Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Study Materials and Study Methods
2.1. Theoretical Framework
2.2. Study Area, Index System, and Data Source
2.3. Methodology
2.3.1. Data Pre-Processing
2.3.2. The Entropy Weight Method
2.3.3. The Land Use Function Deviation Degree Model
3. Results
3.1. Urbanization Development Subsystem
3.2. Land Use Subsystem
3.2.1. Spatiotemporal Evolution of Land Use Structure
3.2.2. Spatiotemporal Evolution of Land Use Function
3.3. The Evolution Path of Dominant Land Use Function in the Process of Urbanization
4. Discussion
4.1. Innovation of the Land Use Index System
4.2. The Characteristics of Urbanization Development and Land Use
4.3. Limitations and Policy Suggestion
- (1)
- Land use needs to be rationally planned according to the urbanization development stage in the BTH region. The central government should provide classification guidance and planning according to the differences in regional urbanization development, and local governments should carry out in-depth planning to gradually realize the sustainable development of land. It is essential to focus on the coordinated development on a regional scale, adhere to the principles governing inter-regional urbanization processes, and rationally adjust social urbanization, economic urbanization, and eco-environmental urbanization to optimize regional land use.
- (2)
- Strengthen the utilization efficiency of urban-agricultural-ecological spaces and prevent urban spaces from spreading arbitrarily. In the context of rapid urbanization in the BTH region, the government should control the unreasonable development of urban space by improving the urban land approval procedures and keeping the red lines of arable land and ecological protection.
- (3)
- Based on the dual evaluation index system of land use structure and function, a direct correlation between land use structure and function was established to realize the connection between theory and practice. The government should strictly implement the urban land classification standards and improve the adjustment mechanism of land use structure and function. We should pay full attention to the internal correlation mechanism between urbanization development and land use, accurately analyze the dominant functional characteristics of land use, formulate development plans, and adopt the dual effect of market and policy drive to coordinate the relationship between humans and land.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aras, G.; Tezcan, N.; Kutlu Furtuna, O. Multidimensional comprehensive corporate sustainability performance evaluation model: Evidence from an emerging market banking sector. J. Clean. Prod. 2018, 185, 600–609. [Google Scholar] [CrossRef]
- Bai, Y.P.; Deng, X.Z.; Jiang, S.J.; Zhao, Z.; Miao, Y. Relationship between climate change and low-carbon agricultural production: A case study in Hebei Province, China. Ecol. Indic. 2019, 105, 438–447. [Google Scholar] [CrossRef]
- Bytyqi, V.; Qevani, S.; Agaj, T. Quantifying and Visualizing Land Cover Changes. An Analysis from the Hasi Region (Kosovo). Folia Geogr. 2024, 66, 50–68. [Google Scholar]
- Cai, B.F.; Li, W.X.; Dhakal, S.; Wang, J.H. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications. J. Environ. Manag. 2018, 206, 786–799. [Google Scholar] [CrossRef]
- Canaz, S.; Aliefendioglu, Y.; Tanrivermis, H. Change detection using Landsat images and an analysis of the linkages between the change and property tax values in the Istanbul Province of Turkey. J. Environ. Manag. 2017, 200, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Chagas, V.; Chaffe, P.; Bloschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 2022, 13, 5136. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. Interprovincial transfer of embodied energy between the Jing-Jin-Ji area and other provinces in China: A quantification using interprovincial input-output model. Sci. Total Environ. 2017, 584–585, 990–1003. [Google Scholar] [CrossRef]
- Chen, W.X.; Zeng, J.; Li, N. Change in land-use structure due to urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, L.M. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: A case study of Beijing, China. Ecol. Indic. 2019, 103, 83–93. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wu, C.Y.; Li, J.B.; Lu, Q.L.; Qi, X.X.; Zhang, M.; Zuo, T.H.; Lu, J.Y. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat. Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Davey, T.M.; Selvey, L.A. Relationship between Land Use/Land-Use Change and Human Health in Australia: A Scoping Study. Int. J. Environ. Res. Public Health 2020, 17, 8992. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Z.; Gibson, J.; Wang, P. Relationship between landscape diversity and crop production: A case study in the Hebei Province of China based on multi-source data integration. J. Clean. Prod. 2017, 142, 985–992. [Google Scholar] [CrossRef]
- Dong, L.K.; Li, X. Evolution of Urban Construction Land Structure Based on Information Entropy and Shift-Share Model: An Empirical Study on Beijing-Tianjin-Hebei Urban Agglomeration in China. Sustainability 2022, 14, 1244. [Google Scholar] [CrossRef]
- Fan, Y.T.; Jin, X.B.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.H.; Xiang, X.M.; Zhou, Y.K. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef]
- Fang, C.; Lin, X. The eco-environmental guarantee for China’s urbanization process. J. Geogr. Sci. 2009, 19, 95–106. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef]
- Gong, Y.L.; Li, J.T.; Li, Y.X. Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990–2015. Socioecon. Plann. Sci. 2020, 70, 100720. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Wang, Y.; Wang, M.X.; He, P.; Feng, L. Inequality and collaboration in north China urban agglomeration: Evidence from embodied cultivated land in Jing-Jin-Ji’s interregional trade. J. Environ. Manag. 2020, 275, 111050. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- He, W.K.; Li, X.S.; Yang, J.; Ni, H.; Sang, X.J. How land use functions evolve in the process of rapid urbanization: Evidence from Jiangsu Province, China. J. Clean. Prod. 2022, 380, 134877. [Google Scholar] [CrossRef]
- Ho, H.C.; Brodersen, J.; Gossner, M.M.; Graham, C.H.; Kaeser, S.; Chacko, M.R.; Seehausen, O.; Zimmermann, N.E.; Pellissier, L.; Altermatt, F. Blue and green food webs respond differently to elevation and land use. Nat. Commun. 2022, 13, 6415. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.H.; Liu, J.M.; Zhang, D.J.; Zhao, M.J.; Xia, C.Y. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Huang, S.H.; Wang, Y.; Liu, R.J.; Jiang, Y.; Qie, L.; Pu, L.J. Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land 2022, 11, 286. [Google Scholar] [CrossRef]
- Jiang, G.H.; Ma, W.Q.; Wang, D.Q.; Zhou, D.Y.; Zhang, R.J.; Zhou, T. Identifying the internal structure evolution of urban built-up land sprawl (UBLS) from a composite structure perspective: A case study of the Beijing metropolitan area, China. Land Use Policy 2017, 62, 258–267. [Google Scholar] [CrossRef]
- Jiang, G.H.; Wang, M.Z.; Qu, Y.B.; Zhou, D.Y.; Ma, W.Q. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.J.; Zhu, L.K.; Cheng, H.R. Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Sci. Total Environ. 2021, 801, 149697. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z. Quantitative measurement on urbanization development level in urban Agglomerations: A case of JJJ urban agglomeration. Ecol. Indic. 2021, 133, 108375. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Gao, S.; Wang, Y.; Zhang, M. Will city cluster cope with water dilemma? J. Clean. Prod. 2022, 371, 133548. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Hou, Y.; Zhao, G.; Zhang, L. The coupling coordination degree between urbanization and air environment in the Beijing(Jing)-Tianjin(Jin)-Hebei(Ji) urban agglomeration. Ecol. Indic. 2022, 137, 108787. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Xian, D.; Zhang, Y.; Yu, X. Regional consumption, material flows, and their driving forces: A case study of China’s Beijing–Tianjin–Hebei (Jing–Jin–Ji) urban agglomeration. J. Ind. Ecol. 2021, 25, 751–764. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.Q.; Huang, A.; Li, Y.X.; Wang, H.; Lu, L.H.; Sun, P.L.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat. Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Long, D.; Yang, W.T.; Scanlon, B.R.; Zhao, J.S.; Liu, D.G.; Burek, P.; Pan, Y.; You, L.Z.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.H.; Wen, Z.Z. Optimization of land use structure to balance economic benefits and ecosystem services under uncertainties: A case study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Ma, W.Q.; Jiang, G.H.; Li, W.Q.; Zhou, T.; Zhang, R.J. Multifunctionality assessment of the land use system in rural residential areas: Confronting land use supply with rural sustainability demand. J. Environ. Manag. 2019, 231, 73–85. [Google Scholar] [CrossRef]
- Qiu, L.F.; Pan, Y.; Zhu, J.X.; Amable, G.S.; Xu, B.G. Integrated analysis of urbanization-triggered land use change trajectory and implications for ecological land management: A case study in Fuyang, China. Sci. Total Environ. 2019, 660, 209–217. [Google Scholar] [CrossRef]
- Qu, Y.B.; Dong, X.Z.; Zhan, L.Y.; Si, H.Y.; Ping, Z.L.; Zhu, W.Y. Scale Transition and Structure-Function Synergy Differentiation of Rural Residential Land: A Dimensionality Reduction Transmission Process from Macro to Micro Scale. Land 2021, 10, 647. [Google Scholar] [CrossRef]
- Tan, M.H.; Li, X.B.; Xie, H.; Lu, C.H. Urban land expansion and arable land loss in China—A case study of Beijing-Tianjin-Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Thanvisitthpon, N. Impact of land use transformation and anti-flood infrastructure on flooding in world heritage site and peri-urban area: A case study of Thailand’s Ayutthaya province. J. Environ. Manag. 2019, 247, 518–524. [Google Scholar] [CrossRef]
- Vargo, J.; Habeeb, D.; Stone, B. The importance of land cover change across urban-rural typologies for climate modeling. J. Environ. Manag. 2013, 114, 243–252. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Wang, A.; Liao, X.; Tong, Z.; Du, W.; Zhang, J.; Liu, X.; Liu, M. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Wang, D.L.; Fang, C.L.; Gao, B.Y.; Huang, J.C.; Yang, Q.S. Measurement and spatio-temporal distribution of urbanization development quality of urban agglomeration in China. Chin. Geogr. Sci. 2011, 21, 695–707. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.F.; Glendinning, A.; Xu, Y.Q. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Li, J.; Jiang, Y. Evolution Simulation and Risk Analysis of Land Use Functions and Structures in Ecologically Fragile Watersheds. Remote Sens. 2022, 14, 5521. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhao, X.L.; Zuo, L.J.; Zhang, Z.X.; Wang, X.; Yi, L.; Liu, F.; Xu, J.Y. Spatial Differentiation of Land Use and Landscape Pattern Changes in the Beijing-Tianjin-Hebei Area. Sustainability 2020, 12, 3040. [Google Scholar] [CrossRef]
- Wei, Y.P.; Song, B.; Wang, Y.L. Designing cross-region ecological compensation scheme by integrating habitat maintenance services production and consumption-A case study of Jing-Jin-Ji region. J. Environ. Manag. 2022, 311, 114820. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Ren, X.Z.; Yan, J.M. Trade-offs or synergies? Identifying dynamic land use functions and their interrelations at the grid scale in urban agglomeration. Cities 2023, 140, 104384. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Z.; Wan, Y.; Gao, Z.; Guo, Y.; Xiao, R. Sustainable network analysis and coordinated development simulation of urban agglomerations from multiple perspectives. J. Clean. Prod. 2023, 413, 137378. [Google Scholar] [CrossRef]
- Yu, Z.P.; Yan, T.H.; Liu, X.R.; Bao, A.Z. Urban land expansion, fiscal decentralization and haze pollution: Evidence from 281 prefecture-level cities in China. J. Environ. Manag. 2022, 323, 116198. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, L.; Dong, J. Management of urban land expansion in China through intensity assessment: A big data perspective. J. Clean. Prod. 2017, 153, 637–647. [Google Scholar] [CrossRef]
- Zhan, L.; Lei, Y.L.; Li, L.; Ge, J.P. Interprovincial transfer of ecological footprint among the region of Jing-Jin-Ji and other provinces in China: A quantification based on MRIO model. J. Clean. Prod. 2019, 225, 304–314. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Long, H.L.; Tu, S.S.; Ge, D.Z.; Ma, L.; Wang, L.Z. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, N.; Wang, X.; Liu, F.; Yang, L.P. A Comparative Study of Urban Expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sens. 2016, 8, 496. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Lin, Z.L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Zou, L.L.; Liu, Y.S.; Wang, J.Y.; Yang, Y.Y.; Wang, Y.S. Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. J. Clean. Prod. 2019, 238, 117899. [Google Scholar] [CrossRef]
Subsystems | Dimension | Indicators | Index Meaning |
---|---|---|---|
Urbanization development | Social urbanization | Percentage of nonagricultural population (+) | Urban resident population/year-end resident population |
Number of health technicians per 10,000 persons (+) | Health technicians/total population | ||
Number of students in colleges and universities (+) | Number of students in regular institutions of higher learning | ||
Economic urbanization | Per capital GDP (+) | GDP/total population | |
Percentage of added value of tertiary industry to GDP (+) | Added value of tertiary industry/GDP | ||
Percentage of total foreign trade imports and exports to GDP (+) | Total foreign trade imports and exports/GDP | ||
Eco-environmental urbanization | Total wastewater discharge (-) | The sum of industrial wastewater discharge and domestic sewage discharge | |
Proportion of days with good air quality (+) | Number of good air quality days/total number of days in the year | ||
Harmless disposal rate of household garbage (+) | Household garbage treatment/household garbage production |
Subsystems | Structure | Function | |||||
---|---|---|---|---|---|---|---|
Dimension | Indicators | Index Meaning | Living Function | Production Function | Ecological Function | ||
Land use | Urban space | Urban per capita disposable income per unit of land (+) | Input | Urban per capita disposable income/the land area of urban space | f1 | f1 | 0 |
Green coverage of built-up areas (+) | Efficiency | Green cover area/the area of urban built-up | f2 | 0 | f2 | ||
Output value of secondary and tertiary industries per unit of land (+) | Output | Output value of secondary and tertiary industries/the land area of urban space | f3 | f3 | 0 | ||
Agricultural space | Total power of agricultural machinery per unit of land (+) | Input | The sum of the rated power of all agricultural machinery power/the land area of agricultural space | 0 | f4 | 0 | |
Total agricultural output value per unit of land (+) | Efficiency | Total agricultural output value/the land area of agricultural space | f5 | f5 | 0 | ||
Grain output per unit of land (+) | Output | Grain output/the land area of agricultural space | f6 | f6 | f6 | ||
Ecological space | Nature reserve area per unit of land (+) | Input | Nature reserve area/the land area of ecological space | 0 | 0 | f7 | |
Normalized difference vegetation index (NDVI) per land (+) | Efficiency | Mean NDVI from June to September/the land area of ecological space | 0 | 0 | f8 | ||
Forest growing stock per land (+) | Output | Forest growing stock/the land area of ecological space | 0 | 0 | f9 | ||
F1 | F2 | F3 |
Region | Land Use Function | Mathematical Relation Model (Regression Analysis) |
---|---|---|
Beijing | Living function | Y = 0.5882X − 0.1649, R2 = 0.711 |
Production function | Y = 0.7057X − 0.1964, R2 = 0.558 | |
Ecological function | Y = 0.5328X − 0.1367, R2 = 0.513 | |
Tianjin | Living function | Y = 0.4773X − 0.0550, R2 = 0.839 |
Production function | Y = 0.6618X − 0.1131, R2 = 0.896 | |
Ecological function | Y = 1.957X3 − 0.9634X2 − 0.6015X + 0.3916, R2 = 0.598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lu, Z. Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region. Land 2024, 13, 1651. https://doi.org/10.3390/land13101651
Li X, Lu Z. Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region. Land. 2024; 13(10):1651. https://doi.org/10.3390/land13101651
Chicago/Turabian StyleLi, Xiaoyang, and Zhaohua Lu. 2024. "Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region" Land 13, no. 10: 1651. https://doi.org/10.3390/land13101651
APA StyleLi, X., & Lu, Z. (2024). Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region. Land, 13(10), 1651. https://doi.org/10.3390/land13101651