Exploring the Effect of Sampling Density on Spatial Prediction with Spatial Interpolation of Multiple Soil Nutrients at a Regional Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Conceptual Framework
2.2.1. Soil Sampling
2.2.2. Laboratory Analysis
2.2.3. Sampling Strategy for Modeling
2.2.4. Geostatistical Modeling and Soil Mapping
2.2.5. Evaluation of Spatial Prediction Accuracy
3. Results
3.1. Goodness-of-Fit for Semi-Variograms (R2 of Model Fit)
3.1.1. General Trends across All Soil Properties
3.1.2. Variations across Categories of Soil Properties
3.1.3. Variations across Individual Soil Properties
3.2. Prediction Accuracy (CCC and RMSE)
3.2.1. General Trends across All Soil Properties
3.2.2. Variations across Categories of Soil Properties
3.2.3. Variations across Individual Soil Properties
3.3. Prediction Maps
4. Discussion
4.1. Effect of Sampling Density on Goodness-of-Fit for Semi-Variograms
4.2. Effect of Sampling Density on Spatial Prediction Accuracy
4.3. Effect of Sampling Density on Spatial Patterns Observed in the Prediction Maps
4.4. Which Sampling Density Should Be Considered for Optimal Interpolation of Soil Properties?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Franzen, D.W.; Peck, T.R. Field Soil Sampling Density for Variable Rate Fertilization. J. Prod. Agric. 1995, 8, 568–574. [Google Scholar] [CrossRef]
- Agriculture Census Division. All India Report on Number and Area of Operational Holdings, Agricultural Census (2015–2016); Government of India: New Delhi, India, 2019. [Google Scholar]
- Ministry of Finance. Department of Economic Affairs Economic Survey 2023–2024; Government of India: New Delhi, India, 2024.
- Ministry of Finance. Budget Division Expenditure Budget 2024–2025; Government of India: New Delhi, India, 2024.
- Dasgupta, S.; Debnath, S.; Das, A.; Biswas, A.; Weindorf, D.C.; Li, B.; Shukla, A.K.; Das, S.; Saha, S.; Chakraborty, S. Developing Regional Soil Micronutrient Management Strategies through Ensemble Learning Based Digital Soil Mapping. Geoderma 2023, 433, 116457. [Google Scholar] [CrossRef]
- Hinsinger, P.; Gobran, G.R.; Gregory, P.J.; Wenzel, W.W. Rhizosphere Geometry and Heterogeneity Arising from Root-mediated Physical and Chemical Processes. New Phytol. 2005, 168, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Du, P.; Zhao, Z.; Zhang, L. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content. Sci. Rep. 2016, 6, 23889. [Google Scholar] [CrossRef]
- Krige, D. Two-Dimensional Weighted Moving Average Trend Surfaces for Ore Valuation. In Proceedings of the Symposium on Mathematical Statistics and Computer Applications in Ore Valuation, Johannesburg, South Africa, 7–8 March 1966; pp. 13–38. [Google Scholar]
- Miller, B.A. Chapter 5–Geographic Information Systems and Spatial Statistics Applied for Soil Mapping: A Contribution to Land Use Management. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Pereira, P., Brevik, E.C., Muñoz-Rojas, M., Miller, B.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 127–149. ISBN 978-0-12-805200-6. [Google Scholar]
- Erdogan Erten, G.; Yavuz, M.; Deutsch, C.V. Combination of Machine Learning and Kriging for Spatial Estimation of Geological Attributes. Nat. Resour. Res. 2022, 31, 191–213. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, Y.; Zhu, F.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging. Sensors 2022, 22, 8997. [Google Scholar] [CrossRef]
- Oliver, M.A. Geostatistics and Its Application to Soil Science. Soil. Use Manag. 1987, 3, 8–20. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; Briefs in Agriculture; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-15864-8. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press on Demand: Cary, NC, USA, 1997; ISBN 0-19-511538-4. [Google Scholar]
- Miller, B.A.; Koszinski, S.; Hierold, W.; Rogasik, H.; Schröder, B.; Van Oost, K.; Wehrhan, M.; Sommer, M. Towards Mapping Soil Carbon Landscapes: Issues of Sampling Scale and Transferability. Soil. Tillage Res. 2016, 156, 194–208. [Google Scholar] [CrossRef]
- Loiseau, T.; Arrouays, D.; Richer-de-Forges, A.C.; Lagacherie, P.; Ducommun, C.; Minasny, B. Density of Soil Observations in Digital Soil Mapping: A Study in the Mayenne Region, France. Geoderma Reg. 2021, 24, e00358. [Google Scholar] [CrossRef]
- John, K.; Bouslihim, Y.; Ofem, K.I.; Hssaini, L.; Razouk, R.; Okon, P.B.; Isong, I.A.; Agyeman, P.C.; Kebonye, N.M.; Qin, C. Do Model Choice and Sample Ratios Separately or Simultaneously Influence Soil Organic Matter Prediction? Int. Soil. Water Conserv. Res. 2022, 10, 470–486. [Google Scholar] [CrossRef]
- McBratney, A.B.; Webster, R.; Burgess, T.M. The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables—I. Comput. Geosci. 1981, 7, 331–334. [Google Scholar] [CrossRef]
- Hu, M.-G.; Wang, J.-F. A Spatial Sampling Optimization Package Using MSN Theory. Environ. Model. Softw. 2011, 26, 546–548. [Google Scholar] [CrossRef]
- Ferreyra, R.A.; Apezteguía, H.P.; Sereno, R.; Jones, J.W. Reduction of Soil Water Spatial Sampling Density Using Scaled Semivariograms and Simulated Annealing. Geoderma 2002, 110, 265–289. [Google Scholar] [CrossRef]
- Qiao, P.; Dong, N.; Lei, M.; Yang, S.; Gou, Y. An Effective Method for Determining the Optimal Sampling Scale Based on the Purposes of Soil Pollution Investigations and the Factors Influencing the Pollutants. J. Hazard. Mater. 2021, 418, 126296. [Google Scholar] [CrossRef] [PubMed]
- Saurette, D.D.; Heck, R.J.; Gillespie, A.W.; Berg, A.A.; Biswas, A. Sample Size Optimization for Digital Soil Mapping: An Empirical Example. Land 2024, 13, 365. [Google Scholar] [CrossRef]
- Schmidinger, J.; Schröter, I.; Bönecke, E.; Gebbers, R.; Ruehlmann, J.; Kramer, E.; Mulder, V.L.; Heuvelink, G.B.M.; Vogel, S. Effect of Training Sample Size, Sampling Design and Prediction Model on Soil Mapping with Proximal Sensing Data for Precision Liming. Precis. Agric. 2024, 25, 1529–1555. [Google Scholar] [CrossRef]
- De Gruijter, J.; Brus, D.J.; Bierkens, M.F.; Knotters, M. Sampling for Natural Resource Monitoring; Springer: Berlin/Heidelberg, Germany, 2006; Volume 665. [Google Scholar]
- Brungard, C.W.; Boettinger, J.L. Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA. In Digital Soil Mapping; Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 67–75. ISBN 978-90-481-8862-8. [Google Scholar]
- Safaee, S.; Libohova, Z.; Kladivko, E.J.; Brown, A.; Winzeler, E.; Read, Q.; Rahmani, S.; Adhikari, K. Influence of Sample Size, Model Selection, and Land Use on Prediction Accuracy of Soil Properties. Geoderma Reg. 2024, 36, e00766. [Google Scholar] [CrossRef]
- Vašát, R.; Heuvelink, G.B.M.; Borůvka, L. Sampling Design Optimization for Multivariate Soil Mapping. Geoderma 2010, 155, 147–153. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Bai, Z. Spatial Variability and Sampling Optimization of Soil Organic Carbon and Total Nitrogen for Minesoils of the Loess Plateau Using Geostatistics. Ecol. Eng. 2015, 82, 159–164. [Google Scholar] [CrossRef]
- Sherpa, S.R.; Wolfe, D.W.; Van Es, H.M. Sampling and Data Analysis Optimization for Estimating Soil Organic Carbon Stocks in Agroecosystems. Soil Sci. Soc. Amer. J. 2016, 80, 1377–1392. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Zhou, Y. Spatial Heterogeneity of Soil Organic Carbon in a Karst Region under Different Land Use Patterns. Ecosphere 2020, 11, e03077. [Google Scholar] [CrossRef]
- Yu, D.-S.; Zhang, Z.-Q.; Yang, H.; Shi, X.-Z.; Tan, M.-Z.; Sun, W.-X.; Wang, H.-J. Effect of Soil Sampling Density on Detected Spatial Variability of Soil Organic Carbon in a Red Soil Region of China. Pedosphere 2011, 21, 207–213. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Huang, Y.; Zhang, S.; Dong, Y.; Chen, P. Effects of Different Sampling Densities on Geographically Weighted Regression Kriging for Predicting Soil Organic Carbon. Spat. Stat. 2017, 20, 76–91. [Google Scholar] [CrossRef]
- Sun, X.-L.; Lai, Y.-Q.; Ding, X.; Wu, Y.-J.; Wang, H.-L.; Wu, C. Variability of Soil Mapping Accuracy with Sample Sizes, Modelling Methods and Landform Types in a Regional Case Study. Catena 2022, 213, 106217. [Google Scholar] [CrossRef]
- Lark, R.M. Multi-Objective Optimization of Spatial Sampling. Spat. Stat. 2016, 18, 412–430. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhou, S.; Wu, S.; Zhu, Y.; Lu, C. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing While Considering Spatial Variations. Int. J. Environ. Res. Public Health 2016, 13, 980. [Google Scholar] [CrossRef]
- Li, X.; Gao, B.; Bai, Z.; Pan, Y.; Gao, Y. An Improved Parallelized Multi-Objective Optimization Method for Complex Geographical Spatial Sampling: AMOSA-II. ISPRS Int. J. Geo-Inf. 2020, 9, 236. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Y.; Huang, B.; Shi, X.; Landon Darilek, J.; Yang, J.; Wang, Z.; Zhang, B. Effect of Sampling Density on Regional Soil Organic Carbon Estimation for Cultivated Soils. J. Plant Nutr. Soil. Sci. 2012, 175, 671–680. [Google Scholar] [CrossRef]
- Nanni, M.R.; Povh, F.P.; Demattê, J.A.M.; Oliveira, R.B.D.; Chicati, M.L.; Cezar, E. Optimum Size in Grid Soil Sampling for Variable Rate Application in Site-Specific Management. Sci. Agric. 2011, 68, 386–392. [Google Scholar] [CrossRef]
- Long, J.; Liu, Y.; Xing, S.; Qiu, L.; Huang, Q.; Zhou, B.; Shen, J.; Zhang, L. Effects of Sampling Density on Interpolation Accuracy for Farmland Soil Organic Matter Concentration in a Large Region of Complex Topography. Ecol. Indic. 2018, 93, 562–571. [Google Scholar] [CrossRef]
- Lai, Y.-Q.; Wang, H.-L.; Sun, X.-L. A Comparison of Importance of Modelling Method and Sample Size for Mapping Soil Organic Matter in Guangdong, China. Ecol. Indic. 2021, 126, 107618. [Google Scholar] [CrossRef]
- Domenech, M.B.; Castro-Franco, M.; Costa, J.L.; Amiotti, N.M. Sampling Scheme Optimization to Map Soil Depth to Petrocalcic Horizon at Field Scale. Geoderma 2017, 290, 75–82. [Google Scholar] [CrossRef]
- Radočaj, D.; Jug, I.; Vukadinović, V.; Jurišić, M.; Gašparović, M. The Effect of Soil Sampling Density and Spatial Autocorrelation on Interpolation Accuracy of Chemical Soil Properties in Arable Cropland. Agronomy 2021, 11, 2430. [Google Scholar] [CrossRef]
- Marques, J., Jr.; Alleoni, L.R.F.; Teixeira, D.D.B.; Siqueira, D.S.; Pereira, G.T. Sampling Planning of Micronutrients and Aluminium of the Soils of São Paulo, Brazil. Geoderma Reg. 2015, 4, 91–99. [Google Scholar] [CrossRef]
- Five decades of Odisha Agriculture Statistics, Technical Report, Directorate of Agriculture and Food Production, Government of Odisha. 2020. Available online: https://agri.odisha.gov.in/sites/default/files/2023-03/Five%20Decades%20of%20Odisha%20Agriculture%20Statistics_compressed.pdf (accessed on 10 July 2021).
- Mishra, A.; Saren, S.; Dey, P. Soils of Keonjhar District and Improvement of Crop Productivity in Tribal Villages through Adaption of STCR Technology; AICRP on STCR, Department of Soil Science and Agricultural Chemistry, OUAT: Bhubaneswar, India, 2016. [Google Scholar]
- Sarkar, D.; Mandal, D.; Haldar, A. Soil Maturity Assessment along a Toposequence in Chotanagpur Plateau, West Bengal Using Inorganic Soil Phosphorus Based Weathering Index, Soil Taxonomy and Other Chemical Indices: A Comparative Study. Agropedology 2014, 24, 82–94. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; Volume 498. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A Rapid Method for the Estimation of Nitrogen in Soil. Curr. Sci. 1956, 26, 259–260. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil. Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Hanway, J.; Heidel, H. Soil Analysis Methods as Used in Iowa State College Soil Testing Laboratory. Iowa Agric. 1952, 57, 1–31. [Google Scholar]
- Page, A.; Miller, R.; Keeney, D. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Agronomy, No. 9; Soil Science Society of America: Madison, WI, USA, 1982; p. 1159. [Google Scholar]
- Chesnin, L.; Yien, C. Turbidimetric Determination of Available Sulfates. Soil. Sci. Soc. Am. J. 1951, 15, 149–151. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil. Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- John, M.K.; Chuah, H.H.; Neufeld, J.H. Application of Improved Azomethine-H Method to the Determination of Boron in Soils and Plants. Anal. Lett. 1975, 8, 559–568. [Google Scholar] [CrossRef]
- Pebesma, E.J. Gstat User’s Manual; Department of Physical Geography, Utrecht University: Utrecht, The Netherlands, 2001; Volume 1, pp. 499–505. [Google Scholar]
- Oliver, M.A.; Webster, R. A Tutorial Guide to Geostatistics: Computing and Modelling Variograms and Kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Silva, R.A.; Siqueira, G.M.; Costa, M.K.L.; Guedes Filho, O.; Silva, Ê.F.D.F.E. Spatial Variability of Soil Fauna under Different Land Use and Managements. Rev. Bras. De Ciência Do Solo 2018, 42, e0170121. [Google Scholar] [CrossRef]
- Matheron, G. Les Variables Régionalisées et Leur Estimation: Une Application de La Théorie de Fonctions Aléatoires Aux Sciences de La Nature; Masson et Cie: Echandens, Switzerland, 1965. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Webster, R. Quantitative Spatial Analysis of Soil in the Field. In Soil Restoration; Lal, R., Stewart, B.A., Eds.; Advances in Soil Science; Springer: New York, NY, USA, 1985; Volume 17, pp. 1–70. ISBN 978-1-4612-7684-5. [Google Scholar]
- Lark, R.M. Optimized Spatial Sampling of Soil for Estimation of the Variogram by Maximum Likelihood. Geoderma 2002, 105, 49–80. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Sample Adequately to Estimate Variograms of Soil Properties. J. Soil. Sci. 1992, 43, 177–192. [Google Scholar] [CrossRef]
- Gascuel-Odoux, C.; Boivin, P. Variability of Variograms and Spatial Estimates Due to Soil Sampling: A Case Study. Geoderma 1994, 62, 165–182. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M.A. Comparing Sampling Needs for Variograms of Soil Properties Computed by the Method of Moments and Residual Maximum Likelihood. Geoderma 2007, 140, 383–396. [Google Scholar] [CrossRef]
- Lark, R.M. Two Contrasting Spatial Processes with a Common Variogram: Inference about Spatial Models from Higher-order Statistics. Eur. J. Soil. Sci. 2010, 61, 479–492. [Google Scholar] [CrossRef]
- Webster, R.; McBratney, A.B. Mapping Soil Fertility at Broom’s Barn by Simple Kriging. J. Sci. Food Agric. 1987, 38, 97–115. [Google Scholar] [CrossRef]
- Roberton, S.D.; Bennett, J.M.L.; Lobsey, C.R.; Bishop, T.F.A. Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach. Agronomy 2020, 10, 1676. [Google Scholar] [CrossRef]
- McBratney, A.B.; Webster, R. How Many Observations Are Needed for Regional Estimation of Soil Properties? Soil. Sci. 1983, 135, 177–183. [Google Scholar] [CrossRef]
- Li, Y. Can the Spatial Prediction of Soil Organic Matter Contents at Various Sampling Scales Be Improved by Using Regression Kriging with Auxiliary Information? Geoderma 2010, 159, 63–75. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Yu, D.; Mao, P.; Xu, L. Influence of Sampling Point Discretization on the Regional Variability of Soil Organic Carbon in the Red Soil Region, China. Sustainability 2018, 10, 3603. [Google Scholar] [CrossRef]
- Dash, P.K.; Panigrahi, N.; Mishra, A. Identifying Opportunities to Improve Digital Soil Mapping in India: A Systematic Review. Geoderma Reg. 2022, 28, e00478. [Google Scholar] [CrossRef]
Soil Property | Sampling Density (Number of Samples/1000 km²) | Minimum | Maximum | Mean | SD | CoV (%) | Skewness |
---|---|---|---|---|---|---|---|
SOC (%) | 3 | 0.30 | 1.38 | 0.76 | 0.28 | 37.40 | 0.17 |
6 | 0.10 | 1.38 | 0.72 | 0.29 | 40.82 | 0.26 | |
12 | 0.10 | 1.38 | 0.72 | 0.29 | 40.30 | 0.02 | |
24 | 0.09 | 1.38 | 0.72 | 0.29 | 39.83 | 0.03 | |
48 | 0.09 | 1.38 | 0.72 | 0.29 | 39.67 | −0.03 | |
96 | 0.09 | 1.38 | 0.73 | 0.29 | 39.25 | −0.09 | |
Validation dataset (N = 224) | 0.10 | 1.32 | 0.75 | 0.29 | 37.92 | −0.08 | |
pH | 3 | 4.15 | 6.90 | 5.58 | 0.86 | 15.48 | 0.15 |
6 | 4.15 | 7.35 | 5.65 | 0.88 | 15.63 | 0.09 | |
12 | 4.15 | 7.35 | 5.70 | 0.88 | 15.47 | 0.12 | |
24 | 4.15 | 7.37 | 5.67 | 0.89 | 15.62 | 0.15 | |
48 | 4.15 | 7.37 | 5.63 | 0.89 | 15.76 | 0.23 | |
96 | 4.15 | 7.38 | 5.63 | 0.88 | 15.58 | 0.26 | |
Validation dataset (N = 224) | 4.18 | 7.35 | 5.57 | 0.88 | 15.77 | 0.33 | |
EC (dS/m) | 3 | 0.10 | 0.50 | 0.30 | 0.11 | 35.80 | −0.16 |
6 | 0.03 | 0.50 | 0.27 | 0.12 | 43.86 | −0.20 | |
12 | 0.03 | 0.50 | 0.27 | 0.11 | 40.71 | −0.26 | |
24 | 0.03 | 0.50 | 0.26 | 0.10 | 39.85 | −0.18 | |
48 | 0.03 | 0.50 | 0.27 | 0.11 | 39.82 | −0.18 | |
96 | 0.03 | 0.50 | 0.27 | 0.11 | 39.56 | −0.11 | |
Validation dataset (N = 224) | 0.04 | 0.50 | 0.27 | 0.10 | 38.34 | 0.03 | |
N (kg/ha) | 3 | 95.28 | 531.42 | 295.49 | 93.12 | 31.52 | 0.28 |
6 | 53.72 | 531.42 | 272.83 | 100.38 | 36.79 | 0.19 | |
12 | 50.99 | 531.42 | 278.69 | 92.97 | 33.36 | −0.05 | |
24 | 50.99 | 531.42 | 275.62 | 90.93 | 32.99 | 0.07 | |
48 | 50.99 | 531.42 | 277.85 | 90.22 | 32.47 | −0.08 | |
96 | 50.99 | 533.29 | 278.92 | 88.29 | 31.65 | 0.09 | |
Validation dataset (N = 224) | 77.00 | 501.19 | 277.19 | 82.41 | 29.73 | 0.35 | |
P (kg/ha) | 3 | 8.53 | 44.48 | 22.64 | 9.38 | 41.41 | 0.31 |
6 | 5.87 | 44.48 | 21.60 | 9.69 | 44.85 | 0.42 | |
12 | 5.87 | 44.48 | 21.99 | 8.62 | 39.20 | 0.22 | |
24 | 5.76 | 44.48 | 22.12 | 8.73 | 39.48 | 0.19 | |
48 | 5.76 | 44.48 | 21.93 | 8.87 | 40.44 | 0.20 | |
96 | 5.68 | 44.48 | 22.11 | 8.81 | 39.86 | 0.17 | |
Validation dataset (N = 224) | 5.87 | 41.15 | 23.44 | 9.16 | 39.08 | −0.04 | |
K (kg/ha) | 3 | 241.87 | 657.67 | 418.32 | 95.75 | 22.89 | 0.40 |
6 | 173.22 | 724.68 | 428.84 | 124.42 | 29.01 | 0.51 | |
12 | 92.00 | 724.68 | 425.92 | 127.61 | 29.96 | 0.08 | |
24 | 76.90 | 728.24 | 425.91 | 130.02 | 30.53 | 0.01 | |
48 | 76.90 | 728.24 | 421.35 | 132.05 | 31.34 | 0.11 | |
96 | 76.90 | 728.24 | 419.37 | 130.17 | 31.04 | 0.14 | |
Validation dataset (N = 224) | 98.24 | 722.22 | 411.48 | 125.06 | 30.39 | −0.01 | |
Ca (cmol(+)/kg) | 3 | 0.49 | 5.24 | 2.90 | 1.48 | 50.95 | 0.05 |
6 | 0.49 | 6.02 | 3.12 | 1.51 | 48.33 | 0.00 | |
12 | 0.49 | 6.09 | 3.23 | 1.41 | 43.72 | −0.01 | |
24 | 0.49 | 6.39 | 3.27 | 1.39 | 42.67 | −0.01 | |
48 | 0.49 | 6.60 | 3.24 | 1.40 | 43.38 | 0.12 | |
96 | 0.41 | 6.60 | 3.25 | 1.40 | 43.01 | 0.16 | |
Validation dataset (N = 224) | 0.48 | 6.55 | 3.14 | 1.39 | 44.29 | 0.19 | |
Mg (cmol(+)/kg) | 3 | 0.13 | 3.23 | 1.71 | 0.91 | 53.07 | 0.05 |
6 | 0.13 | 3.43 | 1.81 | 0.91 | 50.14 | −0.04 | |
12 | 0.13 | 3.62 | 1.89 | 0.87 | 45.89 | −0.01 | |
24 | 0.13 | 3.62 | 1.90 | 0.86 | 45.25 | −0.07 | |
48 | 0.06 | 3.68 | 1.86 | 0.87 | 47.02 | 0.03 | |
96 | 0.06 | 3.68 | 1.88 | 0.87 | 46.13 | 0.03 | |
Validation dataset (N = 224) | 0.07 | 3.68 | 1.82 | 0.87 | 47.72 | 0.07 | |
S (mg/kg) | 3 | 1.73 | 29.60 | 15.53 | 7.34 | 47.25 | −0.05 |
6 | 1.35 | 29.60 | 13.90 | 7.67 | 55.19 | 0.18 | |
12 | 1.35 | 29.60 | 13.96 | 6.96 | 49.86 | 0.12 | |
24 | 1.10 | 29.60 | 13.63 | 7.05 | 51.72 | 0.24 | |
48 | 1.06 | 29.60 | 13.93 | 6.90 | 49.57 | 0.07 | |
96 | 1.06 | 29.71 | 14.01 | 6.93 | 49.44 | 0.14 | |
Validation dataset (N = 224) | 1.21 | 29.48 | 13.84 | 6.68 | 48.28 | 0.24 | |
Fe (mg/kg) | 3 | 35.55 | 180.60 | 81.59 | 35.09 | 43.01 | 0.85 |
6 | 10.31 | 180.60 | 78.00 | 35.25 | 45.20 | 0.93 | |
12 | 10.31 | 180.60 | 76.09 | 31.60 | 41.53 | 0.56 | |
24 | 10.31 | 180.60 | 76.58 | 30.72 | 40.12 | 0.45 | |
48 | 10.05 | 180.60 | 76.44 | 32.95 | 43.10 | 0.37 | |
96 | 5.61 | 180.60 | 77.34 | 33.44 | 43.24 | 0.33 | |
Validation dataset (N = 224) | 16.57 | 180.07 | 79.74 | 34.60 | 43.39 | 0.45 | |
Mn (mg/kg) | 3 | 17.49 | 85.99 | 44.92 | 17.45 | 38.85 | 0.42 |
6 | 0.52 | 85.99 | 43.95 | 18.22 | 41.45 | 0.45 | |
12 | 0.52 | 85.99 | 43.46 | 17.69 | 40.71 | 0.07 | |
24 | 0.52 | 91.28 | 43.62 | 17.07 | 39.15 | 0.15 | |
48 | 0.52 | 91.28 | 42.65 | 16.75 | 39.28 | 0.17 | |
96 | 0.52 | 91.28 | 43.20 | 16.96 | 39.26 | 0.06 | |
Validation dataset (N = 224) | 0.59 | 84.52 | 43.91 | 16.97 | 38.64 | 0.18 | |
Cu (mg/kg) | 3 | 1.29 | 5.51 | 3.21 | 1.16 | 36.10 | 0.09 |
6 | 0.03 | 5.51 | 2.99 | 1.13 | 37.91 | 0.14 | |
12 | 0.03 | 5.86 | 2.90 | 1.23 | 42.35 | 0.29 | |
24 | 0.03 | 5.86 | 2.95 | 1.20 | 40.47 | 0.18 | |
48 | 0.03 | 5.86 | 3.01 | 1.19 | 39.42 | 0.05 | |
96 | 0.03 | 5.90 | 3.01 | 1.17 | 39.06 | 0.02 | |
Validation dataset (N = 224) | 0.21 | 5.85 | 3.08 | 1.14 | 36.91 | 0.04 | |
Zn (mg/kg) | 3 | 0.30 | 2.32 | 1.00 | 0.52 | 51.97 | 0.57 |
6 | 0.02 | 2.42 | 0.92 | 0.52 | 57.11 | 1.01 | |
12 | 0.02 | 2.42 | 0.89 | 0.52 | 58.65 | 1.04 | |
24 | 0.02 | 2.42 | 0.91 | 0.51 | 55.86 | 0.89 | |
48 | 0.02 | 2.49 | 0.93 | 0.50 | 54.45 | 0.74 | |
96 | 0.01 | 2.49 | 0.92 | 0.49 | 53.48 | 0.72 | |
Validation dataset (N = 224) | 0.06 | 2.33 | 0.94 | 0.48 | 50.47 | 0.58 | |
B (mg/kg) | 3 | 0.25 | 1.63 | 0.78 | 0.40 | 51.44 | 0.57 |
6 | 0.08 | 2.39 | 0.78 | 0.47 | 59.71 | 1.16 | |
12 | 0.07 | 2.43 | 0.77 | 0.46 | 60.08 | 1.13 | |
24 | 0.07 | 2.63 | 0.78 | 0.47 | 59.95 | 1.27 | |
48 | 0.06 | 2.63 | 0.83 | 0.51 | 61.11 | 1.15 | |
96 | 0.04 | 2.63 | 0.82 | 0.49 | 59.15 | 1.12 | |
Validation dataset (N = 224) | 0.06 | 2.48 | 0.84 | 0.48 | 57.98 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, P.K.; Miller, B.A.; Panigrahi, N.; Mishra, A. Exploring the Effect of Sampling Density on Spatial Prediction with Spatial Interpolation of Multiple Soil Nutrients at a Regional Scale. Land 2024, 13, 1615. https://doi.org/10.3390/land13101615
Dash PK, Miller BA, Panigrahi N, Mishra A. Exploring the Effect of Sampling Density on Spatial Prediction with Spatial Interpolation of Multiple Soil Nutrients at a Regional Scale. Land. 2024; 13(10):1615. https://doi.org/10.3390/land13101615
Chicago/Turabian StyleDash, Prava Kiran, Bradley A. Miller, Niranjan Panigrahi, and Antaryami Mishra. 2024. "Exploring the Effect of Sampling Density on Spatial Prediction with Spatial Interpolation of Multiple Soil Nutrients at a Regional Scale" Land 13, no. 10: 1615. https://doi.org/10.3390/land13101615
APA StyleDash, P. K., Miller, B. A., Panigrahi, N., & Mishra, A. (2024). Exploring the Effect of Sampling Density on Spatial Prediction with Spatial Interpolation of Multiple Soil Nutrients at a Regional Scale. Land, 13(10), 1615. https://doi.org/10.3390/land13101615