Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Soil Wind Erosion Modulus
- (1)
- Climatic factor
- (2)
- Soil erodibility factor
- (3)
- Soil crust factor
- (4)
- Vegetation factor
- (5)
- Surface roughness factor
2.3.2. Spatiotemporal Trend Analysis
2.3.3. Partial Correlation Analysis
2.3.4. Multiple Correlation Analysis
2.3.5. Calculation of Driving Factor
3. Results
3.1. Temporal and Spatial Variation in Soil Wind Erosion Modulus
3.2. Consistency of Future Wind Erosion Trend
3.3. Driving Factor of Wind Erosion
3.4. Divergence of Soil Wind Erosion from Different Land Use/Land Cover Types
4. Discussion
4.1. Contribution of Climatic Drivers
4.1.1. Impacts of Wind Speed on Soil Erosion
4.1.2. Impacts of Precipitation on Soil Wind Erosion
4.2. Contribution of Non-Climatic Drivers
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; Mcnair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zou, X.; Zhang, K.; Zhang, W. Quantifying wind erosion at landscape scale in a temperate grassland: Nonignorable influence of topography. Geomorphology 2020, 370, 107401. [Google Scholar] [CrossRef]
- Gholami, H.; Mohamadifar, A.; Bui, D.T.; Collins, A.L. Mapping wind erosion hazard with regression-based machine learning algorithms. Sci. Rep. 2020, 10, 20494. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; He, C.; Ding, G. Linking wind erosion to ecosystem services in drylands: A landscape ecological approach. Landsc. Ecol. 2017, 32, 2399–2417. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Lei, J. Wind erosion and dust emissions in central Asia: Spatiotemporal simulations in a typical dust year. Earth Surf. Process. Landf. 2019, 44, 521–534. [Google Scholar] [CrossRef]
- Li, H.; Tatarko, J.; Kucharski, M.; Dong, Z. PM2.5 and PM10 emissions from agricultural soils by wind erosion. Aeolian Res. 2015, 19, 171–182. [Google Scholar] [CrossRef]
- Todhunter, P.E.; Cihacek, L.J. Historical reduction of airborne dust in the Red River Valley of the North. J. Soil Water Conserv. 1999, 54, 543–551. [Google Scholar] [CrossRef]
- Sharratt, B.; Tatarko, J.; Abatzoglou, J.; Fox, F.; Huggins, D. Implications of climate change on wind erosion of agricultural lands in the Columbia plateau. Weather. Clim. Extrem. 2015, 10, 20–31. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Wang, M.; Jiang, H.; Wang, Y. Impacts of climate change on wind erosion in southern Africa between 1991 and 2015. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- He, J.J.; Cai, Q.G.; Cao, W.Q. Wind tunnel study of multiple factors affecting wind erosion from cropland in agro-pastoral area of Inner Mongolia, China. J. Mt. Sci. 2013, 10, 68–74. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B.; Chen, J. Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. Catena 2010, 81, 24–31. [Google Scholar] [CrossRef]
- Snyder, K.A.; Tartowski, S.L. Multi-scale temporal variation in water availability: Implications for vegetation dynamics in arid and semi-arid ecosystems. J. Arid. Environ. 2006, 65, 219–234. [Google Scholar] [CrossRef]
- Wasson, R.J.; Nanninga, P.M. Estimating wind transport of sand on vegetated surfaces. Earth Surf. Process. Landf. 1986, 11, 505–514. [Google Scholar] [CrossRef]
- Li, F.R.; Kang, L.F.; Zhang, H.; Zhao, L.Y.; Shirato, Y.; Taniyama, I. Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. J. Arid. Environ. 2005, 62, 567–585. [Google Scholar] [CrossRef]
- Lancaster, N.; Baas, A. Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California. Earth Surf. Process. Landf. 2015, 23, 69–82. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Xin, X.; Yang, G.; Chen, B. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China. Catena 2011, 87, 351–356. [Google Scholar] [CrossRef]
- Cao, F.; Dan, L.; Ma, Z.; Gao, T. Assessing the regional climate impact on terrestrial ecosystem over East Asia using coupled models with land use and land cover forcing during 1980–2010. Sci. Rep. 2020, 10, 2572. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Guan, Q.; Pan, N.; Zhao, R.; Xu, C. Spatiotemporal Variations and Driving Factors of the Potential Wind Erosion Rate in the Hexi Region. Land Degrad. Dev. 2020, 32, 139–157. [Google Scholar] [CrossRef]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef]
- Zhao, Y.; Chi, W.; Kuang, W.; Bao, Y.; Ding, G. Ecological and environmental consequences of ecological projects in the Beijing–Tianjin sand source region. Ecol. Indic. 2020, 112, 106111. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Tian, D. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Funct. Ecol. 2016, 30, 490–499. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Wang, Z.; Silva, L.C.; Sun, G.; Luo, P.; Mou, C.; Horwath, W.R. Quantifying the impact of drought on soil-plant interactions: A seasonal analysis of biotic and abiotic controls of carbon and nutrient dynamics in high-altitudinal grasslands. Plant Soil 2015, 389, 59–71. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Xiao, J. Variations of Wind Erosion Climatic Erosivity in the Yarlung Zangbo River Basin During 1961–2015. Sci. Geogr. Sin. 2019, 39, 688–695. [Google Scholar] [CrossRef]
- Dong, G.R.; Dong, Y.X.; Li, S.; Jin, J.; Liu, Y.Z. The causes and developmental trend of desertification in the middle reaches of the Yarlung Zangbo River and its two tributaries in Xizang. Chin. Geogr. Sci. 1995, 5, 355–364. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhao, W.; Yang, M.; Xiong, D. A long-term record (1995–2019) of the dynamics of land desertification in the middle reaches of Yarlung Zangbo River basin derived from Landsat data. Geogr. Sustain. 2021, 2, 12–21. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Baillie, J.E.M. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, D.; Tang, Y.; Liu, L. Land surface roughness impacted by typical vegetation restoration projects on aeolian sandy lands in the Yarlung Zangbo River valley, southern Tibetan plateau. Int. Soil Water Conserv. Res. 2022, 10, 109–118. [Google Scholar] [CrossRef]
- Li, H.; Shen, W.; Zou, C.; Jiang, J.; Fu, L.; She, G. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau, China. J. Hydrol. 2013, 479, 215–225. [Google Scholar] [CrossRef]
- Shen, W.; Li, H.; Sun, M.; Jiang, J. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Glob. Planet. Chang. 2012, 86, 37–44. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A.; Schomberg, H.; Stout, J.E.; Zobeck, T.M. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. Catena 2019, 187, 104388. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Publ. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- The Hurst phenomenon and the rescaled range statistic. Stochastic Processes and Their Applications: An Official. J. Bernoulli Soc. Math. Stat. Probab. 2016, 126, 3790–3807. [CrossRef]
- Sen, L.I. Classification and development of aeolian sand landform in the Yurlung Zangbo Vally. J. Desert Res. 1997, 17, 342. [Google Scholar] [CrossRef]
- Xie, S.; Qu, J.; Xu, X.; Pang, Y. Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau. Nat. Hazards 2017, 85, 829–850. [Google Scholar] [CrossRef]
- Teng, Y.; Zhan, J.; Liu, W.; Sun, Y.; Agyemang, F.B.; Liang, L.; Li, Z. Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China. Ecol. Indic. 2021, 123, 107340. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Zhang, C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Sci. Total Environ. 2019, 709, 136060. [Google Scholar] [CrossRef] [PubMed]
- Duan, A.; Wu, G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Clim. 2009, 22, 4197–4212. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Wu, X.; Fan, J.; Sun, L.; Zhang, H.; Chi, W. Wind erosion and its ecological effects on soil in the northern piedmont of the Yinshan Mountains. Ecol. Indic. 2021, 128, 107825. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, Y.; Dong, Z.; Liu, B.; Zhao, L. Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet. Aeolian Res. 2018, 32, 192–201. [Google Scholar] [CrossRef]
- Davis, C.J.; Hanna, E.G. Seasonal temperature and rainfall extremes 1911–2017 for Northern Australian population centres: Challenges for human activity. Reg. Environ. Chang. 2020, 20, 128. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Zhu, Q. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015. Sci. Rep. 2017, 7, 8048. [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Alvarez, L.; Epstein, H. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 2007, 85, 317–332. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Leenders, J.K.; Boxel, J.H.V.; Sterk, G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso. Earth Surf. Process. Landf. 2010, 32, 1454–1474. [Google Scholar] [CrossRef]
- Liu, J.; Kimura, R.; Miyawaki, M.; Kinugasa, T. Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments. Catena 2021, 197, 104976. [Google Scholar] [CrossRef]
- Wu, Y. The Study on the Relationship between Ecological Conservation and Rural Households’ Income Improvement in Tibet; Beijing Forestry University: Beijing, China, 2016. [Google Scholar]
- Richter, D.D.; Markewitz, D.; Trumbore, S.E.; Wells, C. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 1999, 400, 56–58. [Google Scholar] [CrossRef]
- Chen, J.M. Carbon neutrality:Toward a sustainable future. Innovation 2021, 2, 100127. [Google Scholar] [CrossRef]
- Ma, Q.; Fehmi, J.S.; Zhang, D.; Fan, B.; Chen, F. Changes in wind erosion over a 25-year restoration chronosequence on the south edge of the Tengger Desert, China: Implications for preventing desertification. Environ. Monit. Assess. 2017, 189, 463. [Google Scholar] [CrossRef]
- Tao, W. Progress in sandy desertification research of China. J. Geogr. Sci. 2004, 14, 387–400. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; van Vuuren, D.P.; Tabeau, A.; Hof, A.F.; Braakhekke, M.C.; Gernaat, D.; van den Berg, M.; van Zeist, W.-J.; Daioglou, V.; et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Chang. Biol. 2020, 26, 1576–1591. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhao, W.; Zhan, Q.; Xiong, D. Spatiotemporal Patterns of Land Surface Temperature change in the Tibetan Plateau Based on MODIS/Terra Daily Product from 2000 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6501–6514. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bonner, K.I.; Barker, G.M.; Yeates, G.W.; Nicholson, K.S.; Bardgett, R.D.; Watson, R.N.; Ghani, A. Plant removals in perennial grassland: Vegetation dynamics,deco,posers,soil biodiversity, and ecosystem properties. Ecol. Monogr. 1999, 69, 535–568. [Google Scholar] [CrossRef]
- Li, X.R.; Zhang, J.G.; Liu, L.C.; Chen, H.S.; Shi, Q.H. Plant Diversity and Succession of Artificial Vegetation Types and Environment in an Arid Desert Region of China. In Conserving Biodiversity in Arid Regions; Springer: New York, NY, USA, 2000; pp. 179–188. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, W.; Zhan, Q.; Yang, M.; Xiong, D.; Yu, D. Temporal Information Extraction for Afforestation in the Middle Section of the Yarlung Zangbo River Using Time-Series Landsat Images Based on Google Earth Engine. Remote Sens. 2021, 13, 4785. [Google Scholar] [CrossRef]
- Zhao, D.; Xiong, D.; Zhang, B.; He, K.; Wu, H.; Zhang, W.; Lu, X. Long-term response of runoff and sediment load to spatiotemporally varied rainfall in the Lhasa River basin, Tibetan Plateau. J. Hydrol. 2023, 618, 129154. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Du, H.; Zuo, X.; Li, S.; Wang, T.; Xue, X. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agric. Ecosyst. Environ. 2019, 274, 1–13. [Google Scholar] [CrossRef]
- Sato, C.F.; Strong, C.L.; Holliday, P.; Florance, D.; Pierson, J.; Lindenmayer, D.B. Environmental and grazing management drivers of soil condition. Agric. Ecosyst. Environ. Int. J. Sci. Res. Relatsh. Agric. Food Prod. Biosph. 2019, 276, 1–7. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Oshunsanya, S.O.; Are, K.S.; Geng, Y.; Saggar, S.; Liu, W. Re-introduction of light grazing reduces soil erosion and soil respiration in a converted grassland on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 280, 43–52. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Harris, W.; Li, Y.; Chi, W.; Wang, S. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef]
- Xu, D.; Li, D. Variation of wind erosion and its response to ecological programs in northern China in the period 1981–2015. Land Use Policy 2020, 99, 104871. [Google Scholar] [CrossRef]
Data | Description | Resolution | Time |
---|---|---|---|
Climate data | Wind speed | 1990–2020 | |
Temperature | |||
Precipitation | |||
Solar radiation | |||
Vegetation data | NDVI | 1 km × 1 km | 1990–2020 |
livestock data | Actual livestock carrying capacity estimation product | 1 km × 1 km | 2000–2020 |
Land-use data | China multi-period land use remote sensing monitoring data set (CNLUCC) | 1 km × 1 km | 1990–2020 |
Soil data | Harmonized World Soil Database v 1.2 (HWSD) | 1:10,000,000 | 2020 |
Elevation data | SRTM (Shuttle Radar Topography Mission) | 30 m × 30 m | 2020 |
Snow depth | Long-term series of daily snow depth dataset in China | 25 km × 25 km | 1990–2020 |
Qi | Z | Trend Type | Trend Features |
---|---|---|---|
Qi > 0 | 2.58 < Z | 4 | Very significant increase |
1.96 < Z < 2.58 | 3 | Significantly increase | |
1.65 < Z < 1.96 | 2 | Micro-significant increase | |
Z ≤ 2.58 | 1 | No significant increase | |
Qi = 0 | Z | 0 | No Change |
Qi < 0 | Z ≤ 1.65 | −1 | No significant decrease |
1.65 < Z < 1.96 | −2 | Micro-significant decrease | |
1.96 < Z < 2.58 | −3 | Significantly decrease | |
2.58 < Z | −4 | Very significant decrease |
Dominant Driver | Basis | |||
---|---|---|---|---|
Rsl-FVC,P &W | Rsl-P,W& FVC | Rsl-W,P&FVC | Rsl-W&P&FVC | |
Strong drive (W + P + FVC) | |t| > t0.05 | |t| > t0.05 | |t| > t0.05 | F > F0.05 |
Strong drive (P + FVC) | |t| > t0.05 | |t| > t0.05 | |t| ≤t0.05 | F > F0.05 |
Strong drive (W + FVC) | |t| > t0.05 | |t| ≤t0.05 | |t| > t0.05 | F > F0.05 |
Strong drive (W + P) | |t| ≤t0.05 | |t| > t0.05 | |t| > t0.05 | F > F0.05 |
Strong drive (FVC) | |t| > t0.05 | |t| ≤t0.05 | |t| ≤t0.05 | F > F0.05 |
Strong drive (P) | |t| ≤t0.05 | |t| > t0.05 | |t| ≤t0.05 | F > F0.05 |
Strong drive (W) | |t| ≤t0.05 | |t| ≤t0.05 | |t| > t0.05 | F > F0.05 |
Weak drive (W + P + FVC) | |t| ≤t0.05 | |t| ≤t0.05 | |t| ≤t0.05 | F > F0.05 |
Non-climatic factor drive | F ≤F0.05 |
SL (103 t) | SWEM (t/hm2) | |||||
---|---|---|---|---|---|---|
Land Use/Land Cover Type | 1990 | 2020 | Change Rate | 1990 | 2020 | Change Rate |
Cultivated land | 92.00 | 8.83 | 90.40% | 1.02 | 0.08 | −91.91% |
Shrub land | 6.92 | 5.42 | 21.68% | 0.05 | 0.02 | −57.26% |
Forest | 28.56 | 0.34 | 98.81% | 1.14 | 0.00 | −99.78% |
Grassland | 680.30 | 31.96 | 95.30% | 0.49 | 0.03 | −93.99% |
Built-up area | 10.16 | 1.09 | 89.27% | 0.43 | 0.05 | −87.69% |
sandy land | 1803.66 | 134.81 | 92.53% | 23.77 | 1.70 | −92.87% |
Bare soil | 336.61 | 22.73 | 93.25% | 1.45 | 0.43 | −70.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Zhao, D.; Zhang, B.; Xiong, D.; Yuan, Z.; Zhang, W.; Liu, L.; Rai, D.K.; Laraib, S.; Deng, W. Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau. Land 2023, 12, 1685. https://doi.org/10.3390/land12091685
Qin X, Zhao D, Zhang B, Xiong D, Yuan Z, Zhang W, Liu L, Rai DK, Laraib S, Deng W. Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau. Land. 2023; 12(9):1685. https://doi.org/10.3390/land12091685
Chicago/Turabian StyleQin, Xiaomin, Dongmei Zhao, Baojun Zhang, Donghong Xiong, Zhengrong Yuan, Wenduo Zhang, Lin Liu, Dil Kumar Rai, Sheikh Laraib, and Wei Deng. 2023. "Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau" Land 12, no. 9: 1685. https://doi.org/10.3390/land12091685
APA StyleQin, X., Zhao, D., Zhang, B., Xiong, D., Yuan, Z., Zhang, W., Liu, L., Rai, D. K., Laraib, S., & Deng, W. (2023). Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau. Land, 12(9), 1685. https://doi.org/10.3390/land12091685