Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Continuous Change Detection and Classification Algorithm
2.3. Characteristic Index
2.4. Random Forest
2.5. Sediment Sampling and Sample Treatment
2.6. Data Analysis
3. Results
3.1. Change Segment Classification Results and Accuracy Evaluation
3.2. Mangrove Change Duration
3.3. SOC and SOCS Content of S. alterniflora with Different Invasion Years
3.4. The Correlation between Soil Physical and Chemical Factors and SOC, SOCS in S. alterniflora Wetland
4. Discussion
4.1. Change Detection of Mangrove by Using CCDC
4.2. Effects of S. alterniflora Invasion on SOC and SOCS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Kappa | OA (%) |
---|---|---|
1995 | 0.74 | 82.29 |
2000 | 0.75 | 82.86 |
2005 | 0.76 | 83.71 |
2009 | 0.78 | 84.76 |
2015 | 0.77 | 84.14 |
2022 | 0.78 | 85.00 |
References
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castaneda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956-2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Zeng, Y.; Friess, D.A.; Sarira, T.V.; Siman, K.; Koh, L.P. Global potential and limits of mangrove blue carbon for climate change mitigation. Curr. Biol. 2021, 31, 1737. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551. [Google Scholar] [CrossRef]
- Yang, R. Mechanisms of soil organic carbon storage response to Spartina altemiflora invasion and climate change. Sci. Total Environ. 2019, 690, 7–15. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, L.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC temporal segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Zhu, Z.; Gallant, A.L.; Woodcock, C.E.; Pengra, B.; Olofsson, P.; Loveland, T.R.; Jin, S.; Dahal, D.; Yang, L.; Auch, R.F. Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS J. Photogramm. Remote Sens. 2016, 122, 206–221. [Google Scholar] [CrossRef]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region. Remote Sens. 2019, 11, 2833. [Google Scholar] [CrossRef]
- He, T.; Fu, Y.; Ding, H.; Zheng, W.; Huang, X.; Li, R.; Wu, S. Evaluation of Mangrove Wetlands Protection Patterns in the Guangdong–Hong Kong–Macao Greater Bay Area Using Time-Series Landsat Imageries. Remote Sens. 2022, 14, 6026. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Strong, D.R.; Pennings, S.C.; Kirwan, M.L.; Chen, X.; Zhang, Y. Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges. Limnol. Oceanogr. 2020, 65, 1399–1409. [Google Scholar] [CrossRef]
- Li, B.; Liao, C.; Zhang, X.; Chen, H.; Wang, Q.; Chen, Z.; Gan, X.; Wu, J.; Zhao, B.; Ma, Z.; et al. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects. Ecol. Eng. 2009, 35, 511–520. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Q.; Jiang, D.; Fu, J.; Yang, Y.; Liu, X.; Tóthmérész, B. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China). Sci. World J. 2014, 2014, 638296. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; He, J.; Wang, N.; Christakos, G.; Gu, J.; Song, L.; Luo, J.; Agusti, S.; Duarte, C.M.; Wu, J. Carbon sequestration potential of transplanted mangroves and exotic saltmarsh plants in the sediments of subtropical wetlands. Sci. Total Environ. 2023, 904, 166185. [Google Scholar] [CrossRef] [PubMed]
- Negrin, V.L.; Spetter, C.V.; Asteasuain, R.O.; Perillo, G.; Marcovecchio, J.E. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh. J. Environ. Sci. 2011, 23, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Snedden, G.A.; Cretini, K.; Patton, B. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: Implications for using river diversions as restoration tools. Ecol. Eng. 2015, 81, 133–139. [Google Scholar] [CrossRef]
- Yang, R.; Guo, W. Exotic Spartina alterniflora Enhances the Soil Functions of a Coastal Ecosystem. Soil Sci. Soc. Am. J. 2018, 82, 901–909. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Yao, H.; Wang, M.; Huang, Y.; Huangzeng, S.; Liao, P.; Chen, H.; Liu, Y. Monitoring China’s Mangrove Forest Change from 1990 to 2020: A New Algorithm Based on Spatio-temporal Detection Frequency Threshold. In 2023 the 7th International Conference on Energy and Environmental Science, Proceedings of International Conference on Energy and Environmental Science, Changsha, China, 6–8 January 2023; Springer: Cham, Switzerland, 2023; pp. 91–107. [Google Scholar]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Qiu, S.; Xu, X.; Wang, X.; Chang, Q.; Wu, J.; Li, B. Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images. Remote Sens. Environ. 2022, 269, 112810. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Liu, Y.; Liu, Y.; Liu, R. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series. Remote Sens. Environ. 2021, 256, 112320. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Yang, J.W.; Jiang, L.M.; Lemmetyinen, J.; Pan, J.M.; Luojus, K.; Takala, M. Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach. Remote Sens. Environ. 2021, 264, 112630. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Soil Testing Part 6: Method for determination of soil organic matter. Available online: https://www.cnemc.cn/jcgf/trhj/201711/t20171107_647331.shtml (accessed on 20 July 2023).
- Fan, H.; Mo, Z. The History, Achievements and Lessons Learnt for Mangrove Restoration in Guangxi, China. Guangxi Sci. 2018, 25, 363–371. [Google Scholar] [CrossRef]
- Shen, H.; Zhao, B.; Chen, M.; Huang, R.; Yu, K.; Liang, W. Changes of the area of Spartina alterniflora and mangroves in Guangxi Shankou Mangrove National Nature Reserve from 1995 to 2019. Chin. J. Appl. Ecol. 2022, 33, 397–404. [Google Scholar] [CrossRef]
- Li, L.; Liu, W. Dynamic changes of mangrove wetland landscape pattern in Lianzhou gulf of Guangxi and its causes. J. For. Environ. 2018, 38, 171–177. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Huang, C.; Lu, C. Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goal (SDGs). Chin. Sci. Bull. 2021, 66, 3886–3901. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984-2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101912. [Google Scholar] [CrossRef]
- Ding, N.; Li, M. Mapping Forest Abrupt Disturbance Events in Southeastern China—Comparisons and Tradeoffs of Landsat Time Series Analysis Algorithms. Remote Sens. 2023, 15, 5408. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, W.; Yu, C.; Chen, H.; Tan, Y. Mapping Cropland Abandonment in Mountainous Areas in China Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1145. [Google Scholar] [CrossRef]
- Sheng, Y.; Luan, Z.; Yan, D.; Li, J.; Xie, S.; Liu, Y.; Chen, L.; Li, M.; Wu, C. Effects of Spartina alterniflora Invasion on Soil Carbon, Nitrogen and Phosphorus in Yancheng Coastal Wetlands. Land 2022, 11, 2218. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Li, Z.; Li, M.; Wu, H.; Jiang, M. Impacts of Spartina alterniflora invasion on soil carbon contents and stability in the Yellow River Delta, China. Sci. Total Environ. 2021, 775, 145188. [Google Scholar] [CrossRef]
- Jin, B.; Gao, D.; Yang, P.; Wang, W.; Zeng, C. Change of Soil Organic Carbon with Different Years of Spartina alterniflora Invasion in Wetlands of Minjiang River Estuary. J. Nat. Resour. 2016, 31, 608–619. [Google Scholar] [CrossRef]
- Huang, X.; Duan, Y.; Tao, Y.; Wang, X.; Long, H.; Luo, C.; Lai, Y. Effects of Spartina alterniflora Invasion on Soil Organic Carbon Storage in the Beihai Coastal Wetlands of China. Front. Mar. Sci. 2022, 9, 890811. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Zhao, Q.; Jia, J.; Wang, X.; Wang, W.; Wang, X. Soil carbon storage and carbon sources under different Spartina alterniflora invasion periods in a salt marsh ecosystem. Catena 2021, 196, 104831. [Google Scholar] [CrossRef]
- Liu, J.; Han, M.; Su, H.; Wu, Y.; Zhang, M.; Richardson, C.J.; Wang, G. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China. Ecol. Eng. 2017, 106, 132–139. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Zhang, G.; Jia, J.; Wang, W.; Wang, X. Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River Delta. Geoderma 2018, 319, 219–229. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, J.; Wang, J.; Liu, X.; Ma, S.; Zhou, L.; Miao, L.; Zhang, J. Water Level Has Higher Influence on Soil Organic Carbon and Microbial Community in Poyang Lake Wetland Than Vegetation Type. Microorganisms 2022, 10, 131. [Google Scholar] [CrossRef]
- Ming, J.; Zhao, Y.E.; Sun, Y.Y.; Liu, Z. Biocrusts impact soil properties and ecological stoichiometry characteristics in frozen ground regions on the Qinghai-Tibet Plateau. Soil Ecol. Lett. 2024, 6, 230212. [Google Scholar] [CrossRef]
- Xu, X.; Wei, S.; Chen, H.; Li, B.; Nie, M. Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. J. Appl. Ecol. 2022, 59, 1937–1946. [Google Scholar] [CrossRef]
Type | Mangrove | S. alterniflora | Pond | Other Land-Cover Types |
---|---|---|---|---|
Mangrove | 284 | 3 | 8 | 5 |
S. alterniflora | 14 | 79 | 5 | 2 |
Pond | 23 | 5 | 164 | 8 |
Other land-cover types | 12 | 3 | 17 | 68 |
Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | |
---|---|---|---|---|---|
Mangrove (ha) | 2944.44 | 752.85 | 105.91 | 15.62 | 3.79 |
S. alterniflora (ha) | 133.43 | 21.57 | 2.22 | 0.43 | / |
Pond (ha) | 940.75 | 221.05 | 43.24 | 10.71 | 2.92 |
Other land-cover types (ha) | 514.57 | 222.35 | 62.25 | 14.44 | 5.96 |
Type | Invasive Ages (a) | Sediment Depth (cm) | BD (g/cm3) | MC (%) | pH | EC (μs/cm) | EOC (g/kg) | POC (g/kg) | DOC (g/kg) |
---|---|---|---|---|---|---|---|---|---|
S. alterniflora | 3a | 0–20 cm | 1.45 ± 0.16 | 32.92 ± 10.88 | 7.06 ± 0.42 | 2.96 ± 0.71 | 0.57 ± 0.83 | 3.98 ± 1.47 | 0.2 ± 0.17 |
20–40 cm | 1.48 ± 0.11 | 29.86 ± 10.27 | 6.95 ± 1.2 | 2.72 ± 0.49 | 0.52 ± 0.2 | 2.51 ± 0.65 | 0.1 ± 0.06 | ||
40–60 cm | 1.4 ± 0.04 | 38.16 ± 5.03 | 5.99 ± 0.11 | 2.09 ± 0.08 | 0.63 ± 0.07 | 3.18 ± 0.34 | 0.19 ± 0.04 | ||
6a | 0–20 cm | 1.16 ± 0.19 | 47.01 ± 17.71 | 5 ± 2.06 | 3.34 ± 0.16 | 1.04 ± 1.38 | 3.15 ± 2.49 | 0.19 ± 0.22 | |
20–40 cm | 1.46 ± 0.23 | 32.23 ± 5.35 | 4.23 ± 0.18 | 3.25 ± 0.12 | 1.17 ± 0.44 | 5.18 ± 0.35 | 0.11 ± 0.03 | ||
40–60 cm | 1.5 ± 0.18 | 28.67 ± 0.44 | 4.11 ± 0.16 | 3.29 ± 0.47 | 1.59 ± 1.26 | 5.32 ± 0.01 | 0.1 ± 0 | ||
8a | 0–20 cm | 1.34 ± 0.14 | 25.68 ± 3.06 | 6.69 ± 0.33 | 3.05 ± 0.56 | 1.98 ± 1.24 | 7.77 ± 1.4 | 0.13 ± 0.02 | |
20–40 cm | 1.43 ± 0.22 | 22.47 ± 0.64 | 6.91 ± 0.08 | 3.12 ± 0.15 | 1.36 ± 0.64 | 6.97 ± 0.9 | 0.11 ± 0.01 | ||
40–60 cm | 1.12 ± 0.1 | 37.67 ± 0.26 | 7.01 ± 0.08 | 3.42 ± 0.45 | 1.09 ± 0.35 | 9.36 ± 0.26 | 0.14 ± 0.04 | ||
12a | 0–20 cm | 1.29 ± 0.03 | 37.22 ± 2.63 | 5.66 ± 0.25 | 2.94 ± 0.22 | 1.55 ± 1.08 | 9.69 ± 0.08 | 0.23 ± 0.21 | |
20–40 cm | 1.27 ± 0.1 | 37.74 ± 15.03 | 4.31 ± 0.76 | 3.49 ± 0.03 | 3.3 ± 0.05 | 10.06 ± 1.54 | 0.29 ± 0.29 | ||
40–60 cm | 1.33 ± 0.14 | 36.23 ± 12.88 | 5.04 ± 0.35 | 4.47 ± 0.91 | 2.36 ± 0.32 | 10.23 ± 3.68 | 0.18 ± 0.12 | ||
18–21a | 0–20 cm | 1.22 ± 0.01 | 48.5 ± 4.46 | 6.5 ± 0.22 | 3.47 ± 0.5 | 1.61 ± 0.74 | 10.27 ± 0.94 | 0.28 ± 0.02 | |
20–40 cm | 1.05 ± 0.21 | 71.38 ± 5.02 | 6.31 ± 0.21 | 3.73 ± 0.37 | 2.89 ± 0.63 | 11.46 ± 3.52 | 0.1 ± 0.01 | ||
40–60 cm | 1.08 ± 0.22 | 72.22 ± 3.67 | 5.58 ± 1.11 | 3.97 ± 0.21 | 2.82 ± 0.97 | 12.04 ± 1.13 | 0.36 ± 0.14 | ||
Mangrove | / | 0–20 cm | 1.26 ± 0.13 | 42.16 ± 9.26 | 6.32 ± 0.55 | 3.04 ± 0.48 | 2.13 ± 1 | 7.76 ± 1.26 | 0.21 ± 0.21 |
20–40 cm | 1.31 ± 0.2 | 37.19 ± 12.2 | 5.33 ± 2.1 | 2.61 ± 1.1 | 1.48 ± 0.89 | 5.26 ± 2.41 | 0.41 ± 0.72 | ||
40–60 cm | 1.16 ± 0.18 | 48.04 ± 2.57 | 6.27 ± 0.19 | 2.58 ± 0.04 | 1.6 ± 0.09 | 3.71 ± 1.06 | 0.07 ± 0.03 | ||
Mudflat | / | 0–20 cm | 1.49 ± 0.11 | 26.97 ± 8.58 | 6.55 ± 0.62 | 2.99 ± 0.83 | 0.33 ± 0.34 | 1.92 ± 0.66 | 0.08 ± 0.02 |
20–40 cm | 1.56 ± 0.16 | 26.71 ± 4.31 | 7.01 ± 0.79 | 3.26 ± 0.42 | 1.08 ± 0.62 | 3.39 ± 2.45 | 0.16 ± 0.09 | ||
40–60 cm | 1.35 ± 0.02 | 31.63 ± 0.63 | 6.61 ± 0.21 | 3.33 ± 0.41 | 0.14 ± 0.08 | 1.14 ± 0.45 | 0.04 ± 0.03 |
BD | MC | pH | EC | SOC | SOCS | EOC | POC | DOC | |
---|---|---|---|---|---|---|---|---|---|
BD | 1 | ||||||||
MC | −0.834 ** | 1 | |||||||
pH | 0.043 | −0.117 | 1 | ||||||
EC | −0.334 | 0.353 | −0.254 | 1 | |||||
SOC | −0.684 ** | 0.601 ** | −0.295 | 0.608 ** | 1 | ||||
SOCS | −0.499 * | 0.408 | −0.328 | 0.557 ** | 0.963 ** | 1 | |||
EOC | −0.552 ** | 0.558 ** | −0.412 | 0.539* | 0.883 ** | 0.868 ** | 1 | ||
POC | −0.609 ** | 0.546 * | −0.187 | 0.609 ** | 0.975 ** | 0.962 ** | 0.837 ** | 1 | |
DOC | −0.304 | 0.357 | −0.278 | 0.090 | 0.470* | 0.460 * | 0.434* | 0.459 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Yao, H.; Wang, M.; Liu, Y.; Chen, M.; Zhong, M.; Qiao, J. Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China. Land 2024, 13, 392. https://doi.org/10.3390/land13030392
Huang Z, Yao H, Wang M, Liu Y, Chen M, Zhong M, Qiao J. Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China. Land. 2024; 13(3):392. https://doi.org/10.3390/land13030392
Chicago/Turabian StyleHuang, Zengshiqi, Huanmei Yao, Mengsi Wang, Yin Liu, Meijun Chen, Maoyuan Zhong, and Junchao Qiao. 2024. "Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China" Land 13, no. 3: 392. https://doi.org/10.3390/land13030392
APA StyleHuang, Z., Yao, H., Wang, M., Liu, Y., Chen, M., Zhong, M., & Qiao, J. (2024). Tracking the Effects of Mangrove Changes and Spartina alterniflora Invasion on Soil Carbon Storage: A Case Study of the Beibu Gulf of Guangxi, China. Land, 13(3), 392. https://doi.org/10.3390/land13030392