Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. The Data Needed to Build the EEQ
2.2.2. Climate Dataset
2.2.3. Human Activity Dataset
2.2.4. Other Dataset
2.3. Research Method
2.3.1. Construction of the RSEI-2 Model
2.3.2. Theil−Sen Median and Mann−Kendall Analysis
2.3.3. Land Utilization Degree Index
2.3.4. Standard Deviational Ellipse
2.3.5. The OLS Model
2.3.6. Multi-Scale Geographically Weighted Regression
2.3.7. Hot Spot Analysis
3. Results
3.1. Temporal and Spatial Variation Characteristics of EEQ
3.2. Evolution Trend Characteristics of EEQ
3.3. Attribution Analysis of EEQ Spatial and Temporal Distribution
3.3.1. Regression Model Fitting Results
3.3.2. Results of MGWR-Based Regression Coefficients of Climate Factors
3.3.3. Results of MGWR-Based Regression Coefficients of Human Activities Factors
4. Discussion
4.1. Temporal and Spatial Evolution of EEQ in the LP
4.2. Response of EEQ to Climate Change in the LP
4.3. Response of EEQ to Human Activities in the LP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hodson, R. Climate change. Nature 2017, 550, S53. [Google Scholar] [CrossRef]
- Lucas, R. The vulnerability of global forests to human and climate impacts. Nat. Sustain. 2023, 6, 354–355. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Chen, Y.; Gang, C.; Shen, Y. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices. Sci. Total Environ. 2022, 838, 156553. [Google Scholar] [CrossRef] [PubMed]
- IPCC. IPCC Fifth Assessment Report—Synthesis Report; IPPC: Rome, Italy, 2014. [Google Scholar]
- Li, Y.; Zhao, C.; Zhang, T.; Wang, W.; Duan, H.; Liu, Y.; Ren, Y.; Pu, Z. Impacts of Land-Use Data on the Simulation of Surface Air Temperature in Northwest China. J. Meteorol. Res. 2019, 32, 896–908. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Song, C.; Du, H.; Li, Y. Spatial and Temporal Variations in the Ecological Vulnerability of Northern China. J. Sens. 2022, 2022, 7232830. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhao, Q.; Zhao, Z. Effects of ecological restoration projects on changes in land cover: A case study on the Loess Plateau in China. Sci. Rep. 2017, 7, 44496. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Qin, D.; Wu, J.; Gao, R.; Song, L. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci. 2017, 34, 289–305. [Google Scholar] [CrossRef]
- Ding, X.; Liu, X.; Liu, G.; Xiao, P.; Liu, R.; Gou, Z.; Zhao, Y. Comprehensive Assessment of Soil Conservation Measures by Rough Set Theory: A Case Study in the Yanhe River Basin of the Loess Plateau. Water 2022, 14, 2213. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Zuo, S.; Dai, S.; Song, X.; Xu, C.; Liao, Y.; Chang, W.; Chen, Q.; Li, Y.; Tang, J.; Man, W. Determining the mechanisms that influence the surface temperature of urban forest canopies by combining remote sensing methods, ground observations, and spatial statistical models. Remote Sens. 2018, 10, 1814. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Zhang, Y.; Li, F.; Chen, X.; Wang, Y.; Wang, Y. Spatiotemporal heterogeneity correction in land ecosystem services and its value assessment: A case study of the Loess Plateau of China. Environ. Sci. Pollut. Res. Int. 2023, 30, 47561–47579. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.; Lou, Y.; Gao, Z.; Liu, W.; Zhang, X.; Sun, G.; Li, Y. Vegetation carbon input moderates the effects of climate change on topsoil organic carbon in China. Catena 2023, 228, 107188. [Google Scholar] [CrossRef]
- Jing, P.; Zhang, D.; Ai, Z.; Wu, H.; Zhang, D.; Ren, H.; Suo, L. Responses of Ecosystem Services to Climate Change: A Case Study of the Loess Plateau. Forests 2022, 13, 2011. [Google Scholar] [CrossRef]
- Qu, Z.; Zhao, Y.; Luo, M.; Han, L.; Yang, S.; Zhang, L. The Effect of the Human Footprint and Climate Change on Landscape Ecological Risks: A Case Study of the Loess Plateau, China. Land 2022, 11, 217. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L.; Zhao, X.; Wu, P. Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China. Sci. China Earth Sci. 2021, 64, 920–931. [Google Scholar] [CrossRef]
- Luo, W.; Bai, H.; Jing, Q.; Liu, T.; Xu, H. Urbanization-induced ecological degradation in Midwestern China: An analysis based on an improved ecological footprint model. Resour. Conserv. Recycl. 2018, 137, 113–125. [Google Scholar] [CrossRef]
- Lu, C.; Liu, W.; Huang, P.; Wang, Y.; Tang, X. Effect of Energy Utilization and Economic Growth on the Ecological Environment in the Yellow River Basin. Int. J. Environ. Res. Public Health 2023, 20, 2345. [Google Scholar] [CrossRef]
- Lei, P.; Zhang, H.; Wu, Q.; Li, P.; Wang, B.; Wu, P. The Development of Environmental Geoscience Contributes to the Construction of Ecological Civilization. Bull. Environ. Contam. Toxicol. 2022, 109, 659–660. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, C.; Yue, H.; Lyu, C.; Jiaxin, Q.; Zhu, R. Comparison between Modified Remote Sensing Ecological Index and RSEI. J. Remote Sens. 2022, 26, 683–697. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing urban ecological index. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Zhou, J.; Liu, W. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; He, Y.; Luan, H. Monitoring and assessment of ecological change in coastal cities based on RSEI. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 461–470. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Gong, E.; Shi, F.; Wang, Z.; Hu, Q.; Zhang, J.; Hai, H. Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index. Sustainability 2022, 14, 16304. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Cao, M.; Liu, H. Spatiotemporal Change of Eco-Environmental Quality in the Oasis City and Its Correlation with Urbanization Based on RSEI: A Case Study of Urumqi, China. Sustainability 2022, 14, 9227. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, Y.; Li, C. Assessment of Ecological Environment Quality in Rare Earth Mining Areas Based on Improved RSEI. Sustainability 2023, 15, 2964. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Chen, F. Eco-Environmental Effect Evaluation of Tamarix chinesis Forest on Coastal Saline-Alkali Land Based on RSEI Model. Sensors 2022, 22, 5052. [Google Scholar] [CrossRef]
- Zongfan, B.; Ling, H.; Huiqun, L.; Xuhai, J.; Liangzhi, L. Spatiotemporal change and driving factors of ecological status in Inner Mongolia based on the modified remote sensing ecological index. Environ. Sci. Pollut. Res. Int. 2023, 30, 52593–52608. [Google Scholar] [CrossRef]
- Jia, H.; Yan, C.; Xing, X. Evaluation of Eco-Environmental Quality in Qaidam Basin Based on the Ecological Index (MRSEI) and GEE. Remote Sens. 2021, 13, 4543. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Jing, G.; Dong, X.; Yuhao, W.; Jia, G.; Bingnan, R.; Feng, Y. Spatio-temporal evolution of eco-environment quality and the response to climate change and human activities in Hainan Island. Acta Ecol. Sin. 2022, 42, 4795–4806. [Google Scholar]
- He, P.; Xu, L.; Liu, Z.; Jing, Y.; Zhu, W. Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Reg. Sustain. 2021, 2, 36–46. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Chen, Y.; Zhou, H.; Xiang, Y.; Liu, Z.; Hou, Y. Vegetation Change and Eco-Environmental Quality Evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sens. 2023, 15, 424. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.; Zhang, W.; Li, X. Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index. Sustainability 2020, 12, 3489. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.-M. The influential factors of urban PM2. 5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- He, Y.; Yi, G.; Zhang, T. The EVI trends and driving factors in Red River Basin affected by the “corridor-corridorbarrier” function during 2000–2014. ACTA Ecol. Sin. 2018, 38, 2056–2064. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Geng, J.; Yu, K.; Xie, Z.; Zhao, G.; Ai, J.; Yang, L.; Yang, H.; Liu, J. Analysis of Spatiotemporal Variation and Drivers of Ecological Quality in Fuzhou Based on RSEI. Remote Sens. 2022, 14, 4900. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Monitoring spatiotemporal characteristics of land-use carbon emissions and their driving mechanisms in the Yellow River Delta: A grid-scale analysis. Environ. Res. 2022, 214, 114151. [Google Scholar] [CrossRef]
- Zhou, M.-G.; Yang, Y.; Sun, Y.; Zhang, F.-Y.; Li, Y.-H. Spatio-temporal characteristics of air quality and influencing factors in Shandong Province from 2016 to 2020. Huanjing Kexue 2022, 43, 2937–2946. [Google Scholar] [PubMed]
- Wang, Y.; Fu, B.; Chen, L.; Lü, Y.; Gao, Y. Check dam in the Loess Plateau of China: Engineering for environmental services and food security. Environ. Sci. Technol. 2011, 45, 10298–10299. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wei, W.; Fu, B.; Lü, Y. Soil and water conservation on the Loess Plateau in China: Review and perspective. Prog. Phys. Geogr. Earth Environ. 2016, 31, 389–403. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Lixian, Z.; Zhehao, R.; Bin, C.; Peng, G.; Haohuan, F.; Bing, X. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef]
- Feng, H.; Wang, S.; Zou, B.; Nie, Y.; Ye, S.; Ding, Y.; Zhu, S. Land use and cover change (LUCC) impacts on Earth’s eco-environments: Research progress and prospects. Adv. Space Res. 2023, 71, 1418–1435. [Google Scholar] [CrossRef]
- Liu, Z.a. Study on The Model of Regional Differentiation of Land Use Degree in China. J. Nat. Resour. 1997, 12, 105–111. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Dempster, A.P.; Schatzoff, M.; Wermuth, N. A simulation study of alternatives to ordinary least squares. J. Am. Stat. Assoc. 1977, 72, 77–91. [Google Scholar] [CrossRef]
- Fotheringham, A.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002; p. 13. [Google Scholar]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression. Geogr. Anal. 2019, 52, 87–106. [Google Scholar] [CrossRef]
- Oshan, T.; Li, Z.; Kang, W.; Wolf, L.; Fotheringham, A. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Yu, T.; Ji, W.; Wu, T.; Zhuo, X.; Li, C.; Li, B.; Wang, L.; Shao, Y.; et al. Identification of the spatial patterns and controlling factors of Se in soil and rice in Guangxi through hot spot analysis. Environ. Geochem. Health 2023, 45, 4477–4492. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. In Perspectives on Spatial Data Analysis; Anselin, L., Rey, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Ting, L.; Lü, Y.; Ren, Y.; Li, P. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau. Acta Ecol. Sin. 2020, 40, 8593–8605. [Google Scholar]
- Zhang, Y.; Jiang, X.; Lei, Y.; Gao, S. The contributions of natural and anthropogenic factors to NDVI variations on the Loess Plateau in China during 2000–2020. Ecol. Indic. 2022, 143, 109342. [Google Scholar] [CrossRef]
- Dai, Q.; Cui, C.F.; Wang, S. Spatiotemporal variation and sustainability of NDVI in the Yellow River basin. Irrig. Drain. 2022, 71, 1304–1318. [Google Scholar] [CrossRef]
- Balat, M. Influence of Coal as an Energy Source on Environmental Pollution. Energy Sources 2007, 29, 581–589. [Google Scholar] [CrossRef]
- Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, P.; Gao, X.; Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 2015, 26, 54–61. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, J.; Tian, H.; Xu, Q.; Feng, X.; Wang, N.; Bai, L.; Yang, X. Spatial correlation analysis between vegetation NDVI and natural environmental factors based on geographical detector on the Loess Plateau. Acta Ecol. Sin. 2022, 42, 3569–3580. [Google Scholar]
- Cen, Y.; Gao, Z.; Sun, G.; Lou, Y.; Zhang, S.; Li, Y.; Wu, T. Effects of soil conservation on the spatial heterogeneity of vegetation carbon sequestration in the Yellow River Basin, China. Land Degrad. Dev. 2023, 34, 4607–4622. [Google Scholar] [CrossRef]
- Gong, L.; Jin, C.; Sun, W.; Yang, H.; Wang, J. Loess plateau rainfalls characteristics and influences on soil erosion. J. Food Agric. Environ. 2013, 11, 2502–2505. [Google Scholar]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Woodward, A.; Smith, K.R.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.; Revich, B.; Sauerborn, R.; Chafe, Z.; et al. Climate change and health: On the latest IPCC report. Lancet 2014, 383, 1185–1189. [Google Scholar] [CrossRef]
- Chen, C.; He, B.; Guo, L.; Zhang, Y.; Xie, X.; Chen, Z. Identifying critical climate periods for vegetation growth in the Northern Hemisphere. J. Geophys. Res. Biogeosci. 2018, 123, 2541–2552. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, S.; Sun, Y.; Rogers, B.M.; Li, X.; Lian, X.; Liu, Z.; Chen, A.; Peñuelas, J. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Chang. 2022, 12, 581–586. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Jianji, Z.; Yan, L.; Yakun, Z.; Shengli, Q.; Yanhua, W.; Changhong, M. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar]
- Wang, J.; Liu, Z.; Gao, J.; Emanuele, L.; Ren, Y.; Shao, M.; Wei, X. The Grain for Green project eliminated the effect of soil erosion on organic carbon on China’s Loess Plateau between 1980 and 2008. Agric. Ecosyst. Environ. 2021, 322, 107636. [Google Scholar] [CrossRef]
- Xiang, K.; Zhao, A.; Liu, H.; Zhang, X.; Zhang, A.; Tian, X.; Jin, Z. Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau. Sustainability 2022, 14. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Ma, B.-B.; Dai, L.-H.; Xue, D.-Q.; Xia, S.-Y.; Wang, P.-T. Spatial-temporal pattern and formation mechanism of county urbanization on the Chinese Loess Plateau. J. Mt. Sci. 2021, 18, 1093–1111. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Q.; Zhao, K.; Hao, L.; Pu, C.; Yuan, S. Spatiotemporal expansion modes of urban areas on the Loess Plateau from 1992 to 2021 based on nighttime light images. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103262. [Google Scholar] [CrossRef]
Data Name | Spatial Resolution | Time Resolution | Time Range | Source |
---|---|---|---|---|
LANDSAT/LT05/C02/T1_L2 LANDSAT/LC08/C02/T1_L2 | 30 m | 16-day | 2001–2019 | USGS a |
Annual land cover data of China (CLCD) | 30 m | Year | 2001, 2010, 2019 | Paper [48] (https://zenodo.org/record/5816591 (accessed on 25 May 2022)) |
Nighttime light Dataset of China (NL) | 1 km | Year | 2001, 2010, 2019 | Paper [49] (https://data.tpdc.ac.cn (accessed on 3 March 2023)) |
Population density dataset (POP) | 1 km | Year | 2001, 2010, 2019 | LandScan b |
Precipitation data (PRE) | 1 km | Month | 2001–2019 | ESSDC c |
Temperature data (TEM) | 1 km | Month | 2001–2019 | ESSDC d |
Digital elevation model (DEM) | 30 m | N/A | N/A | RESDC d |
China’s provincial boundaries, river networks | N/A | N/A | 2015 | RESDC d |
Indicators | Calculation Formula |
---|---|
NDVI | NDVI = (ρNIR − ρred)/(ρNIR + ρred) |
WET | WETTM = 0.0315ρblue + 0.2021ρgreen + 0.3102ρred + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 WETOLI = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2 |
NDBSI | NDBSI = (SI+IBI)/2 IBI = IBI1/IBI2 IBI1 = 2ρSWIR2/(ρSWIR1 + ρNIR) − [(ρNIR/(ρred + ρNIR)+ρgreen/(ρSWIR1 + ρgreen)] IBI2 = 2ρSWIR2/(ρSWIR1 + ρNIR) + [(ρNIR/(ρred + ρNIR)+ρgreen/(ρSWIR1 + ρgreen)] SI = [(ρSWIR1 + ρred) − (ρblue + ρNIR)]/[(ρSWIR1 + ρred)+(ρblue + ρNIR)] |
LST | LST = T/[1 + (λT/ρ)lnε] − 273.15 |
HQI | HQI = μ × (0.35 × Forest + 0.21 × Grassland + 0.28 × Water + 0.11 × Cropland + 0.04 × Impervious + 0.01 × Barren)/Area |
Theil−Sen Slope | Z Value | Type of Change | 2001–2010 | 2010–2019 | ||
---|---|---|---|---|---|---|
Area/km2 | Percentage | Area/km2 | Percentage | |||
<−0.001 | <−1.96 | I | 68,288 | 10.52% | 61,754 | 9.52% |
<−0.001 | −1.96~1.96 | II | 148,338 | 22.86% | 107,560 | 16.57% |
−0.001~0.001 | −1.96~1.96 | III | 256,921 | 39.59% | 293,663 | 45.25% |
>0.001 | −1.96~1.96 | IV | 96,225 | 14.83% | 120,196 | 18.52% |
>0.001 | >1.96 | V | 79,242 | 12.21% | 65,841 | 10.14% |
Year | Variable | Robust P | VIF | Adjust R2 |
---|---|---|---|---|
2001 | Intercept | 0.0000 *** | -------- | 0.4630 |
PRE | 0.0000 *** | 1.3399 | ||
TEM | 0.0514 * | 1.7830 | ||
NL | 0.0191 ** | 6.6650 | ||
LUI | 0.0001 *** | 2.4521 | ||
POP | 0.0122 ** | 5.5689 | ||
2010 | Intercept | 0.0000 *** | -------- | 0.5911 |
PRE | 0.0021 *** | 3.9585 | ||
TEM | 0.0000 *** | 1.5539 | ||
NL | 0.0414 ** | 1.9673 | ||
LUI | 0.0000 *** | 2.9405 | ||
POP | 0.2018 | 2.8629 | ||
2019 | Intercept | 0.0000 *** | -------- | 0.5815 |
PRE | 0.0018 *** | 3.1993 | ||
TEM | 0.0000 *** | 1.2082 | ||
NL | 0.03950 ** | 1.8455 | ||
LUI | 0.0000 *** | 3.0620 | ||
POP | 0.0663 * | 2.2359 |
Year | Variable | GWR | MGWR | |||||
---|---|---|---|---|---|---|---|---|
Band | AICc | Adjust R2 | Band | AICc | Adjust R2 | SD ∈ |2.5| | ||
2001 | intercept | 30 | 424.2669 | 0.8379 | 30 | 403.0871 | 0.8403 | 96.1876% |
PRE | 30 | 103 | ||||||
TEM | 30 | 30 | ||||||
NL | 30 | 43 | ||||||
LUI | 30 | 30 | ||||||
POP | 30 | 41 | ||||||
2010 | intercept | 30 | 372.0822 | 0.8750 | 30 | 362.5111 | 0.8920 | 97.9474% |
PRE | 30 | 78 | ||||||
TEM | 30 | 30 | ||||||
NL | 30 | 47 | ||||||
LUI | 30 | 34 | ||||||
POP | 30 | 30 | ||||||
2019 | intercept | 43 | 377.7387 | 0.8512 | 30 | 352.5259 | 0.8590 | 98.2405% |
PRE | 43 | 47 | ||||||
TEM | 43 | 30 | ||||||
NL | 43 | 30 | ||||||
LUI | 43 | 32 | ||||||
POP | 43 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, Z.; Li, Y.; Sun, G.; Cen, Y.; Lou, Y.; Yao, Y.; Liu, W. Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China. Land 2023, 12, 1792. https://doi.org/10.3390/land12091792
Zhang X, Gao Z, Li Y, Sun G, Cen Y, Lou Y, Yao Y, Liu W. Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China. Land. 2023; 12(9):1792. https://doi.org/10.3390/land12091792
Chicago/Turabian StyleZhang, Xun, Zhaoliang Gao, Yonghong Li, Guanfan Sun, Yunfeng Cen, Yongcai Lou, Yihang Yao, and Wenbo Liu. 2023. "Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China" Land 12, no. 9: 1792. https://doi.org/10.3390/land12091792
APA StyleZhang, X., Gao, Z., Li, Y., Sun, G., Cen, Y., Lou, Y., Yao, Y., & Liu, W. (2023). Eco-Environment Quality Response to Climate Change and Human Activities on the Loess Plateau, China. Land, 12(9), 1792. https://doi.org/10.3390/land12091792