Economic and Environmental Effects of Farmers’ Green Production Behaviors: Evidence from Major Rice-Producing Areas in Jiangxi Province, China
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Economic Effects of Farmers’ RFA
2.2. Environmental Effects of Farmers’ Fertilizer Reduction Behavior
3. Data Source, Variable Selection, and Model Setting
3.1. Data Source
3.2. Model Setting
3.2.1. Endogenous Switching Regression Model
3.2.2. Propensity Score Matching Method
3.3. Variable Selection
3.3.1. Dependent Variables
3.3.2. Independent Variables
3.3.3. Control Variables
4. Results and Discussion
4.1. Simultaneous Estimation Results and Analysis
4.2. An Analysis of the Economic Effects of Farmers’ RFA
4.3. An Analysis of the Environmental Effects of Farmers’ RFA
4.4. Robustness Test
4.5. Analysis of Differences in Economic and Environmental Effects of RFA among Farmers of Different Management Scales
4.6. Further Discussion
5. Conclusions and Policy Recommendations
6. Research Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Data source: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, “Notice on Issuing the Action Plan for Replacing Chemical Fertilizers with Organic Fertilizers in Fruits, Vegetables, and Tea”, available at: [http://www.moa.gov.cn/nybgb/2017/derq/201712/t20171227_6130977.htm (accessed on 20 February 2017)]. |
2 | Data source: FAOSTAT, 2014, Statistics Division of the Food and Agriculture Organization of the United Nations, FAOSTAT Database. http://www.fao.org/faostat/en/#compare (accessed on 26 July 2017). |
3 | Data source: Rice knowledge for China, http://www.knowledgebank.irri.org/country-specific/asia/rice-knowledge-for-china (accessed on 10 October 2024). |
4 | Data source: National Bureau of Statistics, 2021, China Statistical Yearbook 2021, China Statistics Press, Beijing. |
5 | This research does not consider the nitrogen and phosphorus elements in the soil and seeds. According to field surveys, farmers mainly use urea and compound fertilizers. Referring to the Reference Calculation Table for Pure Fertilizer Content: the nitrogen content in urea is 46%, the nitrogen and phosphorus contents in compound fertilizers are 15.18% and 27.43%, respectively (calculated based on the average standards of 14 main compound fertilizers). According to the Handbook of Agricultural Technology and Economics: the nitrogen content in every 100 kg of rice is 2.05 kg, the phosphorus content is 0.95 kg. |
References
- Jun, H.; Xiang, H. Development of circular economy is a fundamental way to achieve agriculture sustainable development in China. Energy Procedia 2011, 5, 1530–1534. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- de Janvry, A.; Sadoulet, E. Using agriculture for development: Supply-and demand-side approaches. World Dev. 2020, 133, 105003. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y. Enhancing Agricultural Ecological Efficiency in China: An Evolution and Pathways under the Carbon Neutrality Vision. Land 2024, 13, 187. [Google Scholar] [CrossRef]
- McArthur, J.W.; McCord, G.C. Fertilizing growth: Agricultural inputs and their effects in economic development. J. Dev. Econ. 2017, 127, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Yang, X.; Pan, H.; Zhang, X.; Cao, H.; Ulgiati, S.; Wu, J.; Zhang, Y.; Wang, G.; Xiao, Y. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: A study case from Southwest China. J. Clean. Prod. 2021, 293, 126198. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Willem, E.J.; Goulding, K.; Christie, P.; et al. Enhanced Nitrogen Deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Wesenbeeck, C.F.A.V.; Keyzer, M.A.; Veen, W.C.M.V.; Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agric. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Smith, L.E.; Siciliano, G. A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Yan, M. Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Blasch, J.; Kroon, B.V.D.; Beukering, P.V.; Munster, R.; Fabiani, S.; Nino, P.; Vanino, S. Farmer preferences for adopting precision farming technologies: A case study from Italy. Eur. Rev. Agric. Econ. 2022, 49, 33–81. [Google Scholar] [CrossRef]
- Hajjar, R.; Ayana, A.N.; Rutt, R.; Hinde, O.; Liao, C.; Keene, S.; Bandiaky-Badji, S.; Agrawal, A. Capital, labor, and gender: The consequences of large-scale land transactions on household labor allocation. J. Peasant Stud. 2020, 47, 566–588. [Google Scholar] [CrossRef]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Chianu, J.N.; Chianu, J.N.; Mairura, F. Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, J.S.; Bai, J.; Khan, A.; Zhao, L.; Wang, W.; Xiong, Y.C. Reduced fertilization boosts soil quality and economic benefits in semiarid apple orchard: A two-year appraisal of fertigation strategy. Agric. Water Manag. 2024, 295, 108766. [Google Scholar] [CrossRef]
- Parvizi, H.; Sepaskhah, A.R.; Ahmadi, S.H. Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard. Agric. Water Manag. 2014, 146, 45–56. [Google Scholar] [CrossRef]
- Lundy, M.E.; Pittelkow, C.M.; Linquist, B.A.; Liang, X.; Groenigen, K.J.V.; Lee, J.; Six, J.; Venterea, R.T.; Kessel, C.V. Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Res. 2015, 183, 204–210. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef]
- Singandhupe, R.B.; Rao, G.G.S.N.; Patil, N.G.; Brahmanand, P.S. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 2003, 19, 327–340. [Google Scholar] [CrossRef]
- Isoto, R.E.; Kraybill, D.S.; Erbaugh, M.J. Impact of integrated pest management technologies on farm revenues of rural households: The case of smallholder Arabica coffee farmers. Afr. J. Agric. Resour. Econ. 2014, 9, 119–131. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Deng, J.; Fu, L.; Chen, H.; Li, C.; Xu, L.; Jiao, J.; Zhang, S.; Wang, J.; et al. Cover crop by irrigation and fertilization improves soil health and maize yield: Establishing a soil health index. Appl. Soil Ecol. 2023, 182, 104727. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef]
- Midingoyi, S.K.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2019, 2, 452–470. [Google Scholar] [CrossRef]
- Tian, M.; Zheng, Y.; Sun, X.; Zheng, H. A research on promoting chemical fertilizer reduction for sustainable agriculture purposes: Evolutionary game analyses involving ‘government, farmers, and consumers’. Ecol. Indic. 2022, 144, 109433. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- De Bon, H.; Huat, J.; Parrot, L.; Sinzogan, A.; Martin, T.; Malezieux, E.; Vayssieres, J.F. Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2014, 34, 723–736. [Google Scholar] [CrossRef]
- Cuyno, L.C.M.; Norton, G.W.; Rola, A. Economic analysis of environmental benefits of integrated pest management: A Philippine case study. Agric. Econ. 2001, 25, 227–233. [Google Scholar] [CrossRef]
- Zhang, F. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 2020, 7, 5–13. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Kolawole, A.S.; Oyewole, E.O. Sustainable alternatives to agrochemicals and their socio-economic and ecological values. In One Health Implications of Agrochemicals and Their Sustainable Alternatives; Springer Nature: Singapore, 2023; pp. 699–734. [Google Scholar] [CrossRef]
- Sherf, M.H. When is Standardization Slow? Int. J. IT Stand. Stand. Res. 2003, 1, 19–32. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Dou, Z. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.P.; Lee, D.R. Explaining the adoption and disadoption of sustainable agriculture: The case of cover crops in northern Honduras. Econ. Dev. Cult. Change 2001, 49, 793–820. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Li, Z. Social capital and the use of organic fertilizer: An empirical analysis of Hubei Province in China. Environ. Sci. Pollut. Res. 2020, 27, 15211–15222. [Google Scholar] [CrossRef]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef]
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Shen, J. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, Z.; Nayga, R.M.; Shi, L.; Oxley, L.; Ma, H. Can “green food” certification achieve both sustainable practices and economic benefits in a transitional economy? The case of kiwifruit growers in Henan Province, China. Agribusiness 2020, 36, 675–692. [Google Scholar] [CrossRef]
- Abate, G.T.; Bernard, T.; Janvry, A.D.; Sadoulet, E.; Trachtman, C. Introducing quality certification in staple food markets in Sub-Saharan Africa: Four conditions for successful implementation. Food Policy 2021, 105, 102173. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, Y.; Liang, T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Liu, S.; Lei, P.; Li, X.; Li, Y. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China. Sci. Total Environ. 2022, 838, 155947. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Xu, D.; Liu, J.; Niu, N. Assessment of the practices and contributions of China’s green industry to the socio-economic development. J. Clean. Prod. 2017, 153, 648–656. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Butterworth-Heinemann: Oxford, UK, 2020; pp. 25–54. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Rahi, S. Research design and methods: A systematic review of research paradigms, sampling issues and instruments development. Int. J. Econ. Manag. Sci. 2017, 6, 1000403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhou, W.; Li, J.; Weng, Z.; Gao, X. The Impact of and Mechanism behind High-Standard Farmland Construction in Farmland Abandonment: A Moderated Mediating Analysis. Land 2024, 13, 846. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Hoang, V.N.; Coelli, T. Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach. J. Environ. Econ. Manag. 2011, 62, 462–474. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; Kessel, C.V. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, W.; Wen, C.; Li, T. Study on factors affecting corn yield based on the Cobb-Douglas production function. Agric. Water Manag. 2020, 228, 105869. [Google Scholar] [CrossRef]
- Asamoah, E.K.; Ewusie Nunoo, F.K.; Osei-Asare, Y.B.; Addo, S.; Sumaila, U.R. A production function analysis of pond aquaculture in Southern Ghana. Aquac. Econ. Manag. 2012, 16, 183–201. [Google Scholar] [CrossRef]
- Li, H.; Cao, A.; Twumasi, M.A.; Zhang, H.; Zhong, S.; Guo, L. Do female cadres improve clean energy accessibility in villages? Evidence from rural China. Energy Econ. 2023, 126, 106928. [Google Scholar] [CrossRef]
- Xu, D.; Guo, S.; Xie, F.; Liu, S.; Cao, S. The impact of rural laborer migration and household structure on household land use arrangements in mountainous areas of Sichuan Province, China. Habitat Int. 2017, 70, 72–80. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L.; Zhu, C. Effects of agricultural land consolidation on soil conservation service in the Hilly Region of Southeast China–Implications for land management. Land Use Policy 2020, 95, 104637. [Google Scholar] [CrossRef]
- Teshome, A.; Graaff, J.D.; Ritsema, C.; Kassie, M. Farmers’ perceptions about the influence of land quality, land fragmentation and tenure systems on sustainable land management in the north western Ethiopian highlands. Land Degrad. Dev. 2016, 27, 884–898. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. IPM adoption, cooperative membership and farm economic performance: Insight from apple farmers in China. China Agric. Econ. Rev. 2019, 11, 218–236. [Google Scholar] [CrossRef]
- Durlauf, S.N. Neighborhood effects. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2173–2242. [Google Scholar] [CrossRef]
- Locke, E.A. Social Foundations of Thought and Action: A Social-Cognitive View; Academy of Management Review: Valhalla, NY, USA, 1987; pp. 169–171. [Google Scholar] [CrossRef]
- Shahangian, S.A.; Tabesh, M.; Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 2021, 39, 100935. [Google Scholar] [CrossRef]
- Qiao, D.; Li, N.; Cao, L.; Zhang, D.; Zheng, Y.; Xu, T. How agricultural extension services improve farmers’ organic fertilizer use in China? The perspective of neighborhood effect and ecological cognition. Sustainability 2022, 14, 7166. [Google Scholar] [CrossRef]
- Conley, T.G.; Topa, G. Socio-economic distance and spatial patterns in unemployment. J. Appl. Econom. 2002, 17, 303–327. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Krupnik, T.J.; Rahut, D.B.; Jat, M.L.; Stirling, C.M. Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 51480–51496. [Google Scholar] [CrossRef]
- Krein, D.D.C.; Rosseto, M.; Cemin, F.; Massuda, L.A.; Dettmer, A. Recent trends and technologies for reduced environmental impacts of fertilizers: A review. Int. J. Environ. Sci. Technol. 2023, 20, 12903–12918. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Jin, M. How do chemical fertilizer reduction policies work?—Empirical evidence from rural china. Front. Environ. Sci. 2022, 10, 955278. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Wang, H. Study on the Effect of Digital Technology Adoption and Farmers’ Cognition on Fertilizer Reduction and Efficiency Improvement Behavior. Agriculture 2024, 14, 973. [Google Scholar] [CrossRef]
- Ma, Z.; Huang, H.; Zhang, X.; Qin, D.; Li, X. Can internet use promote farmers to adopt chemical fertilizer reduction and efficiency enhancement technology in China?—An empirical analysis based on endogenous switching probit model. PLoS ONE 2024, 19, e0308300. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, W.; Zhao, M. Impacts of Capital Endowment on Farmers’ Choices in Fertilizer-Reduction and Efficiency-Increasing Technologies (Preferences, Influences, and Mechanisms): A Case Study of Apple Farmers in the Provinces of Shaanxi and Gansu, China. Agriculture 2024, 14, 147. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Khan, S.U.; Zhao, M. Research on the impact of agricultural green production on farmers’ technical efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 38535–38551. [Google Scholar] [CrossRef]
- Guo, J.; Li, C.; Xu, X.; Sun, M.; Zhang, L. Farmland scale and chemical fertilizer use in rural China: New evidence from the perspective of nutrient elements. J. Clean. Prod. 2022, 376, 134278. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, B.; Hu, X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. J. Clean. Prod. 2020, 272, 123054. [Google Scholar] [CrossRef]
Typology | Indicator | Description of Indicators |
---|---|---|
Input indicators | Land input | Crops sown (hectares) |
Labor input | Including own-account and hired labor hours (hours) | |
Seed input | Total cost of seeds purchased (CNY) | |
Fertilizer input | Total cost of fertilizer purchased, including compost and fertilizer (CNY) | |
Pesticides input | Total cost of pesticides purchased (CNY) | |
Herbicides input | Total cost of herbicides purchased (CNY) | |
Mechanical input | Total cost including owned and hired machinery (CNY) | |
Expected outputs | Output | Total crop production (kilogram) |
Non-expected outputs | Nitrogen emissions | Nitrogen emissions from agricultural production (kilogram) |
Phosphorus emissions | Phosphorus emissions from agricultural production (kilogram) |
Variable Name | Meaning and Assignment | Reduction | Non-Reduction | Discrepancy | ||
---|---|---|---|---|---|---|
Average Value | Standard Deviation | Average Value | Standard Deviation | |||
RFA | Fertilizer reduction application or not? 0 = no; 1 = yes | n = 1078 | n = 267 | - | ||
Economic effects | Farmer’s net profit per hectare (NPH) from rice production in 2022 (CNY) | 9870.65 | 191.70 | 7521.47 | 119.96 | 2349.26 *** |
Environmental effects | The DEA—SBM model, based on non-expected output, measures AGP with values between 0 and 1 | 0.51 | 0.02 | 0.27 | 0.01 | 0.24 *** |
Age | Actual age of farm householder (years) | 51.54 | 0.49 | 55.01 | 0.28 | 3.47 *** |
Education level | Educational attainment of farmers; 1 = primary school and below, 2 = junior high school, 3 = senior high school/vocation secondary school/technical school/vocational high school, 4 = post-secondary school, 5 = bachelor’s degree and above | 1.87 | 0.05 | 1.87 | 0.03 | 0.01 |
Risk preference | 1 = risk aversion, 2 = risk neutrality, 3 = risk appetite | 1.85 | 0.05 | 1.50 | 0.02 | 0.35 *** |
Training frequency | Frequency of farmers’ participation in agricultural technology training; 1 = never, 2 = occasionally, 3 = often | 1.43 | 0.04 | 1.32 | 0.02 | 0.12 *** |
Whether they are a village cadre | Is the farmer a village cadre? 0 = no; 1 = yes | 0.27 | 0.03 | 0.29 | 0.01 | 0.02 |
Work experience | 1 = always farming, 2 = part-time farming, 3 = labor or business, 4 = other | 0.27 | 0.03 | 0.29 | 0.01 | 0.02 |
Total household income | Gross farm household income (ten thousand) | 9.03 | 0.95 | 5.95 | 0.19 | 3.07 *** |
The number of laborers | Total number of agricultural laborers in farming households (person) | 1.83 | 0.04 | 1.84 | 0.02 | 0.01 |
Land management scale | Total actual operating scale of rice production (hectares) | 5.16 | 6.18 | 6.57 | 7.84 | 1.41 *** |
Degree of land parcel consolidation | 1 = very scattered, 2 = more scattered, 3 = partially contiguous, 4 = all contiguous | 3.11 | 0.05 | 2.43 | 0.03 | 0.69 *** |
Soil fertility | Soil fertility status of largest plots; 1 = poor, 2 = medium, 3 = good, 4 = excellent | 3.21 | 0.04 | 2.87 | 0.03 | 0.25 *** |
Irrigation conditions | Irrigation conditions of largest plots; 1 = poor, 2 = medium, 3 = good, 4 = excellent | 3.01 | 0.04 | 2.86 | 0.03 | 0.15 *** |
Distance of the land plots | Distance of largest plot from farmer’s house (kilometer) | 0.94 | 0.03 | 1.79 | 0.13 | 0.84 *** |
Variable Name | RFA | Outcome Equation | |||
---|---|---|---|---|---|
Selection Equation | NPH of Rice | AGP | |||
Reduction | Non-Reduction | Reduction | Non-Reduction | ||
Age | −0.027 *** | −0.002 | 0.002 | −0.004 | −0.001 |
(0.0067) | (0.003) | (0.003) | (0.002) | (0.001) | |
Education level | −0.039 | 0.013 | 0.029 | 0.015 | 0.004 |
(0.064) | (0.034) | (0.027) | (0.025) | (0.005) | |
Risk preference | 0.267 *** | 0.043 | 0.001 | 0.029 | −0.012 ** |
(0.061) | (0.031) | (0.031) | (0.023) | (0.006) | |
Training frequency | 0.083 | −0.024 | −0.002 | 0.083 *** | 0.013 * |
(0.074) | (0.038) | (0.038) | (0.028) | (0.007) | |
Whether they are a village cadre | −0.184 * | 0.016 | 0.063 | −0.056 | 0.019 ** |
(0.110) | (0.060) | (0.049) | (0.044) | (0.009) | |
Work experience | −0.048 | 0.003 | 0.110 *** | −0.007 | −0.004 |
(0.064) | (0.030) | (0.032) | (0.022) | (0.006) | |
Total household income | 0.020 *** | −0.001 | 0.010 ** | 0.0002 | 0.001 |
(0.007) | (0.002) | (0.004) | (0.002) | (0.001) | |
The number of laborers | 0.033 | 0.024 | −0.020 | 0.133 *** | 0.019*** |
(0.078) | (0.040) | (0.033) | (0.029) | (0.006) | |
Land management scale | 0.009 | 0.005 | −0.009 ** | 0.006 * | −0.000 |
(0.009) | (0.005) | (0.004) | (0.003) | (0.001) | |
Degree of land parcel consolidation | 0.494 *** | 0.073 ** | −0.029 | 0.011 | 0.001 |
(0.057) | (0.035) | (0.023) | (0.026) | (0.005) | |
Soil fertility | 0.104 | 0.085 ** | 0.029 | −0.048 | 0.001 |
(0.0662) | (0.040) | (0.027) | (0.030) | (0.005) | |
Irrigation conditions | 0.0210 | −0.042 | 0.001 | −0.006 | −0.001 |
(0.069) | (0.039) | (0.029) | (0.029) | (0.006) | |
Distance of land plots | −0.357 *** | 0.006 | −0.004 | 0.011 | 0.001 |
(0.063) | (0.047) | (0.005) | (0.034) | (0.001) | |
Identifying variables | 3.843 *** | ||||
(−0.316) | |||||
Constant term | −2.253 *** | 8.617 *** | 8.389 *** | 0.287 | 0.267 *** |
(0.513) | (0.282) | (0.215) | (0.208) | (0.042) | |
ρ0 | - | −0.239 *** | - | 0.288 ** | - |
(0.082) | (0.118) | ||||
ρ1 | - | 0.181 * | - | 0.104 | |
(0.104) | - | (0.134) | |||
Wald test | - | 29.47 *** | 29.66 ** | ||
LR test | - | chi2(2) = 9.29 Prob > chi2 = 0.009 | chi2(2) = 6.32 Prob > chi2 = 0.042 | ||
Sample volume | 1345 | 267 | 1078 | 267 | 1078 |
Groups | Fertilizer Reduction | No Fertilizer Reduction | ATT | ATU |
---|---|---|---|---|
Fertilizer reduction | 9.129 | 8.586 | 0.543 *** | - |
No fertilizer reduction | 8.964 | 8.744 | - | 0.220 *** |
Groups | Fertilizer Reduction | No fertilizer Reduction | ATT | ATU |
---|---|---|---|---|
Fertilizer reduction | 0.508 | 0.285 | 0.223 *** | - |
No fertilizer reductio | 0.389 | 0.269 | - | 0.120 *** |
Variable | Economic Effects (OLS) | Environmental Effects (Tobit) |
---|---|---|
RFA | 0.340 *** | 0.234 *** |
(0.038) | (0.014) | |
Control variable | control | control |
Constant term | 8.491 *** | 0.224 *** |
(0.183) | (0.050) | |
R2/Pseudo R2 | 0.073 | −1.022 |
Sample volume | 1345 | 1345 |
Matching Method | Economic Effects (NPH) | Environmental Effects (AGP) | ||
---|---|---|---|---|
ATT | T | ATT | T | |
Nearest neighbor matching | 0.326 *** | 6.82 | 0.246 *** | 11.17 |
Kernel matching | 0.322 *** | 7.69 | 0.243 *** | 11.40 |
Caliper matching | 0.313 *** | 6.77 | 0.246 *** | 11.39 |
Average value | 0.320 | - | 0.245 | - |
Variable | Economic Effects (NPH) | Environmental Effects (AGP) | ||||
---|---|---|---|---|---|---|
0.25 Quartile | 0.5 Quartile | 0.75 Quartile | 0.25 Quartile | 0.5 Quartile | 0.75 Quartile | |
RFA | 0.395 *** | 0.260 *** | 0.173 *** | 0.046 *** | 0.187 *** | 0.460 *** |
(0.047) | (0.038) | (0.034) | (0.140) | (0.055) | (0.028) | |
Control variable | control | control | control | control | control | control |
Constant term | 8.276 *** | 8.787 *** | 9.126 *** | 0.144 *** | 0.180 ** | 0.300 *** |
(0.254) | (0.202) | (0.156) | (0.038) | (0.081) | (0.060) | |
R2 | 0.062 | 0.043 | 0.038 | 0.048 | 0.048 | 0.228 |
Sample volume | 1345 | 1345 | 1345 | 1345 | 1345 | 1345 |
Variable | Economic Effects (OLS) | Environmental Effects (Tobit) |
---|---|---|
RFA | 0.845 *** | 0.468 *** |
(0.285) | (0.123) | |
Neighborhood effect | 0.040 ** | 0.003 |
(0.018) | (0.004) | |
RFA * neighborhood effect | −0.119 * | −0.050 * |
(0.061) | (0.026) | |
Control variable | control | control |
Constant term | 8.364 ** | 0.209 *** |
(0.186) | (0.052) | |
R2/Pseudo R2 | 0.078 | −1.032 |
Sample volume | 1345 | 1345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhou, L.; Zhang, Y.; Zhou, W. Economic and Environmental Effects of Farmers’ Green Production Behaviors: Evidence from Major Rice-Producing Areas in Jiangxi Province, China. Land 2024, 13, 1668. https://doi.org/10.3390/land13101668
Zhang M, Zhou L, Zhang Y, Zhou W. Economic and Environmental Effects of Farmers’ Green Production Behaviors: Evidence from Major Rice-Producing Areas in Jiangxi Province, China. Land. 2024; 13(10):1668. https://doi.org/10.3390/land13101668
Chicago/Turabian StyleZhang, Mengling, Li Zhou, Yuhan Zhang, and Wangyue Zhou. 2024. "Economic and Environmental Effects of Farmers’ Green Production Behaviors: Evidence from Major Rice-Producing Areas in Jiangxi Province, China" Land 13, no. 10: 1668. https://doi.org/10.3390/land13101668
APA StyleZhang, M., Zhou, L., Zhang, Y., & Zhou, W. (2024). Economic and Environmental Effects of Farmers’ Green Production Behaviors: Evidence from Major Rice-Producing Areas in Jiangxi Province, China. Land, 13(10), 1668. https://doi.org/10.3390/land13101668