Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction and Definition of the Main Methodological Components
2.2. Study Framework
2.3. Study Area
2.4. Data Source and Processing
2.5. Methods
2.5.1. CycleGAN Image-to-Image Translation
2.5.2. Calculation Principles of Cellular Automata
2.5.3. Urban Reconstruction by CycleGAN
2.5.4. Grasshopper Transformation and Tree Networks
3. Experimental Results
3.1. Relationship between CycleGAN Results and Cellular Automata
3.2. Iteration of Cellular Automata
3.3. Trees Network Connection
3.4. Results Comparison of Cellular Automata and CycleGAN
4. Discussion
4.1. Urban Planning and Design Implication
4.2. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Vita, G.; Pilato, M.; Pecorino, B.; Brun, F.; D’Amico, M. A review of the role of vegetal ecosystems in CO2 capture. Sustainability 2017, 9, 1840. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhao, Y.; Song, T.; Zou, X.; Wang, E.; Du, S. Accounting for China’s Net Carbon Emissions and Research on the Realization Path of Carbon Neutralization Based on Ecosystem Carbon Sinks. Sustainability 2022, 14, 14750. [Google Scholar] [CrossRef]
- Sima, S.; Crişciu, A.V.; Secuianu, C. Phase Behavior of Carbon Dioxide+ Isobutanol and Carbon Dioxide+ tert-Butanol Binary Systems. Energies 2022, 15, 2625. [Google Scholar] [CrossRef]
- Reichle, D.E. The Global Carbon Cycle and Climate Change: Scaling Ecological Energetics from Organism to the Biosphere; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Davidson, O.; Swart, R.; Pan, J. Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Lianhe, J. Global carbon cycle: From fundamental scientific problem to green responsibility. Science 2021, 73, 39–43. [Google Scholar]
- Badiou, P.; McDougal, R.; Pennock, D.; Clark, B. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetl. Ecol. Manag. 2011, 19, 237–256. [Google Scholar] [CrossRef]
- Pan, Y.; Weng, G.; Li, C.; Li, J. Coupling coordination and influencing factors among tourism carbon emission, tourism economic and tourism innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef]
- Lv, Z.; Shi, Y.; Zang, S.; Sun, L. Spatial and temporal variations of atmospheric CO2 concentration in China and its influencing factors. Atmosphere 2020, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Udara Willhelm Abeydeera, L.H.; Wadu Mesthrige, J.; Samarasinghalage, T.I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, F.; Zhang, H.; Ye, Y.; Wu, Q.; Su, Y. Carbon emissions decomposition and environmental mitigation policy recommendations for sustainable development in Shandong province. Sustainability 2014, 6, 8164–8179. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Salam, M.A.; Noguchi, T. Impact of human activities on carbon dioxide (CO2) emissions: A statistical analysis. Environmentalist 2005, 25, 19–30. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Lee, S.J.; Yim, J.S.; Son, Y.M.; Son, Y.; Kim, R. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests 2018, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Francini, S.; D’Amico, G.; Vangi, E.; Borghi, C.; Chirici, G. Integrating GEDI and Landsat: Spaceborne lidar and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy. Sensors 2022, 22, 2015. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, Y.; Zhang, C.; Zhang, D. Three modes involved in forest carbon cycle: Mechanism and selection. Sci. Silvae Sin. 2014, 50, 134–139. [Google Scholar]
- Dang, H.N.; Ba, D.D.; Trung, D.N.; Viet, H.N.H. A Novel Method for Estimating Biomass and Carbon Sequestration in Tropical Rainforest Areas Based on Remote Sensing Imagery: A Case Study in the Kon Ha Nung Plateau, Vietnam. Sustainability 2022, 14, 16857. [Google Scholar] [CrossRef]
- Zekeng, J.C.; van der Sande, M.T.; Fobane, J.L.; Mphinyane, W.N.; Sebego, R.; Mbolo, M.M.A. Partitioning main carbon pools in a semi-deciduous rainforest in eastern Cameroon. For. Ecol. Manag. 2020, 457, 117686. [Google Scholar] [CrossRef]
- Hoorn, C.; Wesselingh, F.P.; Ter Steege, H.; Bermudez, M.; Mora, A.; Sevink, J.; Sanmartín, I.; Sanchez-Meseguer, A.; Anderson, C.; Figueiredo, J. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, S.; du Toit, B.; Seifert, T. Diversity–biomass relationship across forest layers: Implications for niche complementarity and selection effects. Oecologia 2018, 187, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Peña-Claros, M. Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon1. Biotropica 2003, 35, 450–461. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.; Tejada, G.; Aragão, L.E.; Nobre, C.; Peters, W. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Awan, U.; Zaman, K.; Nassani, A.A.; Haffar, M.; Abro, M.M.Q. Assessing hybrid solar-wind potential for industrial decarbonization strategies: Global shift to green development. Energies 2021, 14, 7620. [Google Scholar] [CrossRef]
- Pye, S.; Li, F.G.; Price, J.; Fais, B. Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. Nat. Energy 2017, 2, 17024. [Google Scholar] [CrossRef]
- Ostoić, S.K.; van den Bosch, C.C.K. Exploring global scientific discourses on urban forestry. Urban For. Urban Green. 2015, 14, 129–138. [Google Scholar] [CrossRef]
- Jorgensen, E. Urban Forestry: Some Problems and Proposals; Faculty of Forestry, University of Toronto: Toronto, ON, Canada, 1967. [Google Scholar]
- French, J. The concept of urban forestry. Aust. For. 1975, 38, 177–182. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. A decade of urban forestry in Europe. For. Policy Econ. 2003, 5, 173–186. [Google Scholar] [CrossRef]
- Defra. The England Trees Action Plan 2021–2024; Department for Environment, Food& Rural Affairs, UK Government Office: UK, 2021. Available online: https://www.gov.uk/government/publications/england-trees-action-plan-2021-to-2024 (accessed on 12 May 2023).
- Barona, C.O.; Devisscher, T.; Dobbs, C.; Aguilar, L.O.; Baptista, M.D.; Navarro, N.M.; da Silva Filho, D.F.; Escobedo, F.J. Trends in urban forestry research in Latin America & the Caribbean: A systematic literature review and synthesis. Urban For. Urban Green. 2020, 47, 126544. [Google Scholar]
- Nowak, D.J. Historical vegetation change in Oakland and its implications for urban forest management. J. Arboric. 1993, 19, 313–319. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Kendal, D. The distinct ecological and social roles that wild spaces play in urban ecosystems. Urban For. Urban Green. 2018, 29, 348–356. [Google Scholar] [CrossRef]
- Duan, W.; Wang, C.; Pei, N.; Zhang, C.; Gu, L.; Jiang, S.; Hao, Z.; Xu, X. Spatiotemporal ozone level variation in urban forests in Shenzhen, China. Forests 2019, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Tan, M.; Guo, Y.; Wang, X.; Xin, L. Understanding the spatial distribution of urban forests in China using Sentinel-2 images with Google Earth Engine. Forests 2019, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhang, S.; Yu, W.; Wang, J.; Wang, W. Effects of urban expansion on forest loss and fragmentation in six megaregions, China. Remote Sens. 2017, 9, 991. [Google Scholar] [CrossRef] [Green Version]
- Blood, A.; Starr, G.; Escobedo, F.; Chappelka, A.; Staudhammer, C. How do urban forests compare? Tree diversity in urban and periurban forests of the southeastern US. Forests 2016, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Referowska-Chodak, E. Pressures and threats to nature related to human activities in European urban and suburban forests. Forests 2019, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Livesley, S.J.; Escobedo, F.J.; Morgenroth, J. The biodiversity of urban and peri-urban forests and the diverse ecosystem services they provide as socio-ecological systems. Forests 2016, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Feng, Q.; Wang, X.; Fu, H.; Jiang, W.; Chen, B. Spatial association and effect evaluation of CO2 emission in the Chengdu-Chongqing urban agglomeration: Quantitative evidence from social network analysis. Sustainability 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.; van den Bosch, M.; Bardekjian, A.C. Urban trees and human health: A scoping review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The carbon footprint of urban green space—A life cycle approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Locke, D.H.; Grove, J.M.; Lu, J.W.; Troy, A.; O’Neil-Dunne, J.P.; Beck, B.D. Prioritizing preferable locations for increasing urban tree canopy in New York City. Cities Environ. 2011, 3, 4. [Google Scholar]
- Lin, J. Developing a composite indicator to prioritize tree planting and protection locations. Sci. Total Environ. 2020, 717, 137269. [Google Scholar] [CrossRef] [PubMed]
- Morani, A.; Nowak, D.J.; Hirabayashi, S.; Calfapietra, C. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environ. Pollut. 2011, 159, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Lusk, A.C.; da Silva Filho, D.F.; Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 2020, 106, 102111. [Google Scholar] [CrossRef]
- Milošević, D.D.; Bajšanski, I.V.; Savić, S.M. Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Lawrence, A.; De Vreese, R.; Johnston, M.; Van Den Bosch, C.C.K.; Sanesi, G. Urban forest governance: Towards a framework for comparing approaches. Urban For. Urban Green. 2013, 12, 464–473. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J. Simulating urban growth using a Random Forest-Cellular Automata (RF-CA) model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Yang, X.; Wang, K.; Huang, L.; Shahtahmassebi, A.R.; Gan, M.; Weston, M.V. Delimiting urban growth boundary through combining land suitability evaluation and cellular automata. Sustainability 2017, 9, 2213. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, Y.; Liu, X.; Xu, X.; Chen, G. Experiences and issues of using cellular automata for assisting urban and regional planning in China. Int. J. Geogr. Inf. Sci. 2017, 31, 1606–1629. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Zhang, X.; Chen, Y. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int. J. Geogr. Inf. Sci. 2010, 24, 783–802. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M. Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Comput. Environ. Urban Syst. 2017, 64, 297–308. [Google Scholar] [CrossRef]
- Gonzalez, P.B.; Aguilera-Benavente, F.; Gomez-Delgado, M. Partial validation of cellular automata based model simulations of urban growth: An approach to assessing factor influence using spatial methods. Environ. Model. Softw. 2015, 69, 77–89. [Google Scholar] [CrossRef]
- Batty, M. Understanding Cities with Cellular Automata, Agent Based Models, and Fractals; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Batty, M. Cellular automata and urban form: A primer. J. Am. Plan. Assoc. 1997, 63, 266–274. [Google Scholar] [CrossRef]
- Reps, J.W. The Making of Urban America: A History of City Planning in the United States; Princeton University Press: Princeton, NY, USA, 1965. [Google Scholar]
- Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Reber, A.S. Implicit learning and tacit knowledge. J. Exp. Psychol. Gen. 1989, 118, 219. [Google Scholar] [CrossRef]
- Perruchet, P.; Pacton, S. Implicit learning and statistical learning: One phenomenon, two approaches. Trends Cogn. Sci. 2006, 10, 233–238. [Google Scholar] [CrossRef]
- Daikoku, T.; Yatomi, Y.; Yumoto, M. Implicit and explicit statistical learning of tone sequences across spectral shifts. Neuropsychologia 2014, 63, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Wolfram, S. Cellular automata as models of complexity. Nature 1984, 311, 419–424. [Google Scholar] [CrossRef]
- Tobler, W.R. Cellular geography. In Philosophy in Geography; Springer: Dordrecht, The Netherlands, 1979; pp. 379–386. [Google Scholar]
- Batty, M.; Xie, Y. From cells to cities. Environ. Plan. B Plan. Des. 1994, 21, S31–S48. [Google Scholar] [CrossRef]
- Couclelis, H. Cellular worlds: A framework for modeling micro—Macro dynamics. Environ. Plan. A 1985, 17, 585–596. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Wu, J. Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landsc. Ecol. 2001, 16, 611–626. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2107–2116. [Google Scholar]
- Park, M.; Tran, D.Q.; Jung, D.; Park, S. Wildfire-detection method using DenseNet and CycleGAN data augmentation-based remote camera imagery. Remote Sens. 2020, 12, 3715. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, M.; Sun, G.; Anas, B.; Li, Y. Using vehicle synthesis generative adversarial networks to improve vehicle detection in remote sensing images. ISPRS Int. J. Geo-Inf. 2019, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, D. Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sens. 2015, 7, 5918–5950. [Google Scholar] [CrossRef] [Green Version]
- Yüzer, M.A.; Yüzer, Ş. Cellular Automata Tabanlı LUCAM Modeli Ile Istanbul’un Gelişim ve Dönüşümüne Ilişkin Makro Form Simülasyonları. J. Istanb. Kültür Univ. 2006, 4, 231–244. [Google Scholar]
- Liu, L.; Wang, X.; Eck, J.; Liang, J. Simulating crime events and crime patterns in a RA/CA model. In Geographic Information Systems and Crime Analysis; IGI Global: Hershey, PA, USA, 2005; pp. 197–213. [Google Scholar]
- Kier, L.B.; Seybold, P.G.; Cheng, C.-K. Modeling Chemical Systems Using Cellular Automata; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Ward, D.P.; Murray, A.T.; Phinn, S.R. A stochastically constrained cellular model of urban growth. Comput. Environ. Urban Syst. 2000, 24, 539–558. [Google Scholar] [CrossRef]
- Simard, S. Finding the Mother Tree: Uncovering the Wisdom and Intelligence of the Forest; Penguin UK: London, UK, 2021. [Google Scholar]
- Whitfield, J. Fungal roles in soil ecology: Underground networking. Nature 2007, 449, 136–139. [Google Scholar] [CrossRef]
- Andersson, E.; McPhearson, T.; Kremer, P.; Gomez-Baggethun, E.; Haase, D.; Tuvendal, M.; Wurster, D. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 2015, 12, 157–164. [Google Scholar] [CrossRef]
- Cimburova, Z.; Pont, M.B. Location matters. A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosyst. Serv. 2021, 50, 101296. [Google Scholar] [CrossRef]
- Vogt, J.; Hauer, R.J.; Fischer, B.C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 2015, 41, 293–323. [Google Scholar] [CrossRef]
- Miller, R.W.; Hauer, R.J.; Werner, L.P. Urban Forestry: Planning and Managing Urban Greenspaces; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Dan, H. It Goes on like a Forest. In The Word for World Is Still Forest, Red; Anna-Sophie Springer & Etienne Turpin: Berlin, Germany, 2017; Volume 4. [Google Scholar]
- Roman, L.A.; Scatena, F.N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 2011, 10, 269–274. [Google Scholar] [CrossRef]
- Bartens, J.; Wiseman, P.E.; Smiley, E.T. Stability of landscape trees in engineered and conventional urban soil mixes. Urban For. Urban Green. 2010, 9, 333–338. [Google Scholar] [CrossRef]
Gla_id | Tree Species and Scientific Names | Longitude | Latitude |
---|---|---|---|
glaid_682290 | Plane (Platanus hispanica) | −0.12786102449052 | 51.5675131207381 |
glaid_682291 | Plane (Platanus hispanica) | −0.12788095908132 | 51.5675441929378 |
glaid_682292 | Ash (Fraxinus excelsior) | −0.12772311698794 | 51.5675262975231 |
glaid_682293 | Plane (Platanus hispanica) | −0.12762451064078 | 51.5675697763205 |
glaid_682294 | Pear (Pyrus communis) | −0.12755616291557 | 51.5676037562588 |
glaid_682295 | Plane (Platanus hispanica) | −0.12747623124352 | 51.5676387203248 |
glaid_682296 | Plane (Platanus hispanica) | −0.12735170738228 | 51.5677124495487 |
glaid_682297 | Plane (Platanus hispanica) | −0.12726708752885 | 51.5677561512526 |
glaid_682298 | Plane (Platanus hispanica) | −0.12719287232343 | 51.5678064935142 |
glaid_682299 | Cherry (Prunus genus) | −0.12715312606818 | 51.5678958735313 |
glaid_682300 | Cherry (Prunus genus) | −0.12710738384612 | 51.5679380374256 |
glaid_682301 | Cherry (Prunus genus) | −0.12706859431744 | 51.5679374183132 |
glaid_682394 | Cherry (Prunus genus) | −0.12700819278152 | 51.5676059818775 |
glaid_682398 | Whitebeam (Sorbus aria) | −0.12713078708266 | 51.5672386188778 |
glaid_682399 | Whitebeam (Sorbus aria) | −0.12711551260981 | 51.5672240770995 |
glaid_682400 | Whitebeam (Sorbus aria) | −0.12714728020639 | 51.5672235050338 |
glaid_682401 | Whitebeam (Sorbus aria) | −0.12713378040792 | 51.5672079124889 |
glaid_682402 | Ash (Fraxinus excelsior) | −0.12705398809426 | 51.5671341598225 |
glaid_682618 | Hawthorn (Crataegus) | −0.12798605750201 | 51.5679855102208 |
glaid_688705 | Cherry (Prunus genus) | −0.12737171242051 | 51.5670113580804 |
glaid_697556 | Lime (Tilia europaea) | −0.12774688769460 | 51.5673551009506 |
glaid_697557 | Cherry (Prunus genus) | −0.12779069456203 | 51.5673635333951 |
glaid_697558 | Cherry (Prunus genus) | −0.12777973154878 | 51.5674161441307 |
glaid_697559 | Lime (Tilia europaea) | −0.12742623316460 | 51.5676018627646 |
glaid_697560 | Cherry (Prunus genus) | −0.12748077097416 | 51.5674334053296 |
glaid_697561 | Pear (Pyrus communis) | −0.12745816111797 | 51.5674253110274 |
glaid_697562 | Pear (Pyrus communis) | −0.12744097518780 | 51.5674151450884 |
glaid_697563 | Cherry (Prunus genus) | −0.12744327917633 | 51.5673590689984 |
glaid_697564 | Pear (Pyrus communis) | −0.12737621039910 | 51.5673162737598 |
glaid_697565 | Pear (Pyrus communis) | −0.12734530308466 | 51.5672959072194 |
glaid_697566 | Cherry (Prunus genus) | −0.12751479831096 | 51.5673778354607 |
glaid_697567 | Pear (Pyrus communis) | −0.12756027765596 | 51.5673455589041 |
glaid_697568 | Pear (Pyrus communis) | −0.12758720845964 | 51.5673327697381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, Y.; Huang, S.-Y. Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure. Land 2023, 12, 1479. https://doi.org/10.3390/land12081479
Le Y, Huang S-Y. Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure. Land. 2023; 12(8):1479. https://doi.org/10.3390/land12081479
Chicago/Turabian StyleLe, Yi, and Sheng-Yang Huang. 2023. "Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure" Land 12, no. 8: 1479. https://doi.org/10.3390/land12081479
APA StyleLe, Y., & Huang, S. -Y. (2023). Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure. Land, 12(8), 1479. https://doi.org/10.3390/land12081479