Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding
Abstract
:1. Introduction
2. Overview of the Region of Study
3. Research Methods
- (1)
- Conduct on-site research and measurement on the spatial factors of the plot;
- (2)
- Divide the research team into four groups to search for bird nests in the green space and record them;
- (3)
- Select bird nests for which cameras are easy to install for 24 h observation and recording.
4. Data Collection and Processing
4.1. Data Collection
- (1)
- Basic data collection
- (2)
- Information identification
- (3)
- Field survey
4.2. Indicator Conversion
- (1)
- Building density level and building height
- (2)
- Green space size
- (3)
- Connectivity of green spaces
- (4)
- Proportion of Native Plants (PNP)
- (5)
- Vegetation diversity
- (6)
- Noise (Ni)
- (7)
- Light Pollution (LP)
- (8)
- The vertical structure of habitat
- (9)
- Distance From Water body (DFW)
4.3. Data Processing
5. Results
5.1. Correlation Analysis among Environmental Factors
5.2. Correlation Analysis between Nest Density and Environmental Factors
5.3. Stepwise Regression Analysis Results
5.4. Model Validation
5.5. The Impact of Mountain and Urban Development Intensity on Nest Density of Bird
6. Discussion
6.1. Discussion
6.2. Limitation
7. Conclusions
- (1)
- In the optimization design of urban space, the openness of green spaces can be increased by reducing the number and height of buildings surrounding them, thereby creating a suitable breeding environment for birds;
- (2)
- In the layout of urban construction land, green space can be arranged as much as possible at the edge of the city, or connected to natural mountains, forests, and water bodies without separation, reducing the distance between green space and non-artificial environment, and creating a suitable breeding environment for birds;
- (3)
- In the design of green spaces, it is possible to increase the canopy coverage by planting tall trees, thereby creating a suitable breeding environment for birds, especially for small green spaces that are not close to natural mountains and forests;
- (4)
- In the architectural design, since the study found that the nest density of urban birds is not sensitive to artificial interference such as noise and light pollution, bird boxes or caves can be set on artificial buildings in green space or residential areas to provide breeding environments for birds;
- (5)
- In the maintenance of green spaces, as most urban birds rely on trees and shrubs to build their nests, it is recommended to avoid pruning trees or spraying insecticides during bird breeding periods, in order to avoid bird nests being destroyed and young bird casualties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ortega-Álvarez, R.; MacGregor-Fors, I. Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landsc. Urban Plan. 2009, 90, 189–195. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, L.; Hu, H.J.; Lu, Q.Y.; Liu, J.C. Design for improving bird diversity in parks based on species drop analysis—Taking Hunan Changde Luowan Wetland Park as an example. J. Ecol. 2019, 39, 6981–6989. [Google Scholar]
- Shwartz, A.; Turbé, A.; Simon, L.; Julliard, R. Enhancing urban biodiversity and its influence on city-dwellers: An experiment. Biol. Conserv. 2014, 171, 82–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.L. Research progress of urban ornithology in China. J. Ecol. 2018, 38, 3357–3367. [Google Scholar]
- Sulaiman, S.; Mohamad, N.H.N.; Idilfitri, S. Contribution of Vegetation in Urban Parks as Habitat for Selective Bird Community. Procedia-Soc. Behav. Sci. 2013, 85, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G. Research on Urban Wetland Park Planning and landscape construction based on the harmony between man and bird. Fujian Agric. For. Univ. 2012, 5, 48–55. [Google Scholar]
- Sun, Q.; Zhang, A.W. Impact of climate warming on the distribution of birds in China. J. Zool. 2000, 6, 45–48. [Google Scholar]
- Doligez, B.; Boulinier, T.; Fath, D. Habitat Selection and Habitat Suitability Preferences. Encycl. Ecol. 2008, 5, 1810–1830. [Google Scholar] [CrossRef]
- Wan, J. Research progress on land degradation and ecological reconstruction in karst areas of Guizhou Province. Prog. Geosci. 2003, 3, 447–453. [Google Scholar]
- Yin, X.; Li, J.H.; Fu, X.J.; Liu, J.M.; Xiang, D.L. Study on spatial structure of construction land in Wumeng Mountain Area Based on fractal theory. Jiangsu Agric. Sci. 2018, 46, 286–291. [Google Scholar]
- Meng, Q. Research on Urban Ecological Corridor Based on Biodiversity Conservation. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Chen, S.; Ding, P.; Zheng, G.M.; Zhu, G.Y. Research prospect of urban bird community ecology. Zool. Res. 2000, 21, 165–169. [Google Scholar]
- Prowse, T.A.; Collard, S.J.; Blackwood, A.; O’Connor, P.J.; Delean, S.; Barnes, M.; Cassey, P.; Possingham, H.P. Prescribed burning impacts avian diversity and disadvantages woodland-specialist birds unless long-unburnt habitat is retained. Biol. Conserv. 2017, 215, 268–276. [Google Scholar] [CrossRef]
- Jadczyk, P.; Drzeniecka-Osiadacz, A. Feeding strategy of wintering rooks Corvus frugilegus L. in urban habitats. Pol. J. Ecol. 2013, 61, 587–596. [Google Scholar]
- Sushinsky, J.R.; Rhodes, J.R.; Possingham, H.P.; Gill, T.K.; Fuller, R.A. How should we grow cities to minimize their biodiversity impacts? Glob. Chang. Biol. 2013, 19, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Germaine, S.S.; Rosenstock, S.S.; Schweinsburg, R.E.; Richardson, W.S. Relationships among breeding birds, habitat, and res-idential development in greater Tucson, Arizona. Ecol. Appl. 1998, 8, 680–691. [Google Scholar] [CrossRef]
- Sandström, U.; Angelstam, P.; Mikusiński, G. Ecological diversity of birds in relation to the structure of urban green space. Landsc. Urban Plan. 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Qiu, L.; Tao, T.T.; Han, S.R.; Yang, W.Y.; Luan, X.L.; Qiu, Y.N.; Liu, M.S.; Xu, C. Impact of landscape fragmentation on species richness on macro ecological scale. J. Ecol. 2017, 22, 224–232. [Google Scholar]
- Zhou, D.Q.; Chu, L.M. How would size, age, human disturbance, and vegetation structure affect bird communities of urban parks in different seasons. J. Ornithol. 2012, 153, 1101–1112. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Xu, J.; Ding, Y.Z.; Wu, S.Y.; Tang, H.; Li, H.; Wang, X.; Ma, B.; Wang, Z. Impact of habitat types of urban parks on bird communities. J. Ecol. 2015, 35, 4186–4195. [Google Scholar]
- McDonald, R.I.; Marcotullio, P.J.; Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Elmqvist, T., Fragkias, M., Eds.; Springer: Cham, Switzerland; Dordrecht, The Netherlands, 2013; pp. 31–52. [Google Scholar]
- Ciach, M.; Fröhlich, A. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst. 2017, 20, 547–559. [Google Scholar] [CrossRef] [Green Version]
- Janaranjani, M.; Varunprasath, K.; Priya, R.L.; Sutharsan, L.; Lakeshmanaswamy, M. Status of Wetlands in the Coimbatore District, Tamilnadu, India. Asian J. Environ. Ecol. 2017, 4, 1–12. [Google Scholar] [CrossRef]
- Palomino, D.; Carrascal, L.M. Urban influence on birds at a regional scale: A case study with the avifauna of northern Madrid province. Landsc. Urban Plan. 2006, 77, 276–290. [Google Scholar] [CrossRef]
- Savard, J.-P.L.; Falls, J.B. Influence of habitat structure on the nesting height of birds in urban areas. Can. J. Zool. 1981, 59, 924–932. [Google Scholar] [CrossRef]
- Marselle, M.R.; Stadler, J.; Korn HIrvine, K.N.; Bonn, A. Biodiversity and Health in the Face of Climate Change; Springer: Cham, Switzerland, 2019; pp. 1–2. [Google Scholar]
- Fisher-Gewirtzman, D.; A Wagner, I. Spatial Openness as a Practical Metric for Evaluating Built-up Environments. Environ. Plan. B Plan. Des. 2003, 30, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef] [Green Version]
- Summers, P.D.; Cunnington, G.M.; Fahrig, L. Are the negative effects of roads on breeding birds caused by traffic noise? J. Appl. Ecol. 2011, 48, 1527–1534. [Google Scholar] [CrossRef]
- Ma, J.; Liu, B.; Liu, G.; Wang, H. Case study on the effect of artificial light on the behavior of migratory songbirds. J. Light. Eng. 2010, 3, 8–12. [Google Scholar]
- Urle, J.B.; Yang, Y.F. Corroborating Structural/ Spatial Treatments A Brook Trout Habitat Suitability Index Case Study. Landsc. Archit. 2011, 4, 35. [Google Scholar]
- Wisdom, M.J.; Bright, L.R.; Carey, C.G.; Hines, W.W.; Pedersen, R.J.; Smithey, D.A.; Thomas, J.W.; Witmer, G.W. A Model to Evaluate Elk Habitat in Western Oregon; US Department of Agriculture & Forest Service: Washington, DC, USA, 1986; p. 35. [Google Scholar]
- Melles, S.; Glenn, S.M.; Martin, K. Urban Bird Diversity and Landscape Complexity: Species-environment Associations Along a Multiscale Habitat Gradient. Conserv. Ecol. 2003, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- McKinney, R.A.; Raposa, K.B.; Cournoyer, R.M. Wetlands as habitat in urbanizing landscapes: Patterns of bird abundance and occupancy. Landsc. Urban Plan. 2011, 100, 144–152. [Google Scholar] [CrossRef]
- Lerman, S.B.; Nislow, K.H.; Nowak, D.J.; DeStefano, S.; King, D.I.; Jones-Farrand, D.T. Using urban forest assessment tools to model bird habitat potential. Landsc. Urban Plan. 2014, 122, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, Y.; Li, S.; von Gadow, K. The Effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 2015, 14, 1027–1039. [Google Scholar] [CrossRef]
- Schütz, C.; Schulze, C.H. Functional diversity of urban bird communities: Effects of landscape composition, green space area and vegetation cover. Ecol. Evol. 2015, 5, 5230–5239. [Google Scholar] [CrossRef]
- Huang, Q.; Swatantran, A.; Dubayah, R.; Goetz, S.J. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States. PLoS ONE 2014, 9, e103236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, W.; Minor, E.; Park, C.-R.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- De Groot, M.; Flajšman, K.; Mihelič, T.; Vilhar, U.; Simončič, P.; Verlič, A. Green space area and type affect bird communities in a South-eastern European city. Urban For. Urban Green. 2021, 63, 127212. [Google Scholar] [CrossRef]
- Burghardt, K.T.; Tallamy, D.W.; Shriver, W.G. Impact of Native Plants on Bird and Butterfly Biodiversity in Suburban Landscapes. Conserv. Biol. 2009, 23, 219–224. [Google Scholar] [CrossRef]
- Narango, D.L.; Tallamy, D.W.; Marra, P.P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 2017, 213, 42–50. [Google Scholar] [CrossRef]
- Korányi, D.; Gallé, R.; Donkó, B.; Chamberlain, D.E.; Batáry, P. Urbanization does not affect green space bird species richness in a mid-sized city. Urban Ecosyst. 2020, 24, 789–800. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Jankowiak, Ł.; Czechowski, P.; Dulisz, B.; Golawski, A.; Grzywaczewski, G.; Indykiewicz, P.; Kwieciński, Z.; Mitrus, C.; Nowakowski, J.J.; et al. Summer water sources for temperate birds: Use, importance, and threats. Eur. Zool. J. 2022, 89, 913–926. [Google Scholar] [CrossRef]
Title | Data Types | Spatial Resolution | Acquisition Date | Strip Number | Band |
---|---|---|---|---|---|
Figure 1 | Landsat-8 OLI | 100 m | 5 June 2020 | 115–131 | Blue (0.45–0.51 μm) Green (0.53–0.59 μm) Red (0.64–0.67 μm) |
Figure 2 | Landsat-8 OLI | 30 m | 23 July 2020 | 123–125 | |
Figure 3 | Landsat-8 OLI | 30 m | 23 July 2020 | 124 | |
Figure 4 | Landsat-8 OLI | 30 m | 21 February 2021 | 123 | |
Figure 5 | — | — | — | — | |
Figure 6 | Landsat-8 OLI | 30 m | 23 July 2020 | 124 |
No. | Area | Nest Quantity | Nest Density | No. | Area | Nest Quantity | Nest Density | No. | Area | Nest Quantity | Nest Density |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14 | 24 | 1.71 | 24 | 10.2 | 12 | 1.18 | 46 | 2.1 | 1 | 0.48 |
2 | 21.7 | 22 | 1.01 | 25 | 4.6 | 1 | 0.22 | 47 | 1.8 | 1 | 0.56 |
3 | 7.9 | 19 | 2.41 | 26 | 5.4 | 0 | 0 | 48 | 4.1 | 7 | 1.71 |
4 | 7.2 | 6 | 0.83 | 27 | 11.7 | 3 | 0.26 | 49 | 1.9 | 0 | 0 |
5 | 4.6 | 4 | 0.87 | 28 | 7.3 | 13 | 1.78 | 50 | 5.2 | 8 | 1.54 |
6 | 9.5 | 10 | 1.05 | 29 | 24.1 | 33 | 1.37 | 51 | 1.6 | 0 | 0 |
7 | 7.3 | 1 | 0.14 | 30 | 10.2 | 17 | 1.67 | 52 | 4.4 | 0 | 0 |
8 | 6.2 | 1 | 0.16 | 31 | 4.2 | 2 | 0.48 | 53 | 3.7 | 0 | 0 |
9 | 4 | 0 | 0 | 32 | 3.7 | 1 | 0.27 | 54 | 3.3 | 1 | 0.3 |
10 | 13.4 | 12 | 0.9 | 33 | 4.1 | 5 | 1.22 | 55 | 4.1 | 5 | 1.22 |
11 | 4.1 | 2 | 0.49 | 34 | 5.6 | 1 | 0.18 | 56 | 4.5 | 1 | 0.22 |
12 | 6.1 | 7 | 1.15 | 35 | 42 | 37 | 0.88 | 57 | 3.2 | 0 | 0 |
13 | 3.9 | 0 | 0 | 36 | 14.6 | 2 | 0.14 | 58 | 9.7 | 9 | 0.93 |
14 | 4 | 2 | 0.5 | 37 | 5.8 | 7 | 1.21 | 59 | 3.1 | 4 | 1.29 |
15 | 5.3 | 5 | 0.94 | 38 | 4.6 | 1 | 0.22 | 60 | 4.6 | 5 | 1.09 |
16 | 7.9 | 11 | 1.39 | 39 | 8.1 | 14 | 1.73 | 61 | 4.5 | 6 | 1.33 |
17 | 4.6 | 8 | 1.74 | 40 | 8.4 | 13 | 1.55 | 62 | 0.6 | 1 | 1.6 |
18 | 3.2 | 6 | 1.88 | 41 | 4.9 | 2 | 0.41 | 63 | 0.8 | 1 | 1.25 |
19 | 3.1 | 7 | 2.26 | 42 | 8.3 | 9 | 1.08 | 64 | 0.6 | 0 | 0 |
20 | 3.4 | 6 | 1.76 | 43 | 3.6 | 6 | 1.67 | 65 | 0.9 | 0 | 0 |
21 | 3.3 | 1 | 0.3 | 44 | 3.8 | 0 | 0 | 66 | 0.8 | 0 | 0 |
22 | 7.1 | 2 | 0.3 | 45 | 4.2 | 3 | 0.71 | 67 | 1.2 | 1 | 0.83 |
23 | 3.8 | 4 | 1.05 |
NO | SO | DFN | CCA | PA | PPG | PNP | LP | DFW | SW | Ni | NO. | SO | DFN | CCA | PA | PPG | PNP | LP | DFW | SW | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.15 | 23 | 26 | 14 | 32 | 64 | 0.11 | 2700 | 2.7 | 26 | 35 | 0.67 | 153 | 19 | 42 | 20 | 48 | 0.5 | 850 | 2.4 | 38 |
2 | 0.32 | 75 | 41 | 21.7 | 13 | 46 | 0.15 | 2896 | 1.9 | 27 | 36 | 0.67 | 416 | 16 | 14.6 | 46 | 15 | 0.92 | 20 | 2.4 | 32 |
3 | 0.02 | 15 | 92 | 7.9 | 8 | 66 | 0.8 | 1789 | 3.2 | 29 | 37 | 0.29 | 325 | 23 | 5.8 | 12 | 54 | 0.12 | 2870 | 2.3 | 33 |
4 | 0.2 | 270 | 45 | 7.2 | 12 | 48 | 0.24 | 460 | 1.9 | 34 | 38 | 0.27 | 458 | 32 | 4.6 | 13 | 46 | 0.17 | 3870 | 2.2 | 35 |
5 | 0.4 | 430 | 48 | 4.6 | 37 | 32 | 0.22 | 0 | 1.7 | 41 | 39 | 0.18 | 56 | 78 | 8.1 | 17 | 46 | 0.5 | 580 | 2.5 | 41 |
6 | 0.16 | 122 | 36 | 9.5 | 26 | 33 | 0.9 | 0 | 1.78 | 43 | 40 | 0.16 | 88 | 52 | 8.4 | 12 | 53 | 0.8 | 3230 | 2.1 | 20 |
7 | 0.35 | 560 | 23 | 7.3 | 3 | 76 | 0.9 | 430 | 2.4 | 34 | 41 | 0.66 | 2850 | 54 | 4.9 | 10 | 64 | 0.9 | 2360 | 2.8 | 19 |
8 | 0.37 | 1446 | 28 | 6.2 | 13 | 64 | 0.5 | 430 | 2.1 | 32 | 42 | 0.66 | 17 | 42 | 8.3 | 14 | 61 | 0.11 | 0 | 2.7 | 11 |
9 | 0.38 | 2060 | 49 | 4 | 15 | 66 | 0.6 | 430 | 2.3 | 25 | 43 | 0.59 | 12 | 58 | 3.6 | 14 | 57 | 0.12 | 4260 | 2.5 | 22 |
10 | 0.35 | 98 | 29 | 13.4 | 21 | 56 | 0.5 | 430 | 2 | 22 | 44 | 0.77 | 26 | 49 | 3.8 | 21 | 23 | 0.42 | 2930 | 1.3 | 43 |
11 | 0.45 | 317 | 38 | 4.1 | 14 | 58 | 0.22 | 430 | 1.8 | 25 | 45 | 0.05 | 138 | 39 | 4.2 | 23 | 38 | 0.53 | 2220 | 1.4 | 40 |
12 | 0.14 | 150 | 41 | 6.1 | 11 | 54 | 0.7 | 430 | 1.9 | 35 | 46 | 0.22 | 652 | 44 | 2.1 | 15 | 37 | 0.48 | 2360 | 1.9 | 45 |
13 | 1.31 | 250 | 8 | 3.9 | 31 | 48 | 0.17 | 1550 | 2.5 | 26 | 47 | 0.38 | 1363 | 57 | 1.8 | 26 | 25 | 0.51 | 3320 | 1.95 | 53 |
14 | 0.37 | 820 | 22 | 4 | 12 | 66 | 0.21 | 1540 | 2.3 | 19 | 48 | 0.71 | 28 | 85 | 4.1 | 7 | 64 | 0.17 | 250 | 2.9 | 37 |
15 | 0.34 | 245 | 36 | 5.3 | 17 | 53 | 0.18 | 430 | 2.6 | 26 | 49 | 0.39 | 880 | 19 | 1.9 | 32 | 23 | 0.35 | 3210 | 2.2 | 41 |
16 | 0.46 | 117 | 62 | 7.9 | 21 | 61 | 0.13 | 0 | 2.7 | 31 | 50 | 0.55 | 12 | 53 | 5.2 | 31 | 26 | 0.47 | 460 | 1.6 | 45 |
17 | 0.29 | 62 | 58 | 4.6 | 14 | 57 | 0.17 | 4260 | 2.5 | 32 | 51 | 0.46 | 2340 | 51 | 1.6 | 41 | 16 | 0.38 | 30 | 1.4 | 54 |
18 | 0.37 | 26 | 59 | 3.2 | 21 | 63 | 0.22 | 2930 | 2.2 | 23 | 52 | 0.76 | 2730 | 48 | 4.4 | 32 | 26 | 0.34 | 8 | 1.2 | 47 |
19 | 0.35 | 38 | 59 | 3.1 | 23 | 58 | 0.23 | 2410 | 2.4 | 20 | 53 | 0.13 | 2600 | 52 | 3.7 | 29 | 27 | 0.26 | 25 | 1.1 | 58 |
20 | 0.32 | 52 | 44 | 3.4 | 15 | 57 | 0.18 | 2560 | 1.9 | 25 | 54 | 0.76 | 47 | 55 | 3.3 | 33 | 23 | 0.32 | 210 | 1.3 | 45 |
21 | 0.48 | 363 | 17 | 3.3 | 16 | 55 | 0.11 | 1670 | 1.95 | 33 | 55 | 0.59 | 29 | 62 | 4.1 | 15 | 54 | 0.16 | 1560 | 1.9 | 19 |
22 | 0.61 | 180 | 25 | 7.1 | 37 | 24 | 0.17 | 250 | 2.3 | 27 | 56 | 0.57 | 478 | 49 | 4.5 | 12 | 58 | 0.7 | 980 | 2.7 | 22 |
23 | 0.39 | 180 | 59 | 3.8 | 12 | 63 | 0.35 | 0 | 2.2 | 21 | 57 | 0.64 | 2176 | 51 | 3.2 | 29 | 22 | 0.43 | 2140 | 1.8 | 35 |
24 | 0.45 | 340 | 43 | 10.2 | 11 | 46 | 0.17 | 460 | 2.6 | 25 | 58 | 0.43 | 38 | 28 | 9.7 | 21 | 61 | 0.8 | 2130 | 2.5 | 18 |
25 | 0.46 | 740 | 11 | 4.6 | 11 | 66 | 0.18 | 130 | 2.5 | 34 | 59 | 0.28 | 28 | 52 | 3.1 | 15 | 65 | 0.6 | 2410 | 1.6 | 21 |
26 | 0.76 | 2530 | 48 | 5.4 | 12 | 26 | 14 | 8 | 2.2 | 37 | 60 | 0.35 | 10 | 62 | 4.6 | 14 | 56 | 19 | 1950 | 2.3 | 20 |
27 | 0.43 | 200 | 12 | 11.7 | 19 | 67 | 16 | 40 | 2.1 | 28 | 61 | 0.68 | 13 | 69 | 4.5 | 11 | 58 | 5 | 850 | 2.4 | 18 |
28 | 0.06 | 67 | 55 | 7.3 | 13 | 57 | 22 | 210 | 2.3 | 35 | 62 | 0.67 | 2416 | 54 | 0.6 | 46 | 15 | 32 | 56 | 1.5 | 42 |
29 | 0.09 | 39 | 62 | 24.1 | 15 | 54 | 16 | 0 | 1.9 | 29 | 63 | 0.09 | 2325 | 43 | 0.8 | 42 | 14 | 31 | 25 | 1.3 | 43 |
30 | 0.17 | 28 | 49 | 10.2 | 12 | 58 | 7 | 560 | 2.7 | 32 | 64 | 0.81 | 1458 | 42 | 0.6 | 43 | 26 | 27 | 50 | 1.7 | 45 |
31 | 0.34 | 176 | 21 | 4.2 | 9 | 22 | 13 | 4880 | 1.8 | 35 | 65 | 0.78 | 2456 | 48 | 0.9 | 37 | 16 | 25 | 10 | 1.5 | 51 |
32 | 0.43 | 338 | 28 | 3.7 | 14 | 61 | 16 | 3130 | 2.5 | 38 | 66 | 0.76 | 2188 | 42 | 0.8 | 32 | 23 | 18 | 87 | 1.1 | 50 |
33 | 0.48 | 28 | 22 | 4.1 | 15 | 55 | 21 | 3410 | 1.6 | 41 | 67 | 0.36 | 1850 | 54 | 1.2 | 30 | 24 | 21 | 2360 | 1.4 | 39 |
34 | 0.55 | 780 | 12 | 5.6 | 14 | 56 | 19 | 1550 | 2.3 | 40 |
SO | DFN | CCA | PA | PPG | PNP | LP | DFW | SW | Ni | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SO | Pearson correlation | 1 | |||||||||
Significance (bilateral) | |||||||||||
DFN | Pearson correlation | 0.180 | 1 | ||||||||
Significance (bilateral) | 0.145 | ||||||||||
CCA | Pearson correlation | −0.227 | −0.230 | 1 | |||||||
Significance (bilateral) | 0.065 | 0.061 | |||||||||
PA | Pearson correlation | −0.147 | −0.155 | −0.193 | 1 | ||||||
Significance (bilateral) | 0.044 | 0.000 | 0.119 | ||||||||
PPG | Pearson correlation | 0.219 | 0.179 | −0.065 | −0.223 | 1 | |||||
Significance (bilateral) | 0.075 | 0.147 | 0.602 | 0.070 | |||||||
PNP | Pearson correlation | −0.175 | −0.142 | 0.075 | 0.232 | −0.234 | 1 | ||||
Significance (bilateral) | 0.157 | 0.049 | 0.548 | 0.058 | 0.006 | ||||||
LP | Pearson correlation | 0.030 | 0.078 | 0.148 | −0.188 | 0.052 | −0.025 | 1 | |||
Significance (bilateral) | 0.810 | 0.531 | 0.004 | 0.129 | 0.674 | 0.840 | |||||
DFW | Pearson correlation | −0.240 | −0.077 | 0.116 | −0.068 | 0.010 | −0.022 | −0.132 | 1 | ||
Significance (bilateral) | 0.062 | 0.554 | 0.374 | 0.603 | 0.939 | 0.864 | 0.310 | ||||
SW | Pearson correlation | −0.045 | −0.238 | −0.082 | 0.485 ** | −0.193 | 0.181 | −0.035 | 0.013 | 1 | |
Significance (bilateral) | 0.718 | 0.005 | 0.512 | 0.000 | 0.001 | 0.001 | 0.780 | 0.921 | |||
Ni | Pearson correlation | 0.255 * | 0.145 | −0.019 | −0.310 * | 0.098 | −0.111 | 0.152 | 0.186 | −0.229 | 1 |
Significance (bilateral) | 0.037 | 0.243 | 0.879 | 0.011 | 0.428 | 0.371 | 0.220 | 0.152 | 0.062 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|---|
B | SE | Beta | ||||
1 | (constant) | 1.109 | 0.944 | 1.175 | 0.246 | |
SO | −0.638 | 0.201 | −0.220 | −3.173 | 0.003 | |
DFN | −0.537 | 0.066 | −0.590 | −8.115 | 0.000 | |
CCA | 0.879 | 0.225 | 0.289 | 3.901 | 0.000 | |
PA | −0.096 | 0.163 | −0.048 | −0.587 | 0.560 | |
PPG | −0.153 | 0.218 | −0.049 | −0.703 | 0.485 | |
PNP | −0.032 | 0.352 | −0.006 | −0.092 | 0.927 | |
LP | −0.456 | 0.225 | −0.136 | −2.022 | 0.049 | |
DFW | 0.101 | 0.083 | 0.081 | 1.227 | 0.226 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
---|---|---|---|---|---|---|---|
B | SE | Beta | Tolerance | VIF | |||
constant | 1.436 | 0.391 | 3.678 | 0.000 | |||
SO | −0.775 | 0.187 | −0.272 | −4.148 | 0.000 | 0.931 | 1.074 |
DFN | −0.609 | 0.059 | −0.677 | −10.315 | 0.000 | 0.930 | 1.075 |
CCA | 0.687 | 0.200 | 0.227 | 3.425 | 0.001 | 0.912 | 1.097 |
Order | SO | CCA | DFN | Nest Density (Prediction) | Nest Density (Reality) |
---|---|---|---|---|---|
1 | 0.05 | 85 | 650 | 1.01 | 1.2 |
2 | 0.85 | 55 | 1260 | 0.08 | 0 |
3 | 0.35 | 15 | 1610 | 0.02 | 0 |
4 | 0.96 | 51 | 900 | 0.07 | 0 |
5 | 0.24 | 45 | 12 | 1.73 | 1.6 |
6 | 0.13 | 65 | 6 | 2.11 | 2.05 |
7 | 0.86 | 35 | 880 | 0.04 | 0 |
8 | 0.84 | 45 | 1270 | 0.03 | 0 |
9 | 0.91 | 43 | 890 | 0.06 | 0 |
10 | 0.16 | 25 | 35 | 1.33 | 1.25 |
Level | Plot Numbers | Total Area | Total Nest Quantity | Density (Nest Quantity/Area) |
---|---|---|---|---|
<100 | 1, 3, 5, 10, 13, 15, 17, 18, 19, 20, 23, 28, 30, 33, 36, 38, 45 | 112.6 | 82 | 0.73 |
100–1000 | 2, 4, 6, 7, 9, 11, 12, 16, 21, 22, 24, 25, 31, 34, 37, 40, 48 | 130.2 | 57 | 0.44 |
>1000 | 26, 39, 46, 47, 51, 53, 62, 63, 64, 65, 66, 67 | 38.9 | 11 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Srirangam, S.; Mari, T. Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding. Land 2023, 12, 1465. https://doi.org/10.3390/land12071465
Zhu X, Srirangam S, Mari T. Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding. Land. 2023; 12(7):1465. https://doi.org/10.3390/land12071465
Chicago/Turabian StyleZhu, Xiongbin, Sucharita Srirangam, and TamilSalvi Mari. 2023. "Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding" Land 12, no. 7: 1465. https://doi.org/10.3390/land12071465
APA StyleZhu, X., Srirangam, S., & Mari, T. (2023). Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding. Land, 12(7), 1465. https://doi.org/10.3390/land12071465