Classification and Transition of Grassland in Qinghai, China, from 1986 to 2020 with Landsat Archives on Google Earth Engine
Abstract
:1. Introduction
- We proposed a methodological framework for the large-scale grassland classification of alpine regions with broad temporal cover and fine temporal frequency.
- We generated a public dataset composed of 35 annual grassland thematic images of Qinghai from 1986 to 2020 at 30 m. The dataset can be fetched from https://drive.google.com/file/d/1TtkFYnXF0uZsQUy_txX-j50rfeUB521t/view?usp=share_link (accessed on 11 January 2023).
- The grassland transitions of Qinghai from 1986 to 2020 were revealed.
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. USGS Landsat Surface Reflectance
2.2.2. Digital Elevation Model (DEM) Data
2.2.3. Referenced Grassland Thematic Map and Land Cover Data
2.2.4. Impervious Surface Data
2.3. Methodology
2.3.1. Annual Image Composition
2.3.2. Classifier Training
2.3.3. Annual Grassland Mapping
2.3.4. Grassland Transition Analysis
3. Results
3.1. Annual Grassland Mapping
3.2. Qinghai Grasslands Transition during 1986–2020
4. Discussion
4.1. Grassland Mapping of Qinghai
4.2. Grassland Transitions in Qinghai
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Xu, D.; Chen, B.; Shen, B.; Wang, X.; Yan, Y.; Xu, L.; Xin, X. The classification of grassland types based on object-based image analysis with multisource data. Rangel. Ecol. Manag. 2019, 72, 318–326. [Google Scholar] [CrossRef]
- Liu, H.; Mi, Z.; Lin, L.I.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.Z.; Hu, Z.Z.; Zhao, J.; Zhang, D.G.; Hou, F.J.; Lin, H.L.; Mu, X.D. A grassland classification system and its application in China. Rangel. J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef] [PubMed]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land cover classification using Google Earth Engine and random forest classifier—The role of image composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Ji, R.; Tan, K.; Wang, X.; Pan, C.; Xin, L. Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sens. 2021, 13, 4480. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Hu, T.; Toman, E.M.; Chen, G.; Shao, G.; Zhou, Y.; Li, Y.; Zhao, K.; Feng, Y. Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 176, 250–261. [Google Scholar] [CrossRef]
- Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. [Google Scholar] [CrossRef]
- Yin, S.; Wu, W.; Zhao, X.; Gong, C.; Li, X.; Zhang, L. Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE. PLoS ONE 2020, 15, e0230098. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE international Geoscience and Remote Sensing Symposium IGARSS 2021, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, W.; Tang, X.; Li, H.; Hu, H.; Wang, X. Classification of alpine grasslands in cold and high altitudes based on multispectral Landsat-8 images: A case study in Sanjiangyuan National Park, China. Remote Sens. 2022, 14, 3714. [Google Scholar] [CrossRef]
- Nyland, K.E.; Gunn, G.E.; Shiklomanov, N.I.; Engstrom, R.N.; Streletskiy, D.A. Land cover change in the lower Yenisei River using dense stacking of landsat imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y. Land cover changes and their driving mechanisms in Central Asia from 2001 to 2017 supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of China. The Code of Practice for Grassland Resource Survey (NY/T 2998-2016); Ministry of Agriculture and Rural Affairs of China: Beijing, China, 2016.
- Ma, X.; Zhang, H. Variations in the Value and Trade-Offs/Synergies of Ecosystem Services on Topographic Gradients in Qinghai Province, China. Sustainability 2022, 14, 15546. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Gao, Y.; Chen, X.; Mi, J. GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 1831–1856. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Landsat Missions, Landsat Collection 2. Available online: https://www.usgs.gov/landsat-missions/landsat-collection-2 (accessed on 17 August 2023).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data. Int. J. Remote Sens. 2014, 35, 6859–6873. [Google Scholar]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Padalia, H.; Ghosh, S.; Watham, T.; Patel, N.R.; Chauhan, P. Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine. Int. J. Remote Sens. 2020, 41, 7296–7309. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 6, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Marais Sicre, C.; Dedieu, G. Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Xu, L.; Pan, X.; Hu, Q.; Li, Q.; Zhang, X.; Shao, C.; Wang, C.; Wang, X. Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. Catena 2020, 185, 104298. [Google Scholar] [CrossRef]
- Feng, H.; Squires, V.R. Socio-environmental dynamics of alpine grasslands, steppes and meadows of the Qinghai–Tibetan Plateau, China: A commentary. Appl. Sci. 2020, 10, 6488. [Google Scholar] [CrossRef]
- Li, L.H.; Xin, X.P.; Tang, H.J.; Hou, L.Y. China’s meadow grasslands: Challenges and opportunities. Plant Soil 2022, 473, 1–8. [Google Scholar]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Zhao, L.; Liang, Y.; Cheng, G. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth Planet. Sci. Lett. 2021, 562, 116858. [Google Scholar] [CrossRef]
- Lou, P.; Wu, T.; Yang, S.; Wu, X.; Chen, J.; Zhu, X.; Ma, X. Deep learning reveals rapid vegetation greening in changing climate from 1988 to 2018 on the Qinghai-Tibet Plateau. Ecol. Indic. 2023, 148, 110020. [Google Scholar] [CrossRef]
Dataset | Time Span | Scale | Provider |
---|---|---|---|
Landsat surface reflectance images (Landsat 5, 7, 8) | 1986–2020 | 30 m | NASA/USGS |
Digital elevation model (SRTM DEM) | 2000 | 30 m | NASA |
Grassland thematic map (QGLM) | 2011 | 1:1,000,000 | the Geomatics Center of Qinghai |
Land cover data (World Cover 10) | 2020 | 10 m | ESA |
Impervious surface (GISD30) | every five years from 1985 to 2020 | 30 m | Zhang et al. [31] |
Year | Available Satellite |
---|---|
1986–1998 | Landsat 5 |
1999–2012 | Landsat 5, 7 |
2013–2020 | Landsat 7, 8 |
Prediction | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | TDS | AMS | AM | AS | TD | AD | LM | MM | Farmland | Forest | Bareland/ Snow | Open Water | PA | ||
Truth | TS | 913 | 91 | 19 | 18 | 2 | 111 | 4 | 4 | 8 | 41 | 11 | 5 | 0 | 0.744 |
TDS | 40 | 1164 | 2 | 1 | 0 | 10 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0.954 | |
AMS | 2 | 2 | 1085 | 70 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.900 | |
AM | 14 | 4 | 83 | 788 | 126 | 11 | 14 | 0 | 70 | 3 | 15 | 12 | 0 | 0.691 | |
AS | 40 | 8 | 71 | 52 | 877 | 69 | 54 | 0 | 3 | 1 | 0 | 25 | 0 | 0.731 | |
TD | 63 | 14 | 1 | 2 | 31 | 992 | 20 | 34 | 1 | 1 | 2 | 18 | 0 | 0.841 | |
AD | 0 | 0 | 10 | 5 | 42 | 15 | 1165 | 0 | 0 | 0 | 0 | 5 | 0 | 0.938 | |
LM | 2 | 0 | 0 | 0 | 0 | 10 | 0 | 1126 | 0 | 1 | 0 | 3 | 1 | 0.985 | |
MM | 5 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 1141 | 0 | 4 | 0 | 0 | 0.984 | |
Farmland | 26 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 1183 | 1 | 0 | 0 | 0.970 | |
Forest | 7 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 5 | 2 | 1192 | 0 | 0 | 0.987 | |
Bareland/ Snow | 2 | 0 | 3 | 9 | 58 | 26 | 28 | 6 | 0 | 0 | 0 | 966 | 5 | 0.876 | |
Open water | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 5 | 1190 | 0.992 | |
UA | 0.819 | 0.907 | 0.852 | 0.823 | 0.742 | 0.793 | 0.907 | 0.959 | 0.929 | 0.959 | 0.972 | 0.928 | 0.995 | ||
Overall Accuracy: 0.892 Kappa: 0.883 |
Year | Landsat 5 | Landsat 7 | Landsat 8 | The Proposed Composite Image |
---|---|---|---|---|
1990 | 10.011% | \ | \ | 0.462% |
1995 | 12.048% | \ | \ | 0.026% |
2000 | 3.026% | 12.935% | \ | 0.0003% |
2005 | 11.451% | 12.347% | \ | 0.006% |
2010 | 4.665% | 11.598% | \ | 0.002% |
2011 | 4.534% | 11.738% | \ | 0.006% |
2015 | \ | 3.774% | 1.331% | 0.001% |
2020 | \ | 3.481% | 4.493% | 0.003% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Shi, Y.; Ding, H.; Yang, F. Classification and Transition of Grassland in Qinghai, China, from 1986 to 2020 with Landsat Archives on Google Earth Engine. Land 2023, 12, 1686. https://doi.org/10.3390/land12091686
He P, Shi Y, Ding H, Yang F. Classification and Transition of Grassland in Qinghai, China, from 1986 to 2020 with Landsat Archives on Google Earth Engine. Land. 2023; 12(9):1686. https://doi.org/10.3390/land12091686
Chicago/Turabian StyleHe, Pengfei, Yuli Shi, Haiyong Ding, and Fangwen Yang. 2023. "Classification and Transition of Grassland in Qinghai, China, from 1986 to 2020 with Landsat Archives on Google Earth Engine" Land 12, no. 9: 1686. https://doi.org/10.3390/land12091686
APA StyleHe, P., Shi, Y., Ding, H., & Yang, F. (2023). Classification and Transition of Grassland in Qinghai, China, from 1986 to 2020 with Landsat Archives on Google Earth Engine. Land, 12(9), 1686. https://doi.org/10.3390/land12091686