal Changes in Wetlands
4.2. Driving Forces of Wetland Change
4.2.1. Direct Effects on Wetland Distribution
4.2.2. Indirect Effects on Wetland Distribution
4.3. Implications for Wetland Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Liu, H.; Zhuo, Y.; Li, Z.; Liang, C.; Wang, L. Dynamic changes and driving factors of wetlands in Inner Mongolia Plateau, China. PLoS ONE 2019, 14, 8. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Cosens, B.; Garmestani, A.S. Adaptive governance of riverine and wetland ecosystem goods and services. J. Environ. Manag. 2016, 183, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Kingsford, R.T.; Basset, A.; Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. 2016, 26, 892–916. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.; Gavier-Pizarro, G. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- López-Merino, L.; Cortizas, A.M.; López-Sáez, J.A. Human-induced changes on wetlands: A study case from NW Iberia. Quat. Sci. Rev. 2011, 30, 2745–2754. [Google Scholar] [CrossRef]
- Yu, H.Y.; Zhang, F.; Kung, H.T.; Johnson, V.C.; Bane, C.S.; Wang, J.; Ren, Y.; Zhang, Y. Analysis of land cover and landscape change patterns in Ebinur Lake Wetland National Nature Reserve, China from 1972 to 2013. Wetl. Ecol. Manag. 2017, 25, 619–637. [Google Scholar] [CrossRef]
- Wang, M.J.; Qi, S.Z.; Zhang, X.X. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China. Environ. Earth Sci. 2012, 67, 185–188. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Junk, W.J.; An, S.Q.; Finlayson, C.M.; Gopal, B.; Kvet, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef]
- Wang, D.W.; Bai, J.H.; Wang, W.; Zhang, G.L.; Cui, B.S.; Liu, X.H.; Li, X.W. Comprehensive assessment of soil quality for different wetlands in a Chinese delta. Land Degrad. Dev. 2018, 29, 3783–3794. [Google Scholar] [CrossRef]
- Kahlolo, N.; Mapeshoane, B.; Chatanga, P.; Seleteng-Kose, L.; Marake, M.V. Assessing wetland functionality using soil surface indicators in Letseng- la-Letsie wetland in Quthing District, Lesotho. Afr. J. Range Sci. 2021, 38, 110–121. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.L.; Brierley, G. Topographic influence on wetland distribution and change in Maduo County, Qinghai-Tibet Plateau, China. J. Mt. Sci. 2012, 9, 362–371. [Google Scholar] [CrossRef]
- Kim, G.-R.; Kim, H.-R.; Choi, H.-S.; Han, J.-G.; Kim, S.-Y.; Kim, C.-S. Phylogenetic relationship of Araliaceae in Korea by seed morphological characteristics. J. Wetl. Res. 2015, 17, 139–145. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Hu, Y.; Xue, Z.; Sui, J. The spatiotemporal changes of marshland and the driving forces in the Sanjiang Plain, Northeast China from 1980 to 2016. Ecol. Process. 2020, 9, 24. [Google Scholar] [CrossRef]
- Li, S.; Dong, B.; Gao, X.; Wang, P.; Ye, X.K.; Xu, H.; Ren, C. Land use change and driving forces in Shengjin Lake wetland in Anhui province, China. J. Appl. Remote Sens. 2021, 15, 042404. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Du, J.; Liu, L.; Zeng, L.; Ren, C. Wetland degradation: Its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 2014, 54, 255–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Cheng, X.; He, X. Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau. Int. J. Environ. Res. Public Health 2021, 18, 2682. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, X.; Yang, Z. Environmental flow management strategies based on the integration of water quantity and quality, a case study of the Baiyangdian Wetland, China. Ecol. Eng. 2016, 96, 150–161. [Google Scholar] [CrossRef]
- Wu, X.; Ma, T.; Wang, Y. Surface water and groundwater interactions in wetlands. J. Earth Sci. 2020, 31, 1016–1028. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Chen, Z.; Ling, Z.; Lv, J. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Sarkar, S.; Parihar, S.M.; Dutta, A. Fuzzy risk assessment modelling of East Kolkata Wetland Area: A remote sensing and GIS based approach. Environ. Model Softw. 2016, 75, 105–118. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Jeelani, N.; Yang, W.; Xia, L.; Zhu, H.L.; An, S.Q. Ecosystem threats and management strategies for wetlands in China. Mar. Freshwater Res. 2020, 71, 1557–1563. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, W.Z.; Wen, Z.J.; Zhang, Z.H. Response of water and energy exchange to the environmental variable in a desert-oasis wetland of Northwest China. Hydrol. Process. 2014, 28, 6098–6112. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhao, H.Y.; Zhao, C.L. Temporal and Spatial Evolution Characteristics of Land Use and Landscape Pattern in Key Wetland Areas of the West Liao River Basin, Northeast China. J. Environ. Eng. Landsc. 2022, 30, 195–205. [Google Scholar] [CrossRef]
- Jiang, P.H.; Cheng, L.; Li, M.C.; Zhao, R.F.; Huang, Q.H. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Ghermandi, A.; Van Den Bergh, J.C.; Brander, L.M.; De Groot, H.L.; Nunes, P.A. Values of natural and human-made wetlands: A meta-analysis. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef]
- Xu, F.; Luo, M. Changes of concurrent drought and heat extremes in the arid and semi-arid regions of China during 1961–2014. Atmos. Sci. Lett. 2019, 20, e947. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Z.G.; Zhao, T.B. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Change 2017, 144, 461–473. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Wu, B.F.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhang, J.; Qin, F.; Hu, J.; Zhou, Z. Analysis of characteristics and driving factors of wetland landscape pattern change in Henan Province from 1980 to 2015. Land 2021, 10, 564. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Wen, L.; Li, Z. Driving forces of national and regional CO2 emissions in China combined IPAT-E and PLS-SEM model. Sci. Total Environ. 2019, 690, 237–247. [Google Scholar] [CrossRef]
- Hu, R.; Wang, Y.; Chang, J.; Istanbulluoglu, E.; Guo, A.; Meng, X.; Li, Z.; He, B.; Zhao, Y. Coupling water cycle processes with water demand routes of vegetation using a cascade causal modeling approach in arid inland basins. Sci. Total Environ. 2022, 840, 156492. [Google Scholar] [CrossRef]
- Wei, Y.G.; Zhu, X.H.; Li, Y.; Yao, T.; Tao, Y. Influential factors of national and regional CO2 emission in China based on combined model of DPSIR and PLS-SEM. J. Clean. Prod. 2019, 212, 698–712. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Li, S.J.; Zhou, C.S.; Wang, S.J.; Gao, S.; Liu, Z.T. Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach. Sustainability 2019, 11, 479. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wu, J.G.; Madden, M.; Mao, D.H. China’s Wetlands: Conservation Plans and Policy Impacts. Ambio 2012, 41, 782–786. [Google Scholar] [CrossRef]
- Committee, C.C.; Council, S. The Decision on Accelerating the Reform and Development of Water Conservancy; People’s Publishing House Beijing: Beijing, China, 2010. [Google Scholar]
- Liu, J.G.; Zang, C.F.; Tian, S.Y.; Liu, J.G.; Yang, H.; Jia, S.F.; You, L.Z.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Glob. Environ. Chang. 2013, 23, 633–643. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, L.D.; Xia, Z.A.; Jing, P.R.; Chunyu, X.Z. Reviewing the Poyang Lake Hydraulic Project Based on Humans’ Changing Cognition of Water Conservancy Projects. Sustainability 2019, 11, 2605. [Google Scholar] [CrossRef]
- Li, D.J.; Xu, D.Y.; Wang, Z.Y.; Ding, X.; Song, A.L. Ecological compensation for desertification control: A review. J. Geogr. Sci. 2018, 28, 367–384. [Google Scholar] [CrossRef]
- Aliat, T.; Kaabeche, M.; Khomri, H.; Nouri, L.; Neffar, S.; Chenchouni, H. A Pedological Characterisation of Some Inland Wetlands and Ramsar Sites in Algeria. Land Degrad. Dev. 2016, 27, 693–705. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Zhao, M.; Wang, M.; Jiang, M. Direct and indirect effects of soil salinization on soil seed banks in salinizing wetlands in the Songnen Plain, China. Sci. Total Environ. 2022, 819, 152035. [Google Scholar] [CrossRef]
- Wu, X.; Xia, J.; Zhan, C.S.; Jia, R.L.; Li, Y.; Qiao, Y.F.; Zou, L. Modeling soil salinization at the downstream of a lowland reservoir. Hydrol. Res. 2019, 50, 1202–1215. [Google Scholar] [CrossRef]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled release micronutrient fertilizers for precision agriculture–A review. Sci. Total Environ. 2020, 712, 136365. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, J.; Song, Y.; Cao, Y. Comparative analysis of different methods for extracting water body area of miyun reservoir and driving forces for nearly 40 years. J. Indian Soc. Remote Sens. 2020, 48, 451–463. [Google Scholar] [CrossRef]
- Wu, X.; Gong, W.; Xu, Y. Analysis of Urban Wetland Changes and their Driving Forces based on RS and GIS: A Case Study in the Longfeng Wetland Natural Reserve, China. Nat. Environ. Pollut. Technol. 2016, 15, 377. [Google Scholar]
- Cui, L.L.; Li, G.S.; Chen, Y.H.; Li, L.J. Response of Landscape Evolution to Human Disturbances in the Coastal Wetlands in Northern Jiangsu Province, China. Remote Sens. 2021, 13, 2030. [Google Scholar] [CrossRef]
- Ouyang, N.L.; Li, G.S.; Cui, L.L.; Liao, H.J. Main Features and Problems of Modern Evolution Process of Coastal Wetlands in North Jiangsu, China. J. Indian Soc. Remote Sens. 2018, 46, 655–666. [Google Scholar] [CrossRef]
- Qingguang, L. Dynamic degradation of the alpine-cold wetland and analysis of driving forces in Maqu, China. Nat. Environ. Pollut. Technol. 2016, 15, 457. [Google Scholar]
- Gou, Q.; Qu, J.; Wang, G.; Xiao, J.; Pang, Y. Progress of wetland researches in arid and semi-ariregions in China. Arid. Zone Res. 2015, 32, 213–220. [Google Scholar]
- Guo, H.; Pu, M.M. Local Legislation of Wetland Conservation in Xinjiang: Experience and implication. Trib. Soc. Sci. Xinjiang 2023, 1, 38–45. [Google Scholar]
- Hayashi, M.; van der Kamp, G.; Rosenberry, D.O. Hydrology of Prairie Wetlands: Understanding the Integrated Surface-Water and Groundwater Processes. Wetlands 2016, 36, S237–S254. [Google Scholar] [CrossRef]
- Wu, Q.S.; Lane, C.R. Delineation and Quantification of Wetland Depressions in the Prairie Pothole Region of North Dakota. Wetlands 2016, 36, 215–227. [Google Scholar] [CrossRef]
- Liu, J.; Fang, P.; Que, Y.; Zhu, L.J.; Duan, Z.; Tang, G.; Liu, P.; Ji, M.; Liu, Y. A dataset of lake-catchment characteristics for the Tibetan Plateau. Earth Syst. Sci. Data 2022, 14, 3791–3805. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, D.; Zheng, D. Regional Differences in Surface Temperature Variation in China from 1961 to 2018. Chin. J. Atmos. Sci. 2023, 47, 995–1006. [Google Scholar] [CrossRef]
- Bian, H.; Li, W.; Li, Y.; Ren, B.; Niu, Y.; Zeng, Z. Driving forces of changes in China’s wetland area from the first (1999–2001) to second (2009–2011) National Inventory of Wetland Resources. Glob. Ecol. Conserv. 2020, 21, e00867. [Google Scholar] [CrossRef]
- Zhao, D.; He, H.S.; Wang, W.J.; Wang, L.; Du, H.; Liu, K.; Zong, S. Predicting wetland distribution changes under climate change and human activities in a mid-and high-latitude region. Sustainability 2018, 10, 863. [Google Scholar] [CrossRef]
- Gong, Z.; Li, H.; Zhao, W.; Gong, H. Driving forces analysis of reservoir wetland evolution in Beijing during 1984–2010. J. Geogr. Sci. 2013, 23, 753–768. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 2012, 100, 764–770. [Google Scholar] [CrossRef]
- Nyman, J.A.; Carloss, M.; DeLaune, R.; Patrick, W., Jr. Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surf. Process. Landf. 1994, 19, 69–84. [Google Scholar] [CrossRef]
- Turner, R.E.; Swenson, E.M.; Milan, C.S.; Lee, J.M.; Oswald, T.A. Below-ground biomass in healthy and impaired salt marshes. Ecol. Res. 2004, 19, 29–35. [Google Scholar] [CrossRef]
- Hardy, T.; Wu, W.; Peterson, M.S. Analyzing spatial variability of drivers of coastal wetland loss in the northern Gulf of Mexico using Bayesian multi-level models. Gisci. Remote Sens. 2021, 58, 831–851. [Google Scholar] [CrossRef]
- Doichinova, V.; Zhiyanski, M.; Hursthouse, A. Impact of urbanisation on soil characteristics. Environ. Chem. Lett. 2006, 3, 160–163. [Google Scholar] [CrossRef]
- Ikemi, H. Geologically constrained changes to landforms caused by human activities in the 20th century: A case study from Fukuoka Prefecture, Japan. Appl. Geogr. 2017, 87, 115–126. [Google Scholar] [CrossRef]
- Migoń, P.; Latocha, A. Human impact and geomorphic change through time in the Sudetes, Central Europe. Quat. Int. 2018, 470, 194–206. [Google Scholar] [CrossRef]
- Werner, B.A.; Johnson, W.C.; Guntenspergen, G.R. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region. Ecol. Evol. 2013, 3, 3471–3482. [Google Scholar] [CrossRef] [PubMed]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y. Evaluating the environmental flows of China’s Wolonghu wetland and land use changes using a hydrological model, a water balance model, and remote sensing. Ecol. Model. 2011, 222, 253–260. [Google Scholar] [CrossRef]
- Gxokwe, S.; Dube, T.; Mazvimavi, D. Multispectral Remote Sensing of Wetlands in Semi-Arid and Arid Areas: A Review on Applications, Challenges and Possible Future Research Directions. Remote Sens. 2020, 12, 4190. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A review of soil-improving cropping systems for soil salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Huang, J.P.; Ma, J.R.; Guan, X.D.; Li, Y.; He, Y.L. Progress in Semi-arid Climate Change Studies in China. Adv. Atmos. Sci. 2019, 36, 922–937. [Google Scholar] [CrossRef]
- Meng, W.Q.; He, M.X.; Hu, B.B.; Mo, X.Q.; Li, H.Y.; Liu, B.Q.; Wang, Z.L. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
Category | Data | Resolution | Year | Data Resource |
---|---|---|---|---|
Wetland | Wetland area (km2) | 300 m | 1995–2019 | ESA_LUCC (https://www.esa-landcover-cci.org/, accessed on 14 March 2022) |
Terrain | Elevation (m) | 1 km | 2000 | RESDC (http://www.resdc.cn/, accessed on 22 May 2022) |
Slope (°) | 1 km | |||
Soil | Clay (%) | 1 km | 2008 | HWSD v1.2 (http://www.fao.org/, accessed on 7 July 2022) |
Silt (%) | 1 km | |||
pH | 1 km | |||
OC(%) | 1 km | |||
SM(m3/m3) | 25 km | 1995–2019 | ESA_CCI_SM (http://www.esa-soilmoisture-cci.org, accessed on 8 July 2022) | |
Moisture | Precipitation (mm) | 50 km | 1995–2019 | CRU (https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05/, accessed on 10 July 2022) |
WDF(day) | 50 km | |||
Runoff(m3/s) | 25 km | 1995–2018 | TPDC (https://data.tpdc.ac.cn/, accessed on 12 July 2022) | |
Heat | Temperature (°C) | 50 km | 1995–2019 | CRU (https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.05/, accessed on 12 July 2022) |
Evaporation (mm) | 50 km | |||
Biology | NDVI | 1 km | 1998–2019 | RESDC (http://www.resdc.cn/, accessed on 20 July 2022) |
LAI | 1 km | 1995–2019 | ||
Human Disturbance | GDP (ten thousand yuan/km2) | 1 km | 1995–2019 | RESDC (http://www.resdc.cn/, accessed on 22 July 2022) |
Population (person/km2) | 1 km | |||
Arable land area (km2) | 300 m | ESA _LUCC (https://www.esa-landcover-cci.org/, accessed on 14 March 2022) | ||
Urban area(km2) | 300 m | |||
Water consumption(m3) | 2000–2019 | MWR (http://www.mwr.gov.cn/, accessed on 28 July 2022) |
Year | Wetland(km2) | Stage | Change Area (km2) | Change Rate (%) | K (%) |
---|---|---|---|---|---|
1995 | 34,243.92 | 1995–2000 | −93.78 | −0.27% | −0.05% |
2000 | 34,150.14 | 2000–2005 | 322.11 | 0.94% | 0.19% |
2005 | 34,472.25 | 2005–2010 | 464.22 | 1.35% | 0.27% |
2010 | 34,936.47 | 2010–2015 | 226.35 | 0.65% | 0.13% |
2015 | 35,162.82 | 2015–2019 | 504.81 | 1.44% | 0.29% |
2019 | 35,667.63 | 1995–2019 | 1423.71 | 4.16% | 0.17% |
Year | Wetland (km2) | Stage | Change Area (km2) | Change Rate (%) | K (%) |
---|---|---|---|---|---|
1995 | 1614.96 | 1995–2000 | 18.45 | 1.14% | 0.23% |
2000 | 1633.41 | 2000–2005 | 65.43 | 4.01% | 0.80% |
2005 | 1698.84 | 2005–2010 | 59.49 | 3.50% | 0.70% |
2010 | 1758.33 | 2010–2015 | 43.47 | 2.47% | 0.49% |
2015 | 1801.80 | 2015–2019 | 4.77 | 0.26% | 0.05% |
2019 | 1806.57 | 1995–2019 | 191.61 | 11.86% | 0.49% |
1995 | Natural Wetland | Constructed Wetland | Agriculture | Forest | Grassland | Settlement | Others |
---|---|---|---|---|---|---|---|
2019 | |||||||
natural wetland | 29,177.10 | 21.24 | 984.06 | 98.55 | 2876.13 | 2.61 | 2460.6 |
constructed wetland | 8.28 | 1407.42 | 57.24 | 1.17 | 210.60 | 0.00 | 121.32 |
agriculture | 1135.44 | 63.36 | 208,669.3 | 1262.61 | 58,546.26 | 54.27 | 31,838.85 |
forest | 57.42 | 1.53 | 1600.65 | 20,894.13 | 8103.96 | 0.09 | 257.49 |
grassland | 2206.53 | 72.27 | 56,454.03 | 5540.31 | 1,028,456.28 | 37.89 | 127,577.88 |
settlement | 40.77 | 2.07 | 2535.12 | 8.82 | 3014.46 | 1179.27 | 977.13 |
others | 1602.54 | 48.87 | 9731.25 | 397.53 | 97,664.58 | 19.35 | 1,653,423.66 |
Latent Variables | Cronbach’s Alpha | rho_A | Composite Reliability (CR) | Average Variance Extracted (AVE) |
---|---|---|---|---|
biology | 0.884 | 0.893 | 0.945 | 0.896 |
human disturbance | 0.765 | 0.969 | 0.756 | 0.525 |
terrain | 0.712 | 0.749 | 0.848 | 0.738 |
soil | 0.745 | 0.757 | 0.837 | 0.565 |
moisture | 0.725 | 0.765 | 0.846 | 0.650 |
heat | 0.938 | 0.943 | 0.970 | 0.942 |
Latent Variables | Cronbach’s Alpha | rho_A | Composite Reliability (CR) | Average Variance Extracted (AVE) |
---|---|---|---|---|
biology | 0.809 | 1.148 | 0.903 | 0.824 |
human disturbance | 0.718 | 0.745 | 0.721 | 0.502 |
terrain | 0.700 | 0.815 | 0.824 | 0.705 |
soil | 0.701 | 0.762 | 0.786 | 0.509 |
moisture | 0.914 | 0.922 | 0.946 | 0.854 |
heat | 0.958 | 0.958 | 0.979 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Qin, Y.; Zhang, Y.; Lu, X.; Cao, J. Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China. Land 2023, 12, 1980. https://doi.org/10.3390/land12111980
Zhang J, Qin Y, Zhang Y, Lu X, Cao J. Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China. Land. 2023; 12(11):1980. https://doi.org/10.3390/land12111980
Chicago/Turabian StyleZhang, Jian, Yao Qin, Yuxuan Zhang, Xin Lu, and Jianjun Cao. 2023. "Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China" Land 12, no. 11: 1980. https://doi.org/10.3390/land12111980
APA StyleZhang, J., Qin, Y., Zhang, Y., Lu, X., & Cao, J. (2023). Comparative Assessment of the Spatiotemporal Dynamics and Driving Forces of Natural and Constructed Wetlands in Arid and Semiarid Areas of Northern China. Land, 12(11), 1980. https://doi.org/10.3390/land12111980