Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review
Abstract
:1. Introduction
Literature Review
- (1)
- Systemize sensing and measurement techniques by NbS type and function as classified under the IUCN framework;
- (2)
- Categorize types of NbS and the associated sensing and measurement techniques that support achievement of the United Nations Sustainable Development Goals (UN SDGs) across various scales; and
- (3)
- Identify advantages, limitations, and gaps in NbS sensing techniques.
2. Methods
- (1)
- Literature selection;
- (2)
- Bibliometric analysis;
- (3)
- In-depth literature analysis; and
- (4)
- Classification and presentation of results.
2.1. Literature Selection
2.2. Qualitative Synthesis and Quantitative Analysis—Content and Context Analysis
- Co-occurrence of author keywords in selected articles;
- Common sources of articles and citation connections;
- Most cited sources of articles and citation connections; and
- Geographical span of identified studies.
2.3. Study Categorization
- In-situ measurement;
- Mobile measurement;
- Remote sensing imagery;
- Performance indicators; and
- Other.
- Air quality;
- Biodiversity;
- Soil quality;
- Thermal performance; and
- Water quality and management.
2.4. Categorization and Alignment
3. Results
3.1. Bibliometric Analysis
3.2. Systematic Review
3.3. Types of NBS and Parameters Measured
3.4. Scale of Application
3.5. Sensing Methods
4. Discussion
4.1. Opportunities and Challenges Associated with NBS Sensing Techniques
4.2. Efficacy Evaluation
4.3. Access to Sensing and Measurement Research and Technologies
4.4. Supporting Achievement of the UN SDGs
4.5. NbS Policy Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 13, p. 97. ISBN 978-2-8317-1812-5. [Google Scholar]
- Anderson, V.; Gough, W.A. Harnessing the four horsemen of climate change: A framework for deep resilience, decarbonization, and planetary health in Ontario, Canada. Sustainability 2021, 13, 379. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. A Typology of Nature-based Solutions for Sustainable Development: Form, Function, Nomenclature, and Associated Applications. Land 2022, 11, 1072. [Google Scholar] [CrossRef]
- Stange, E.E.; Barton, D.N.; Andersson, E.; Haase, D. Comparing the implicit valuation of ecosystem services from nature-based solutions in performance-based green area indicators across three European cities. Landsc. Urban Plan. 2022, 219, 104310. [Google Scholar] [CrossRef]
- Andrés, P.; Doblas-Miranda, E.; Mattana, S.; Molowny-Horas, R.; Vayreda, J.; Guardiola, M.; Pino, J.; Gordillo, J. A battery of soil and plant indicators of NBS environmental performance in the context of global change. Sustainability 2021, 13, 1913. [Google Scholar] [CrossRef]
- Andrikopoulou, T.; Schielen, R.M.; Spray, C.J.; Schipper, C.A.; Blom, A. A framework to evaluate the SDG contribution of fluvial nature-based solutions. Sustainability 2021, 13, 11320. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Sci. Total Environ. 2021, 787, 147615. [Google Scholar] [CrossRef]
- van Rees, C.B.; Naslund, L.; Hernandez-Abrams, D.D.; McKay, S.K.; Woodson, C.B.; Rosemond, A.; McFall, B.; Altman, S.; Wenger, S.J. A strategic monitoring approach for learning to improve natural infrastructure. Sci. Total Environ. 2022, 832, 155078. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; Wójcik-Madej, J.; Michalik-Śnieżek, M. An assessment of the Ecological Landscape Quality (ELQ) of Nature-Based Solutions (NBS) based on existing elements of Green and Blue Infrastructure (GBI). Sustainability 2021, 13, 11674. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Sci. Rev. 2021, 217, 103603. [Google Scholar] [CrossRef]
- Bridges, T.S.; Smith, J.M.; King, J.K.; Simm, J.D.; Dillard, M.; Devries, J.; Reed, D.; Piercy, C.D.; van Zanten, B.; Arkema, K.; et al. Coastal natural and nature-based features: International guidelines for flood risk management. Front. Built Environ. 2022, 80, 904483. [Google Scholar] [CrossRef]
- Liberati, M.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric analysis on smart cities research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Liu, D.; Lu, Z.; Crittenden, J.; Mao, G.; Wang, S.; Zou, H. Research Development on Sustainable Urban Infrastructure from 1991 to 2017: A Bibliometric Analysis to Inform Future Innovations. Earths Future 2019, 7, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Xu, Z.; Wang, X. Bibliometric analysis of support vector machines research trend: A case study in China. Int. J. Mach. Learn. Cybern. 2020, 11, 715–728. [Google Scholar] [CrossRef]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Fonseca Largo, K.M.; Ruiz Depablos, J.L.; Espitia-Sarmiento, E.F.; Llugsha Moreta, N.M. Artificial Floating Island with Vetiver for Treatment of Arsenic-Contaminated Water: A Real Scale Study in High-Andean Reservoir. Water 2020, 12, 3086. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Zhang, S.; Ge, D. Stormwater Retention and Detention Performance of Green Roofs with Different Substrates: Observational Data and Hydrological Simulations. J. Environ. Manag. 2021, 291, 112682. [Google Scholar] [CrossRef]
- Geronimo, F.K.F.; Maniquiz-Redillas, M.C.; Hong, J.; Kim, L.H. Evaluation on the Suspended Solids and Heavy Metals Removal Mechanisms in Bioretention Systems. Membr. Water Treat. 2019, 10, 91–97. [Google Scholar] [CrossRef]
- Zanin, G.; Bortolini, L.; Borin, M. Assessing Stormwater Nutrient and Heavy Metal Plant Uptake in an Experimental Bioretention Pond. Land 2018, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Rey-Mahía, C.; Álvarez-Rabanal, F.P.; Sañudo-Fontaneda, L.A.; Hidalgo-Tostado, M.; Menéndez Suárez-Inclán, A. An Experimental and Numerical Approach to Multifunctional Urban Surfaces through Blue Roofs. Sustainability 2022, 14, 1815. [Google Scholar] [CrossRef]
- Cristiano, E.; Annis, A.; Apollonio, C.; Pumo, D.; Urru, S.; Viola, F.; Deidda, R.; Pelorosso, R.; Petroselli, A.; Tauro, F.; et al. Multilayer Blue-Green Roofs as Nature-Based Solutions for Water and Thermal Insulation Management. Hydrol. Res. 2022, 53, 1129–1149. [Google Scholar] [CrossRef]
- Pumo, D.; Francipane, A.; Alongi, F.; Noto, L. V The Potential of Multilayer Green Roofs for Stormwater Management in Urban Area under Semi-Arid Mediterranean Climate Conditions. J. Environ. Manag. 2023, 326, 116643. [Google Scholar] [CrossRef]
- Hopkins, J.; Lutsko, N.; Cira, G.; Wise, L.; Tegeler, J. The Emerald Tutu: Floating Vegetated Canopies for Coastal Wave Attenuation. Front. Built Environ. 2022, 8, 885298. [Google Scholar] [CrossRef]
- Taramelli, A.; Valentini, E.; Piedelobo, L.; Righini, M.; Cappucci, S. Assessment of State Transition Dynamics of Coastal Wetlands in Northern Venice Lagoon, Italy. Sustainability 2021, 13, 4102. [Google Scholar] [CrossRef]
- Everett, C.L.; Williams, O.; Ruggiero, E.; Larner, M.; Schaefer, R.; Malej, M.; Shi, F.; Bruck, J.; Puleo, J.A. Ship Wake Forcing and Performance of a Living Shoreline Segment on an Estuarine Shoreline. Front. Built Environ. 2022, 8, 917945. [Google Scholar] [CrossRef]
- Karimi, Z.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shirvany, A.; Schwarz, M.; Hales, T.C. Vegetation-Induced Soil Stabilization in Coastal Area: An Example from a Natural Mangrove Forest. Catena 2022, 216, 106410. [Google Scholar] [CrossRef]
- Willemsen, P.W.J.M.; Horstman, E.M.; Bouma, T.J.; Baptist, M.J.; Mudd, S.M. Facilitating Salt Marsh Restoration: The Importance of Event-Based Bed Level Dynamics and Seasonal Trends in Bed Level Change. Front. Mar. Sci. 2022, 8, 793235. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Martinuzzi, N.; Masi, F. Online Monitoring of a Long-Term Full-Scale Constructed Wetland for the Treatment of Winery Wastewater in Italy. Appl. Sci. 2020, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Gaballah, M.S.; Abdelwahab, O.; Barakat, K.M.; Stefanakis, A.I. A Pilot System Integrating a Settling Technique and a Horizontal Subsurface Flow Constructed Wetland for the Treatment of Polluted Lake Water. Chemosphere 2022, 295, 133844. [Google Scholar] [CrossRef]
- Soares, C.; Príncipe, A.; Köbel, M.; Nunes, A.; Branquinho, C.; Pinho, P. Tracking Tree Canopy Cover Changes in Space and Time in High Nature Value Farmland to Prioritize Reforestation Efforts. Int. J. Remote Sens. 2018, 39, 4714–4726. [Google Scholar] [CrossRef]
- Abu Ali, M.; Alawadi, K.; Khanal, A. The Role of Green Infrastructure in Enhancing Microclimate Conditions: A Case Study of a Low-Rise Neighborhood in Abu Dhabi. Sustainability 2021, 13, 4260. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W. Evaluating the Potential of Nature-Based Solutions to Reduce Ozone, Nitrogen Dioxide, and Carbon Dioxide through a Multi-Type Green Infrastructure Study in Ontario, Canada. City Environ. Interact. 2020, 6, 100043. [Google Scholar] [CrossRef]
- Pudifoot, B.; Cárdenas, M.L.; Buytaert, W.; Paul, J.D.; Narraway, C.L.; Loiselle, S. When It Rains, It Pours: Integrating Citizen Science Methods to Understand Resilience of Urban Green Spaces. Front. Water 2021, 3, 33. [Google Scholar] [CrossRef]
- Tew, E.R.; Vanguelova, E.I.; Sutherland, W.J. Alternative Afforestation Options on Sandy Heathland Result in Minimal Long-Term Changes in Mineral Soil Layers. For. Ecol. Manag. 2021, 483, 118906. [Google Scholar] [CrossRef]
- Murphy, T.R.; Hanley, M.E.; Ellis, J.S.; Lunt, P.H. Native Woodland Establishment Improves Soil Hydrological Functioning in UK Upland Pastoral Catchments. Land Degrad. Dev. 2021, 32, 1034–1045. [Google Scholar] [CrossRef]
- Zhang, K.; Gong, Y.; Escobedo, F.J.; Bracho, R.; Zhang, X.; Zhao, M. Measuring Multi-Scale Urban Forest Carbon Flux Dynamics Using an Integrated Eddy Covariance Technique. Sustainability 2019, 11, 4335. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Chen, J.; Chu, H.; Lafortezza, R.; Dong, G.; Abraha, M.; Batkhishig, O.; John, R.; Ouyang, Z.; Zhang, Y.; et al. Grassland Productivity and Carbon Sequestration in Mongolian Grasslands: The Underlying Mechanisms and Nomadic Implications. Environ. Res. 2017, 159, 124–134. [Google Scholar] [CrossRef]
- Chen, H.; He, L.; Tang, H.; Zhao, M.; Shao, L. A Two-Step Strategy for Developing Cultivated Pastures in China That Offer the Advantages of Ecosystem Services. Sustainability 2016, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Odorizzi de Campos, M.; Pellegrino Cerri, C.E.; La Scala, N. Atmospheric CO2, Soil Carbon Stock and Control Variables in Managed and Degraded Pastures in Central Brazil. Remote Sens. Appl. Soc. Environ. 2022, 28, 100848. [Google Scholar] [CrossRef]
- Cardenas, L.M.; Olde, L.; Loick, N.; Griffith, B.; Hill, T.; Evans, J.; Cowan, N.; Segura, C.; Sint, H.; Harris, P.; et al. CO2 Fluxes from Three Different Temperate Grazed Pastures Using Eddy Covariance Measurements. Sci. Total Environ. 2022, 831, 154819. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Wang, D.; Sun, T.; Lensky, I. Outdoor Thermal Performance of Green Roofs across Multiple Time Scales: A Case Study in Subtropical China. Sustain. Cities Soc. 2021, 70, 102909. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A.; Zgela, M.; Milosevic, D.; Dunjic, J. Lowering the Temperature to Increase Heat Equity: A Multi-Scale Evaluation of Nature-Based Solutions in Toronto, Ontario, Canada. Atmosphere 2022, 13, 1027. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Fu, C.; Liu, Z.; Liu, D.; Li, B. Design of a Smart Sensor Network System for Real-Time Air Quality Monitoring on Green Roof. J. Sens. 2018, 2018, 1987931. [Google Scholar] [CrossRef] [Green Version]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban Particulate Pollution Reduction by Four Species of Green Roof Vegetation in a UK City. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Thomaidi, V.; Petousi, I.; Kotsia, D.; Kalogerakis, N.; Fountoulakis, M.S. Use of Green Roofs for Greywater Treatment: Role of Substrate, Depth, Plants, and Recirculation. Sci. Total Environ. 2022, 807, 151004. [Google Scholar] [CrossRef]
- Kyrö, K.; Kotze, D.J.; Müllner, M.A.; Hakala, S.; Kondorosy, E.; Pajunen, T.; Vilisics, F.; Lehvävirta, S. Vegetated Roofs in Boreal Climate Support Mobile Open Habitat Arthropods, with Differentiation between Meadow and Succulent Roofs. Urban Ecosyst. 2020, 23, 1239–1252. [Google Scholar] [CrossRef]
- Parkins, K.L.; Clark, J.A. Green Roofs Provide Habitat for Urban Bats. Glob. Ecol. Conserv. 2015, 4, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Wooster, E.I.F.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban Green Roofs Promote Metropolitan Biodiversity: A Comparative Case Study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
- Tonietto, R.; Fant, J.; Ascher, J.; Ellis, K.; Larkin, D. A Comparison of Bee Communities of Chicago Green Roofs, Parks and Prairies. Landsc. Urban Plan. 2011, 103, 102–108. [Google Scholar] [CrossRef]
- Li, J.; Wai, O.W.H.; Li, Y.S.; Zhan, J.; Ho, Y.A.; Li, J.; Lam, E. Effect of Green Roof on Ambient CO2 Concentration. Build. Environ. 2010, 45, 2644–2651. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 2014, 123, 41–48. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Andresen, J.A.; Cregg, B.M. Comparison of Stormwater Runoff from Sedum, Native Prairie, and Vegetable Producing Green Roofs. Urban Ecosyst. 2015, 18, 13–29. [Google Scholar] [CrossRef]
- Rocha, B.; Paço, T.A.; Luz, A.C.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; de Carvalho, R.C. Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water 2021, 13, 94. [Google Scholar] [CrossRef]
- Tang, V.T.; Rene, E.R.; Hu, L.; Behera, S.K.; Phong, N.T.; Thi Da, C. Vertical Green Walls for Noise and Temperature Reduction—An Experimental Investigation. Sci. Technol. Built Environ. 2021, 27, 806–818. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying Cooling Effects of Facade Greening: Shading, Transpiration and Insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Su, W.; Zhang, L.; Chang, Q. Nature-Based Solutions for Urban Heat Mitigation in Historical and Cultural Block: The Case of Beijing Old City. Build. Environ. 2022, 225, 109600. [Google Scholar] [CrossRef]
- Olivieri, F.; Grifoni, R.C.; Redondas, D.; Sánchez-Reséndiz, J.A.; Tascini, S. An Experimental Method to Quantitatively Analyse the Effect of Thermal Insulation Thickness on the Summer Performance of a Vertical Green Wall. Energy Build. 2017, 150, 132–148. [Google Scholar] [CrossRef]
- Helman, D.; Yungstein, Y.; Mulero, G.; Michael, Y. High-Throughput Remote Sensing of Vertical Green Living Walls (VGWs) in Workplaces. Remote Sens. 2022, 14, 3485. [Google Scholar] [CrossRef]
- Donateo, A.; Rinaldi, M.; Paglione, M.; Villani, M.G.; Russo, F.; Carbone, C.; Zanca, N.; Pappaccogli, G.; Grasso, F.M.; Busetto, M.; et al. An Evaluation of the Performance of a Green Panel in Improving Air Quality, the Case Study in a Street Canyon in Modena, Italy. Atmos. Environ. 2021, 247, 118189. [Google Scholar] [CrossRef]
- Villani, M.G.; Russo, F.; Adani, M.; Piersanti, A.; Vitali, L.; Tinarelli, G.; Ciancarella, L.; Zanini, G.; Donateo, A.; Rinaldi, M.; et al. Evaluating the Impact of a Wall-Type Green Infrastructure on PM10 and NOx Concentrations in an Urban Street Environment. Atmosphere 2021, 12, 839. [Google Scholar] [CrossRef]
- Galvão, A.; Martins, D.; Rodrigues, A.; Manso, M.; Ferreira, J.; Silva, C.M. Green Walls with Recycled Filling Media to Treat Greywater. Sci. Total Environ. 2022, 842, 156748. [Google Scholar] [CrossRef]
- Ferro, D.N.; De Mattia, C.; Gandini, M.A.; Maucieri, C.; Stevanato, P.; Squartini, A.; Borin, M. Green Walls to Treat Kitchen Greywater in Urban Areas: Performance from a Pilot-Scale Experiment. Sci. Total Environ. 2021, 757, 144189. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. Assessment of the Treatment Performance of an Open-Air Green Wall Fed with Graywater under Winter Conditions. ACS EST Water 2021, 1, 595–602. [Google Scholar] [CrossRef]
- Abd-ur-Rehman, H.M.; Deletic, A.; Zhang, K.; Prodanovic, V. The Comparative Performance of Lightweight Green Wall Media for the Removal of Xenobiotic Organic Compounds from Domestic Greywater. Water Res. 2022, 221, 118774. [Google Scholar] [CrossRef]
- Quin, A.; Destouni, G. Large-Scale Comparison of Flow-Variability Dampening by Lakes and Wetlands in the Landscape. Land Degrad. Dev. 2018, 29, 3617–3627. [Google Scholar] [CrossRef] [Green Version]
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature Based Solutions to Mitigate Soil Sealing in Urban Areas: Results from a 4-Year Study Comparing Permeable, Porous, and Impermeable Pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Razzaghmanesh, M.; Borst, M. Monitoring the Performance of Urban Green Infrastructure Using a Tensiometer Approach. Sci. Total Environ. 2019, 651, 2535–2545. [Google Scholar] [CrossRef]
- Bouzouidja, R.; Leconte, F.; Kiss, M.; Pierret, M.; Pruvot, C.; Détriché, S.; Louvel, B.; Bertout, J.; Aketouane, Z.; Vogt Wu, T.; et al. Experimental Comparative Study between Conventional and Green Parking Lots: Analysis of Subsurface Thermal Behavior under Warm and Dry Summer Conditions. Atmosphere 2021, 12, 994. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Szpakowski, W.; Poznańska, E.; Boogaard, F.C.; Bobkowska, K.; Gajewska, M. Technical Solutions and Benefits of Introducing Rain Gardens—Gdańsk Case Study. Sci. Total Environ. 2022, 835, 155487. [Google Scholar] [CrossRef]
- Enanga, E.M.; Shivoga, W.A.; Maina-Gichaba, C.; Creed, I.F. Observing Changes in Riparian Buffer Strip Soil Properties Related to Land Use Activities in the River Njoro Watershed, Kenya. Water Air Soil Pollut. 2011, 218, 587–601. [Google Scholar] [CrossRef]
- Bulleri, F.; Pretti, C.; Bertolino, M.; Magri, M.; Pittaluga, G.B.; Sicurelli, D.; Tardelli, F.; Manzini, C.; Vannini, C.; Verani, M.; et al. Adding Functions to Marine Infrastructure: Pollutant Accumulation, Physiological and Microbiome Changes in Sponges Attached to Floating Pontoons inside Marinas. Sci. Total Environ. 2022, 848, 157773. [Google Scholar] [CrossRef]
- Peter, B.G.; Mungai, L.M.; Messina, J.P.; Snapp, S.S. Nature-Based Agricultural Solutions: Scaling Perennial Grains across Africa. Environ. Res. 2017, 159, 283–290. [Google Scholar] [CrossRef]
- Wotherspoon, A.; Thevathasan, N.V.; Gordon, A.M.; Voroney, R.P. Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario, Canada. Agrofor. Syst. 2014, 88, 631–643. [Google Scholar] [CrossRef]
- Rahman, M.S.; Donoghue, D.N.M.; Bracken, L.J. Is Soil Organic Carbon Underestimated in the Largest Mangrove Forest Ecosystems? Evidence from the Bangladesh Sundarbans. Catena 2021, 200, 105159. [Google Scholar] [CrossRef]
- Ngao, J.; Cárdenas, M.L.; Améglio, T.; Colin, J.; Saudreau, M. Implications of Urban Land Management on the Cooling Properties of Urban Trees: Citizen Science and Laboratory Analysis. Sustainability 2021, 13, 13656. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Tongson, E.; Gonzalez Viejo, C. Urban Green Infrastructure Monitoring Using Remote Sensing from Integrated Visible and Thermal Infrared Cameras Mounted on a Moving Vehicle. Sensors 2021, 21, 295. [Google Scholar] [CrossRef]
- Hundertmark, W.J.; Lee, M.; Smith, I.A.; Bang, A.H.Y.; Chen, V.; Gately, C.K.; Templer, P.H.; Hutyra, L.R. Influence of Landscape Management Practices on Urban Greenhouse Gas Budgets. Carbon Balance Manag. 2021, 16, 1. [Google Scholar] [CrossRef]
- van Wesenbeeck, B.K.; Wolters, G.; Antolínez, J.A.A.; Kalloe, S.A.; Hofland, B.; de Boer, W.P.; Çete, C.; Bouma, T.J. Wave Attenuation through Forests under Extreme Conditions. Sci. Rep. 2022, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Sayad, B.; Alkama, D.; Ahmad, H.; Baili, J.; Aljahdaly, N.H.; Menni, Y. Nature-Based Solutions to Improve the Summer Thermal Comfort Outdoors. Case Stud. Therm. Eng. 2021, 28, 101399. [Google Scholar] [CrossRef]
- Epelde, L.; Mendizabal, M.; Gutiérrez, L.; Artetxe, A.; Garbisu, C.; Feliu, E. Quantification of the Environmental Effectiveness of Nature-Based Solutions for Increasing the Resilience of Cities under Climate Change. Urban For. Urban Green. 2022, 67, 127433. [Google Scholar] [CrossRef]
- Kwan, V.; Fong, J.; Ng, C.S.L.; Huang, D. Temporal and Spatial Dynamics of Tropical Macroalgal Contributions to Blue Carbon. Sci. Total Environ. 2022, 828, 154369. [Google Scholar] [CrossRef]
- Xie, F.; Fan, H. Deriving Drought Indices from MODIS Vegetation Indices (NDVI/EVI) and Land Surface Temperature (LST): Is Data Reconstruction Necessary? Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102352. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Poulou, D.; Zoumides, C.; Eliades, M. Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability 2016, 8, 1023. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Chen, G.; Huang, Q.; Su, M.; Rong, Q.; Yue, W.; Haase, D. Can Improving the Spatial Equity of Urban Green Space Mitigate the Effect of Urban Heat Islands? An Empirical Study. Sci. Total Environ. 2022, 841, 156687. [Google Scholar] [CrossRef]
- Bird, D.N.; Banzhaf, E.; Knopp, J.; Wu, W.; Jones, L. Combining Spatial and Temporal Data to Create a Fine-Resolution Daily Urban Air Temperature Product from Remote Sensing Land Surface Temperature (LST) Data. Atmosphere 2022, 13, 1152. [Google Scholar] [CrossRef]
- Galli, A.; Peruzzi, C.; Beltrame, L.; Cislaghi, A.; Masseroni, D. Evaluating the Infiltration Capacity of Degraded vs. Rehabilitated Urban Greenspaces: Lessons Learnt from a Real-World Italian Case Study. Sci. Total Environ. 2021, 787, 147612. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the Relationship between Urban Blue Infrastructure and Land Surface Temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- Veiga, A.; MacNally, R.; Rodríguez, S.; Szabo, S.; Peeters, E.T.H.M.; Ruff, T.; Salvadó, H. Effects of Two Submerged Macrophyte Species on Microbes and Metazoans in Rooftop Water-Storage Ponds with Different Labile Carbon Loadings. Water Res. 2022, 211, 117999. [Google Scholar] [CrossRef] [PubMed]
- Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058. [Google Scholar] [CrossRef]
- Cerdà, A.; Terol, E.; Daliakopoulos, I.N. Weed Cover Controls Soil and Water Losses in Rainfed Olive Groves in Sierra de Enguera, Eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar] [CrossRef]
- Zinger, Y.; Prodanovic, V.; Zhang, K.; Fletcher, T.D.; Deletic, A. The Effect of Intermittent Drying and Wetting Stormwater Cycles on the Nutrient Removal Performances of Two Vegetated Biofiltration Designs. Chemosphere 2021, 267, 129294. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Hábenczyus, A.A.; Kelemen, A.; Török, P.; Valkó, O.; Deák, B.; Erdős, L.; Tóth, B.; Csikós, N.; Bátori, Z. How to Not Trade Water for Carbon with Tree Planting in Water-Limited Temperate Biomes? Sci. Total Environ. 2023, 856, 158960. [Google Scholar] [CrossRef]
- Hashad, K.; Yang, B.; Gallagher, J.; Baldauf, R.; Deshmukh, P.; Zhang, K.M. Impact of Roadside Conifers Vegetation Growth on Air Pollution Mitigation. Landsc. Urban Plan. 2023, 229, 104594. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Field Investigations for Evaluating Green Infrastructure Effects on Air Quality in Open-Road Conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Tran, P.T.M.; Kalairasan, M.; Beshay, P.F.R.; Qi, Y.; Ow, L.F.; Govindasamy, V.; Yusof, M.L.M.; Ghosh, S.; Balasubramanian, R. Nature-Based Solution for Mitigation of Pedestrians’ Exposure to Airborne Particles of Traffic Origin in a Tropical City. Sustain. Cities Soc. 2022, 87, 104264. [Google Scholar] [CrossRef]
- Romero, G.; Álvarez-Martínez, J.M.; Pérez-Silos, I.; Silió-Calzada, A.; Vieites, D.R.; Barquín, J. From Forest Dynamics to Wetland Siltation in Mountainous Landscapes: A RS-Based Framework for Enhancing Erosion Control. Remote Sens. 2022, 14, 1864. [Google Scholar] [CrossRef]
- Spyrou, C.; Loupis, M.; Charizopoulos, N.; Arvanitis, P.; Mentzafou, A.; Dimitriou, E.; Debele, S.E.; Sahani, J.; Kumar, P. Evaluating Nature-Based Solution for Flood Reduction in Spercheios River Basin Part 2: Early Experimental Evidence. Sustainability 2022, 14, 10345. [Google Scholar] [CrossRef]
- Åhlén, I.; Thorslund, J.; Hambäck, P.; Destouni, G.; Jarsjö, J. Wetland Position in the Landscape: Impact on Water Storage and Flood Buffering. Ecohydrology 2022, 15, e2458. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Pallett, D.W.; Schäfer, S.M.; Macrae, M.L.; Bowes, M.J.; Farrand, P.; Warwick, A.C.; King, S.M.; Williams, R.J.; Armstrong, L.; et al. Biogeochemical and Climate Drivers of Wetland Phosphorus and Nitrogen Release: Implications for Nutrient Legacies and Eutrophication Risk. J. Environ. Qual. 2020, 49, 1703–1716. [Google Scholar] [CrossRef]
- Cuce, E. Thermal Regulation Impact of Green Walls: An Experimental and Numerical Investigation. Appl. Energy 2017, 194, 247–254. [Google Scholar] [CrossRef]
- Mohammed, A.B. Employing Systems of Green Walls to Improve Performance and Rationalize Energy in Buildings. J. Eng. Appl. Sci. 2022, 69, 99. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-Based Cooling Potential: A Multi-Type Green Infrastructure Evaluation in Toronto, Ontario, Canada. Int. J. Biometeorol. 2022, 66, 397–410. [Google Scholar] [CrossRef]
- Vienneau, D.; de Hoogh, K.; Faeh, D.; Kaufmann, M.; Wunderli, J.M.; Röösli, M.; SNC Study Group. More than clean air and tranquillity: Residential green is independently associated with decreasing mortality. Environ. Int. 2017, 108, 176–184. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of Three-Dimensional Tree Canopy and Shade Using Terrestrial Laser Scanning (TLS) Data to Analyze the Cooling Effect of Vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, H.; Fu, Y.; Xiao, L.; Dong, Y. Effects of Urban Street Trees on Human Thermal Comfort and Physiological Indices: A Case Study in Changchun City, China. J. For. Res. 2022, 33, 911–922. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Keeffe, G.; Mariotti, J. Nature-Based Solutions for Cooling in High-Density Neighbourhoods in Shenzhen: A Case Study of Baishizhou. Sustainability 2023, 15, 5509. [Google Scholar] [CrossRef]
- Alim, M.A.; Jahan, S.; Rahman, A.; Rahman, M.A.; Liebman, M.; Garner, B.; Griffith, R.; Griffith, M.; Tao, Z. Experimental Investigation of a Multilayer Detention Roof for Stormwater Management. J. Clean. Prod. 2023, 395, 136413. [Google Scholar] [CrossRef]
- Fleck, R.; Westerhausen, M.T.; Killingsworth, N.; Ball, J.; Torpy, F.R.; Irga, P.J. The Hydrological Performance of a Green Roof in Sydney, Australia: A Tale of Two Towers. Build. Environ. 2022, 221, 109274. [Google Scholar] [CrossRef]
- Nawaz, R.; McDonald, A.; Postoyko, S. Hydrological Performance of a Full-Scale Extensive Green Roof Located in a Temperate Climate. Ecol. Eng. 2015, 82, 66–80. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Chapter 8—Form, Function, and Nomenclature: Deconstructing Green Infrastructure and Its Role in a Changing Climate. In Climate Change and Extreme Events; Fares, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–144. ISBN 978-0-12-822700-8. [Google Scholar]
- Rowe, D.B. Green roofs as a means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Plascencia-Escalante, F. An Analysis of Some Components of the Nitrogen Cycle as Affected by Land Use Adjacent to the Riparian Zone of a Southern Ontario Stream. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2008. [Google Scholar]
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.-L. Impacts of Forests and Forestation on Hydrological Services in the Andes: A Systematic Review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A Restatement of the Natural Science Evidence Concerning Catchment-Based ‘Natural’ Flood Management in the UK. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of Forest Restoration on Water Yield: A Systematic Review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [Green Version]
- Meli, P.; Rey Benayas, J.M.; Balvanera, P.; Martínez Ramos, M. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Rowiński, P.M.; Västilä, K.; Aberle, J.; Järvelä, J.; Kalinowska, M.B. How Vegetation Can Aid in Coping with River Management Challenges: A Brief Review. Ecohydrol. Hydrobiol. 2018, 18, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From Grey to Green: Efficacy of Eco-Engineering Solutions for Nature-Based Coastal Defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US. EPA. Classification and Types of Wetlands. Available online: https://www.epa.gov/wetlands/classification-and-typeswetlands#undefined (accessed on 1 December 2022).
- Carter, V. Technical Aspects of Wetlands: Wetland Hydrology, Water Quality, and Associated Functions. In United States Geological Survey Water Supply Paper 2425; United States Geological Survey: Reston, VA, USA, 1997. [Google Scholar]
- Costanza, R.O.; Pérez-Maqueo, M.L.; Martinez, P.; Sutton, S.J.; Anderson, K.M. The value of coastal wetlands for hurricane protection. Ambio 2008, 37, 241–248. [Google Scholar] [CrossRef]
- U.S. EPA. Functions and Values of Wetlands. Fact Sheet. Available online: https://www.epa.gov/sites/default/files/2021-01/documents/functions_values_of_wetlands.pdf (accessed on 1 December 2022).
- Thevathasan, N.V. Agroforestry research and development in Canada: The way forward in agroforestry. In The Future of Global Land Use; Advances in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9. [Google Scholar]
- Thevathasan, N.V.; Gordon, A.M. Ecology of tree intercropping systems in the North temperate region: Experiences from southern Ontario, Canada. New Vistas Agrofor. 2004, 1, 257–268. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Francis, R. Wall ecology: A frontier for urban biodiversity and ecological engineering. Prog. Phys. Geogr. Earth Environ. 2010, 35, 43–63. [Google Scholar] [CrossRef]
- Marchi, M.; Pulselli, R.M.; Marchettini, N.; Pulselli, F.M.; Bastianoni, S. Carbon dioxide sequestration model of a vertical greenery system. Ecol. Model. 2015, 306, 46–56. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. In Advances in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 281–295. [Google Scholar]
- Peichl, M.; Thevathasan, N.V.; Gordon, A.M.; Huss, J.; Abohassan, R.A. Carbon Sequestration Potentials in Temperate Tree-Based Intercropping Systems, Southern Ontario, Canada. Agrofor. Syst. 2006, 66, 243–257. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts 2018, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Sutton-Grier, A.; Herr, D.; Kleypas, J.; Landis, E.; Mcleod, E.; Simpson, S. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 2017, 15, 42–50. [Google Scholar] [CrossRef]
- NOAA. Protecting Coastal Blue Carbon Through Habitat Conservation. 2022. Available online: https://www.fisheries.noaa.gov/national/habitat-conservation/protecting-coastal-blue-carbon-through-habitat-conservation (accessed on 1 December 2022).
- Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plan. 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Nowak, D.J. Institutionalizing urban forestry as a “biotechnology” to improve environmental quality. Urban For. Urban Green. 2006, 5, 93–100. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Soussana, J.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuman, G.; Janzen, H.; Herrick, J. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Wang, X.; VandenBygaart, A.; McConkey, B.C. Land Management History of Canadian Grasslands and the Impact on Soil Carbon Storage. Rangel. Ecol. Manag. 2014, 67, 333–343. [Google Scholar] [CrossRef]
- Soussana, J.F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Jamali, A.A.; Ghorbani Kalkhajeh, R.; Randhir, T.O.; He, S. Modeling Relationship between Land Surface Temperature Anomaly and Environmental Factors Using GEE and Giovanni. J. Environ. Manag. 2022, 302, 113970. [Google Scholar] [CrossRef] [PubMed]
- Klok, L.; Rood, N.; Kluck, J.; Kleerekoper, L. Assessment of Thermally Comfortable Urban Spaces in Amsterdam during Hot Summer Days. Int. J. Biometeorol. 2019, 63, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolopoulou, M. Thermal Comfort in Urban Spaces. In Urban Microclimate Modelling for Comfort and Energy Studies; Springer: Cham, Switzerland, 2021; pp. 55–77. [Google Scholar]
- Manavvi, S.; Rajasekar, E. Semantics of Outdoor Thermal Comfort in Religious Squares of Composite Climate: New Delhi, India. Int. J. Biometeorol. 2019, 64, 253–264. [Google Scholar] [CrossRef]
- Cheng, B.; Gou, Z.; Zhang, F.; Feng, Q.; Huang, Z. Thermal Comfort in Urban Mountain Parks in the Hot Summer and Cold Winter Climate. Sustain. Cities Soc. 2019, 51, 101756. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Evaluating Outdoor Thermal Comfort in Urban Open Spaces in a Humid Subtropical Climate: Chandigarh, India. Build. Environ. 2022, 209, 108659. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Nan, X.; Han, Q.; Shao, F.; Bao, Z. Influence of View Factors on Intra-Urban Air Temperature and Thermal Comfort Variability in a Temperate City. Sci. Total Environ. 2022, 841, 156720. [Google Scholar] [CrossRef]
- Milošević, D.; Middel, A.; Savić, S.; Dunjić, J.; Lau, K.; Stojsavljević, R. Mask wearing behavior in hot urban spaces of Novi Sad during the COVID-19 pandemic. Sci. Total Environ. 2022, 815, 152782. [Google Scholar] [CrossRef]
- Milošević, D.; Trbić, G.; Savić, S.; Popov, T.; Ivanišević, M.; Marković, M.; Ostojić, M.; Dunjić, J.; Fekete, R.; Garić, B. Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina). Geogr. Pannonica 2022, 26, 29–45. [Google Scholar] [CrossRef]
- Shih, W. Greenspace Patterns and the Mitigation of Land Surface Temperature in Taipei Metropolis. Habitat Int. 2017, 60, 69–80. [Google Scholar] [CrossRef]
- Xiaoyun, C.; Bensheng, W.; Guojian, C.; Junxiang, L.; Conghe, S. Influence of Park Size and Its Surrounding Urban Landscape Patterns on the Park Cooling Effect. J. Urban Plan. Dev. 2015, 141, A4014002. [Google Scholar] [CrossRef]
- Shang, H.; Jia, L.; Menenti, M. Analyzing the Inundation Pattern of the Poyang Lake Floodplain by Passive Microwave Data. J. Hydrometeorol. 2015, 16, 652–667. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal Assessment of Heat Mitigation Strategies: The Case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.; Bonilla Brenes, J.R.; Chapa, F.; Hack, J. Development and Modelling of Realistic Retrofitted Nature-Based Solution Scenarios to Reduce Flood Occurrence at the Catchment Scale. Ambio 2021, 50, 1462–1476. [Google Scholar] [CrossRef]
- Mosca, F.; Dotti Sani, G.M.; Giachetta, A.; Perini, K. Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy. Sustainability 2021, 13, 11638. [Google Scholar] [CrossRef]
- Tillie, N.; van der Heijden, R. Advancing Urban Ecosystem Governance in Rotterdam: From Experimenting and Evidence Gathering to New Ways for Integrated Planning. Environ. Sci. Policy 2016, 62, 139–144. [Google Scholar] [CrossRef]
- Bates, A.J.; Mackay, R.; Greswell, R.B.; Sadler, J.P. SWITCH in Birmingham, UK: Experimental Investigation of the Ecological and Hydrological Performance of Extensive Green Roofs. Rev. Environ. Sci. Bio/Technol. 2009, 8, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Collentine, D.; Futter, M.N. Realising the Potential of Natural Water Retention Measures in Catchment Flood Management: Trade-offs and Matching Interests. J. Flood Risk Manag. 2018, 11, 76–84. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A Review of the Application and Evolution of the DPSIR Framework with an Emphasis on Coastal Social-Ecological Systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Menz, M.H.M.; Dixon, K.W.; Hobbs, R.J. Hurdles and Opportunities for Landscape-Scale Restoration. Science 2013, 339, 526–527. [Google Scholar] [CrossRef]
- Svarstad, H.; Petersen, L.K.; Rothman, D.; Siepel, H.; Wätzold, F. Discursive Biases of the Environmental Research Framework DPSIR. Land Use Policy 2008, 25, 116–125. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; y Paloma, S.G. Does Research Applying the DPSIR Framework Support Decision Making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing Cities Using a Regionally-Focused Biodiversity-Led Multifunctional Benefits Approach to Urban Green Infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Elwy, I.; Ibrahim, Y.; Fahmy, M.; Mahdy, M. Outdoor Microclimatic Validation for Hybrid Simulation Workflow in Hot Arid Climates against ENVI-Met and Field Measurements. Energy Procedia 2018, 153, 29–34. [Google Scholar] [CrossRef]
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and Simulating Urban Outdoor Comfort: Coupling ENVI-Met and TRNSYS by Grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
- Joyce, J.; Chang, N.-B.; Harji, R.; Ruppert, T.; Imen, S. Developing a Multi-Scale Modeling System for Resilience Assessment of Green-Grey Drainage Infrastructures under Climate Change and Sea Level Rise Impact. Environ. Model. Softw. 2017, 90, 1–26. [Google Scholar] [CrossRef]
- Šećerov, I.; Savić, S.; Milošević, D.; Marković, V.; Bajšanski, I. Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geogr. Pannonica 2015, 19, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Šećerov, I.B.; Savić, S.M.; Milošević, D.D.; Arsenović, D.M.; Dolinaj, D.M.; Popov, S.B. Progressing urban climate research using a high-density monitoring network system. Environ. Monit. Assess. 2019, 191, 89. [Google Scholar] [CrossRef]
- Caluwaerts, S.; Hamdi, R.; Top, S.; Lauwaet, D.; Berckmans, J.; Degrauwe, D.; Dejonghe, H.; De Ridder, K.; De Troch, R.; Duchêne, F.; et al. The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Clim. 2020, 31, 100565. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C.V. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Cecilia, A.; Casasanta, G.; Petenko, I.; Conidi, A.; Argentini, S. Measuring the urban heat island of Rome through a dense weather station network and remote sensing imperviousness data. Urban Clim. 2023, 47, 101355. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.; Wang, J.; Zhou, C.; Wang, X.; Lee, X. Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. J. Geophys. Res. Atmos. 2017, 122, 2131–2154. [Google Scholar] [CrossRef]
- Middel, A.; Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci. Total Environ. 2019, 687, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, K.K.; Schneider, F.A.; Gowda, T.; Jayasuriya, S.; Middel, A. MaRTiny—A Low-Cost Biometeorological Sensing Device With Embedded Computer Vision for Urban Climate Research. Front. Environ. Sci. 2022, 10, 550. [Google Scholar] [CrossRef]
- Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sanchez, A.; Boogaard, F.; Kluck, J. Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustainability 2019, 11, 6361. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Tokar, V.; Jurek, M.; Geletič, J. Summer thermal comfort in Czech cities: Measured effects of blue and green features in city centres. Int. J. Biometeorol. 2021, 65, 1277–1289. [Google Scholar] [CrossRef]
- Lehnert, M.; Brabec, M.; Jurek, M.; Tokar, V.; Geletič, J. The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustain. Cities Soc. 2021, 66, 102683. [Google Scholar] [CrossRef]
- Session, I.V.; Efficiencies, R.-U. Achieving the Sustainable Development Goals in North and Central Asia. In Proceedings of the 2016 SPECA Economic Forum “Enhanced Implementation of SDGs through Cooperation”, Ganja, Azerbaijan, 2–23 November 2016; UN/Economic and Social Commission for Asia and the Pacific: Bangkok, Thailand, 2017. ISBN 9789211207460. [Google Scholar]
- Anderson, V.; Leung, A.; Mehdipoor, H.; Jänicke, B.; Milosevic, D.; Oliveira, A.; Manavvi, S.; Kabano, P.; Dzyuban, Y.; Aguilar, R.; et al. Technological Opportunities for Sensing of the Health Effects of Weather and Climate Change: A State-of-the-Art-Review. Int. J. Biometeorol. 2021, 65, 779–803. [Google Scholar] [CrossRef]
- Çalışkan, H.K. Technological Change and Economic Growth. Procedia-Soc. Behav. Sci. 2015, 195, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Steenhuis, H.J.; De Bruijn, E.J. Technology and Economic Development: A Literature Review. Int. J. Innov. Technol. Manag. 2012, 9, 1–11. [Google Scholar] [CrossRef]
- Fomunyam, K.G. Theorising Machine Learning as an Alternative Pathway for Higher Education in Africa. Int. J. Educ. Pract. 2020, 8, 268–277. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baik, J.-J.; Kwak, K.-H.; Park, S.-B.; Ryu, Y.-H. Effects of building roof greening on air quality in street canyons. Atmos. Environ. 2012, 61, 48–55. [Google Scholar] [CrossRef]
- Crouse, D.L.; Pinault, L.; Balram, A.; Hystad, P.; Peters, P.A.; Chen, H.; van Donkelaar, A.; Martin, R.V.; Ménard, R.; Robichaud, A.; et al. Urban greenness and mortality in Canada’s largest cities: A national cohort study. Lancet Planet. Health 2017, 1, e289–e297. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F. Exposure to Greenness and Mortality in a Nationwide Prospective Cohort Study of Women. Environ. Health Perspect. 2016, 124, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [Green Version]
- Villeneuve, P.J.; Jerrett, M.; Su, J.G.; Burnett, R.T.; Chen, H.; Wheeler, A.J.; Goldberg, M.S. A cohort study relating urban green space with mortality in Ontario, Canada. Environ. Res. 2012, 115, 51–58. [Google Scholar] [CrossRef]
- Lee, J.; Tsunetsugu, Y.; Takayama, N.; Park, B.-J.; Li, Q.; Song, C.; Komatsu, M.; Ikei, H.; Tyrväinen, L.; Kagawa, T.; et al. Influence of Forest Therapy on Cardiovascular Relaxation in Young Adults. Evid. Based Complement. Altern. Med. 2014, 2014, 834360. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological Effects of Nature Therapy: A Review of the Research in Japan. Int. J. Environ. Res. Public Health 2016, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Song, C.; Miyazaki, Y. Physiological Benefits of Viewing Nature: A Systematic Review of Indoor Experiments. Int. J. Environ. Res. Public Health. 2019, 16, 4739. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Foley, J.; Asner, G. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Goldberg, T.L.; Gillespie, T.R.; Rwego, I.B.; Estoff, E.L.; Chapman, C.A. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda. Emerg. Infect. Dis. 2008, 14, 1375–1382. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Keesing, F.; Eviner, V. Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Gottdenker, N.L.; Streicker, D.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Abhold, K.; Mederake, L.; Knoblauch, D. Nature-Based Solutions in European and National Policy Frameworks; Deliverable 1.5. NATURVATION; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Nature-Based Solutions for Urban Climate Resilience in South Asia: Cases from Bangladesh, India and Nepal (2022a) Relief Web. Available online: https://reliefweb.int/report/bangladesh/nature-based-solutions-urban-climate-resilience-south-asia-cases-bangladesh-india-and-nepal (accessed on 2 June 2023).
- City of Toronto. City of Toronto Green Roof By-Law. 2023. Available online: https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/green-roofs/green-roof-bylaw/ (accessed on 15 March 2023).
- Model Building Bye-Laws; Town and Country Planning Organization, Ministry of Urban Development, Government of India: New Delhi, India, 2016; pp. 111–119.
- Raut, S.; Lamsoge, B.R.; Labhane, N.M. Rainwater Harvesting for Metro Rail Projects in India—Scope for Efficiency Improvement. J. Geol. Soc. India 2022, 98, 937–946. [Google Scholar] [CrossRef]
- Government of Canada. Healthy Environment and a Healthy Economy. 2021. Available online: https://www.canada.ca/content/dam/eccc/documents/pdf/climate-change/climate-plan/healthy_environment_healthy_economy_plan.pdf (accessed on 15 December 2022).
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. [Google Scholar]
- URBES. Green Infrastructure, a Wealth for Cities. Fact Sheet. 2014. Available online: https://www.iucn.org/sites/dev/files/import/downloads/urbes_factsheet_06_web.pdf (accessed on 14 December 2022).
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. 2013. Available online: https://eurlex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.04/DOC_1&format=PDF (accessed on 14 December 2022).
- U.S. Environmental Protection Agency. What Is Green Infrastructure? Available online: https://www.epa.gov/greeninfrastructure/what-green-infrastructure (accessed on 1 December 2022).
- Pucher, B.; Zluwa, I.; Spörl, P.; Pitha, U.; Langergraber, G. Evaluation of the multifunctionality of a vertical greening system using different irrigation strategies on cooling, plant development and greywater use. Sci. Total Environ. 2022, 849, 157842. [Google Scholar] [CrossRef]
- Katsou, E.; Nika, C.E.; Buehler, D.; Marić, B.; Megyesi, B.; Mino, E.; Babí Almenar, J.; Bas, B.; Bećirović, D.; Bokal, S.; et al. Transformation tools enabling the implementation of nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 188–213. [Google Scholar] [CrossRef] [Green Version]
- EC. Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- EC. Evaluating the Impact of Nature-Based Solutions: Appendix of Methods; European Commission: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
Type of NBS | Function /Benefit | Parameters Measured | Scale | Sensing Technique | UN SDG Alignment |
---|---|---|---|---|---|
Artificial floating island w/vetiver | Water quality management | Physicochemical water quality parameters (e.g., arsenic and iron contamination) | Site | Vetiver sampling and lab analysis [20] | SDG 6—Target 6.3; SDG 14—Targets 14.1; 14.2; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Bio filtration/retention systems | Stormwater management | Stormwater (e.g., detention and retention performance) | Site | Seasonal monitoring campaigns [21] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Water quality/phytoremediation | Physicochemical water quality parameters (e.g., heavy metals and suspended solids) | Site | Laboratory based studies based on standard methods [22] | SDG 3—Target 3.9; SDG 6—Target 6.3 | |
Stormwater management | Water quantitiy/quality (e.g., nutrients, heavy metals, bioretention capacity) | Site/neighbourhood | Rainwater overflow collection [23] | SDG 6—Target 6.3; SDG 11 Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Blue-green roofs (BGRs) | Stormwater management and energy efficiency | Stormwater and building energy efficiency (e.g., hydraulic capacity and thermal perfomance) | Site | Lab sampling and numerical modelling [24] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7 SDG 13—Target 13.1 |
Stormwater management and energy efficiency | Stormwater and building energy efficiency (water retention and thermal performance) | Site | Thermo-hygrometer sensor; air pressure sensor; global solar radiation sensor; ultrasonic wind speed and direction sensor; soil moisture sensors; eddy covariance towers [25] | SDG 11, SDG 13 | |
Stormwater management | Water retention, evapotranspiration | Site | Pressure sensors; Thermometers; collection of data every 30 min [26] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Coastal wetlands Estuaries; Mangroves; Vegetation; Intertidal marshes | Disaster resilience | Flood attenuation | Site | Wave and pressure gauges [27] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 |
Biodiversity | Biodiversity (e.g., coastal habitat and vegetation) | Landscape | Remote sensing (Landsat and LSMA) [28] | SDG 14—Targets 14.1; 14.2 | |
Disaster resilience | Flood management (e.g., shoreline protection) | Landscape | Time lapse video, pressure transducers, and electromagnetic current meters [29] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1; SDG 14—Targets 14.1; 14.2 | |
Disaster resilience | Flood attenuation (e.g., coastline stabilization) | Landscape | Core sampling and tensile measurement [30] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Biodiversity | Bed level changes (e.g., vegetation growth) | Landscape | Optical and Acoustic Surface Elevation Dynamics sensors (O-SED and A-SED) [31]. | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 14—Targets 14.1; 14.2 | |
Constructed wetland | Stormwater management | Wastewater treatment (e.g., oxygen, nitrogen, nitrates) | Site | COD/BOD sensor [32] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 |
Water quality management | Physicochemical water quality parameters (e.g., polluted lake water—nitrogen, phosphorous, microbial communities, trace metals) | Site | Water sampling; Lab analysis using Turbidity meter (TB 300 IR Lovibond); UV–vis spectrophotometer (Shimadzu Instrument Co. Ltd., UV-2450 Japan); Atomic Absorption Spectrophotometer (AAS-6800 Shimadzu, USA) [33] | SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Forestry | Temperature regulation | Canopy cover | Landscape | Remote sensing—LandSat (NDVI) [34] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 |
Temperature regulation | Urban heat island (UHI) (e.g., microclimate) | Neighbourhood | Onsite field measurements—Nikon Forestry pro Laser Rangefinder; ENVI-Met [35] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | Ozone, nitrogen dioxide, and carbon dioxide | Site/Neighbourhood | Portable Aeroqual air quality monitors [36] | SDG 3—Target 3.9; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG13—Target 13.1 | |
Stormwater management | Stormwater (e.g., detention and retention performance) | Neighbourhood | Citizen science—using pocket penetrometer Delta-T Devices SM150T probe; mini-disc infiltrometer [37] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7 | |
Carbon sequestration | Carbon storage (e.g., soil pH, total carbon, nitrogen concentration, carbon and nitrogen stocks) | Site/Landscape | Soil sampling and lab analysis [38] | SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Stormwater management | Surface soil compaction, soil moisture (e.g., hydrological function of soils) | Site | Impact sheer vane (19 mm head) and theta probe kit. [39] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Carbon Flux Dynamics | CO2 and wind speed | Neighbourhood | 3D ultrasonic anemometer, Infrared gas analyser [40] | SDG 13—Target 13.1 | |
Grassland | Carbon Sequestration | Soil health (e.g., CO2 exchange) | Landscape | Eddy covariance towers; Infrared gas analyser; 3D sonic anemometer; Photo synthetically active radiation measurements; Micrometeorological measurements [41] | SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Biodiversity | Soil health (e.g., biomass, soil organic carbon, water content, nitrogen) | Site | Soil sampling [42] | SDG 2—Target 2.4 SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9; | |
Carbon Sequestration | Soil carbon stocks, solar induced chlorophyll fluorescence, vegetative characterstics) | Landscape | Remote sensing—Landsat (xCO2; SCS; SIF; NDVI; LAI; LST Amplitude) [43] | SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Carbon Sequestration | Carbon storage (e.g., CO2 fluxes) | Site | Soil sampling [44] | SDG 13—Target 13.1; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Green roof | Temperature regulation | Thermal performance | Site | HOBOs; CR1000 data loggers; soil temperature and moisture sensors; and soil heat flux meters [45] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 |
Temperature regulation | Near-surface and land surface temperature (LST) | Site | Temperature sensors -micro scale; satellite imaging—meso scale [46] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG13—Target 13.1 | |
Air quality | Ozone, nitrogen dioxide, and carbon dioxide | Site/neighbourhood | Portable Aeroqual air quality monitors [36] | SDG 3- Target 3.9; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG13—Target 13.1 | |
Air quality | LAI, PM2.5 | Site | Portable intelligent wind speed measuring instrument; Anemomaster, Aerosol monitor; Leaf area meter [47] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | Air pollution (e.g., particulate matter) | Site | TSI Sidepak AM510 personal aerosol monitor; Kestrel device; magnetic and elemental analysis [48] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Stormwater management | Stormwater (e.g., detention and retention performance) | Site | HOBO U30; tipping bucket system [21] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Storm water management | Water treatment/phytoremediation (e.g., turbidity, organic matter, nitrogen removal) | Site | Portable pH-meter (C932, Consort); Portable conductimeter (LF95, WTW); Spectrophotometric Hach standard test kit; 2100Q portable turbidimeter (Hach); Biochemical oxygen demand (closed respirometric—OxiTop®, WTW); and laboratory sieve shaker (Octagon, Endecotts) [49] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Biodiversity | Biodiversity (e.g., anthropods) | Site | D-Vac vacuum insect collector,model 122 (Rincon-Vitova Insectaries) [50] | SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Biodiversity | Biodiversity (e.g., bats) | Site/landscape | Ultrasonic recorders [51] | SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Biodiversity | Biodiversity (e.g., anthropods, gastropods, avian species) | Site | Motion sensing camera traps; insect surveys [52] | SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Biodiversity/Food security | Biodiversity (e.g., native bee communities) | Site/landscape | Capture and bee bowls [53] | SDG 2—Target 2.4; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Carbon Sequestration | Carbon concentrations (e.g., ambient CO2 concentrations) | Site | CO2/H2O analyser LI-7500; sealed chamber analysis; and computer simulations [54] | SDG 13—Target 13.1 | |
Carbon sequestration | Carbon storage (e.g., carbon content) | Site | Soil and substrate sampling [55] | SDG 13—Target 13.1 | |
Stormwater management | Water quality (e.g., runoff) | Site | TE525WS tipping bucket rain gauge; CR10X data logger; and AM16T multiplexer [56] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Stormwater management | Stormwater (e.g., water retention performance) | Site | Rain gauges to measure water fluxes [25] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Stormwater management | Stormwater/water quality (e.g., runoff) | Site | Test beds and lab analysis [57] | SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Green wall | Temperature regulation | Air temperature, RH, noise reduction | Site | Infrared camera; Digital thermometer and hygrometer devices; Noise statistical analyser [58] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 |
Temperature regulation | Near-surface air temperature and LST | Site | Temperature sensors -micro scale; satellite imaging—meso scale. [46] | SDG 11; SDG 13 | |
Temperature regulation | Thermal performance (e.g., shading, transpiration, insulation) | Site | Meteorological measuring stations (RFT-325, Driesen + Kern, Germany; HC2-S3, Rotronic Messgeräte, Germany); shortwave radiation sensor (SP-110); and Hukseflux Thermal Sensors [59] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Temperature regulation | Air temperature, RH, LAI | Neighbourhood | Weather stations; EnviMet modelling [60] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Temperature regulation | Global irradiance, air temperature, RH, wind, and rainfall | Site | Weather station, PT100 thermoresistors [61] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | Ozone, nitrogen dioxide, and carbon dioxide | Site/neighbourhood | Portable Aeroqual air quality monitors [36] | SDG 3—Target 3.9; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | Air temperature, humidity, CO2 concentrations | Site | People-counting sensor; T/RH sensors;HMP155 sensor; CO2 sampling; Porometer (LI-600); Hyperspectral camera; Thermal camera [62] | SDG 3—Target 3.9; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG13—Target 13.1 | |
Air quality | PMx, NOx, black carbon, aerosols | Site | Mobile lab with SOTA instrumentation for air quality and meteorological observations [63] | SDG 3—Target 3.9; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | PM10 and NOx concentration, black carbon | Site | Condensation particle counter; Optical particle Teledyne-API; Thermo Fisher Scientific Multi-Angle Absorption Photometer (MAAP); 3D ultrasonic anemometer; Slow response thermo-hygrometer [64] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG13—Target 13.1 | |
Water quality/phytoremediation | Physicochemical water quality parameters (e.g., chemical oxygen and total suspended solids) | Site | Field probes [65] | SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Water quality | Physicochemical water quality parameters (e.g., greywater) | Site | Field spectrophotometer; Turbidimeter; respirometric BOD OxiTop; multi-sensor meter [66] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Water quality | Physicochemical water quality parameters (e.g., greywater) | Site | Lab sampling with sensors including WTW Multi 3320 portable two-channel probe, AL450 Multidirect photometer [67] | SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Stormwater management | Physicochemical water quality parameters (e.g., xenobiotic organic compounds, greywater) | Site | Surface area analyser (NOVA touch NT 4LX, Quanta chrome Instruments); high resolution images (Hitachi TM4000Plus); benchtop scanning electron microscope [68] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Lakes and wetlands | Stormwater management | Runoff, precipitation, and temperature | Landscape | Meteorological and hydrological measurement stations [69] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Parking | Stormwater managment | Soil volumetric water content, leaf gas exchange, soil CO2 efflux (J) and soil oxygen content, leaf pre-dawn water potential | Site | Frequency Domain Reflectometry (FDR) probes; Soil respiration chamber; Infrared gas analyser; Scholander-type pressure chamber [70] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 |
Stormwater management | Rainfall and urban microclimate | Site | Weather station, Tensiometers [71] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Temperature regulation | Air temperature, RH, precipitation | Site | Outdoor temperature; relative humidity probes; rain gauge [72] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Rain gardens | Stormwater management | Stormwater (e.g., runoff, infiltration rate) | Neighbourhood | Pressure transducers; remote sensing [73] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 |
Riparian buffers | Physicochemical water quality parameters | Water quality (e.g., carbon, nitrogen, phosphorous) | Landscape | Soil sampling [74] | SDG 3—Target 3.9; SDG 6—Target—6.3; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Sponges | Physicochemical water quality parameters | Water quality (e.g., organic and inorganic contaminants) | Site | Field testing including biomarker and statistical analysis [75] | SDG 6—Target 6.3; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 14—Targets 14.1; 14.2 |
Sustainable perennial crops | Food security | LST, temperature, precipitation data | Landscape | NASA MODIS Land Surface Temperature (LST—MYD11B3) (NASA LP DAAC, 2015a) and NASA/JAXA Tropical Rainfall Measuring Mission (TRMM—3B43) [76] | SDG 2—Target 2.4; SDG 13—Target 13.1 |
Tree-based intercropping | Air quality | Ozone, nitrogen dioxide, and carbon dioxide | Site/neighbourhood | Portable Aeroqual air quality monitors [36] | SDG 3—Target 3.9; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 |
Carbon sequestration/Food security | Carbon storage (e.g., above and below ground carbon, soil carbon, soil respiration, carbon leaching) | Site/landscape | Sampling of woody biomass (roots and tree rings); soil sampling; and litter fall collection [77] | SDG 2—Target 2.4 SDG 13—Target 13.1 | |
Carbon Sequestration | Soil organic carbon | Site/neighbourhood | Soil sampling and remote sensing (NDVI) [78] | SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Trees | Temperature regulation | Transpiration (e.g., leaf area traits) | Landscape | Planimeter; Terrestrial LiDAR scanning; Citizen science [79] | SDG 13—Target 13.1 |
Air quality | Wind speed, PM2.5 concentrations | Site | Portable meteorological station; leaf washing experiments; microscopic observation; and simulated rain wash experiments [80] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Urban tree health | Leaf area index, tree water stress index, temperature | Site | Integrated camera system; Temperature; RH; solar radiation sensors in Stevenson screen; magnetic GPS tracker [81] | SDG 11- Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Greenhouse gas | CO2 flux, soil respiration, tree measurements | Site | 20-cm chamber soil CO2 efflux system; Soil respiration measurements; Dendrometer bands; Geo-database produced by ArcGIS for land cover mapping [82] | SDG 13—Target 13.1; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Disaster resilience/Flood management | Wave attenuation | Site | Large-scale flume [83] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Trees, water bodies | Temperature regulation | Temperature, RH, and wind velocity | Site | Multifunction hand-held device; EnviMet modelling [84] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Trees and green roofs | Biodiversity, carbon sequestration, temperature regulation, and stormwater management | Tree species, woody plants, thermal comfort, pluvial flood control | Neighbourhood level | Sampling (elemental soil carbon analysis—LECO TruSpec CHN; Laser diffractometry; DNA isolation); and simulations (ENVI-Met, digital terrain model, City Catchment Analysis Tool—City CAT) [85] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1; SDG 15—Targets-15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Tropical macro algae | Carbon Sequestration | Carbon storage (e.g., blue carbon) | Landscape | Field survey and remote sensing [86] | SDG 13—Target 13.1 |
Urban green | Temperature regulation | LST | Landscape | Remote sensing [87] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target–13.1 |
Temperature regulation | Temperature, RH, wind speed | Site | Bicycle mounted meteorological station [88] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 14—Targets 14.1; 14.2 | |
Temperature regulation | LST and UHI | Landscape | Remote sensing (Landsat) [89] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Temperature regulation | LST and UHI | Site | Remote sensing (Landsat and MODIS) [90] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Temperature regulation | Air temperature, RH, LAI | Neighbourhood | Weather stations; EnviMet modelling [60] | SDG 11– Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Stormwater maangement | Soil moisture, soil compaction | Neighbourhood | Mini-Disk Infiltrometer; Theta Probe ML3 sensor; penetrometer. [91] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Urban surface water bodies (small rivers, lakes, reservoirs, and ponds) | Temperature regulation | LST | Landscape | Remote sensing—LandSat (NDWI) [92] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 |
Vegetation | Water quality management | Physicochemical water quality parameters (e.g., microbes, metazoans) | Site | Measured in-situ using digital probes. [93] | SDG 3—Target 3.9; SDG 6—Target 6.3 |
Disaster resilience | Soil moisture, rainfall, eroded material, surface and subsurface runoff | Site | Water content reflectometers; turbidity sensor; structural testing system (STS); strain gauge [94] | SDG 3—Target 3.9; SDG 6—Target 6.3; SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Stormwater management | Soil health (e.g., soil bulk density, soil organic matter) | Site | Plots; soil sampling; and rainfall simulators [95] | SDG 2—Target 2.4; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 | |
Stormwater management | Stormwater (e.g., Ammonia, phosphorous) | Site | Sampling of bio infiltration columns [96] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7 | |
Water conservation | Soil texture, soil moisture, evaporation capacity, microclimate assessment, herb layer green biomass, and litter layer density | Landscape | Soil moisture meter; grain size distribution measured in laboratory; canopy photos [97] | SDG 13—Target 13.1; SDG 15—Targets 15.1, 15.2, 15.3, 15.4,15.5, 15.9 | |
Temperature regulation | Air temperature, RH, LAI | Neighbourhood | Weather stations; EnviMet modelling [60] | SDG 11– Targets 11a, b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | Wind speed, wind direction, ultrafine particles, LAI | Site | 3D sonic anemometer; Scanning mobility particle sizer; Plant canopy analyser [98] | SDG 11; SDG13;SDG3 | |
Air quality | LAI, PM2.5 and PM10 | Site | Portable weather station; Ceptometer; Aerosol monitor [99] | SDG 11— Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Air quality | BC and UFP concentrations, micrometeorological conditions, LAI | Site | MicroAeth AE51; Testo DiscMini; Handheld ceptometer; Portable weather meters; Video camera [100]. | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 13—Target 13.1 | |
Vegetation and wetland | Disaster resilience | Forest dynamics and wetland distribution | Landscape | Remote sensing—Landsat 5TM, 7ETM+, 8OLI and Sentinel 2A/2B MSI (S2), imagery to map forest dynamics and wetland distribution [101] | SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Water retention pond | Stormwater management | Water levels (e.g., surface water, groundwater) | Landscape | Field measurements, automated hydrological stations, and satellite imagery [102] | SDG 3—Target 3.9; SDG 11—Targets 11a, b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Wetlands | Stormwater management | Stormwater (e.g., water storage and flood buffering) | Landscape | Tube wells; HOBO MX Water Level Logger [103] | SDG 11—Targets 11a,b; 11.5; 11.6; 11.7; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Water quality management | Physicochemical water quality parameters (e.g., phosphorous, nitrogen, silicone) | Site | Water sampling and lab analysis [104] | SDG 6—Target 6.3; SDG 14—Targets 14.1; 14.2; SDG 15—Targets 15.1, 15.2, 15.3, 15.4, 15.5, 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, V.; Suneja, M.; Dunjic, J. Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review. Land 2023, 12, 1477. https://doi.org/10.3390/land12081477
Anderson V, Suneja M, Dunjic J. Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review. Land. 2023; 12(8):1477. https://doi.org/10.3390/land12081477
Chicago/Turabian StyleAnderson, Vidya, Manavvi Suneja, and Jelena Dunjic. 2023. "Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review" Land 12, no. 8: 1477. https://doi.org/10.3390/land12081477
APA StyleAnderson, V., Suneja, M., & Dunjic, J. (2023). Sensing and Measurement Techniques for Evaluation of Nature-Based Solutions: A State-of-the-Art Review. Land, 12(8), 1477. https://doi.org/10.3390/land12081477