Knowledge Atlas of Cultivated Land Quality Evaluation Based on Web of Science Since the 21st Century (2000–2023)
Abstract
:1. Introduction
2. Data Source and Methods
2.1. Data Source
2.2. Data Analysis
3. Results and Analysis
3.1. Description of Publications
3.2. Cooperation Analysis of Authors, Institutions, and Countries
3.2.1. Cooperation Network of Authors
3.2.2. Cooperation Networks of Institutions and Countries
3.3. Analysis of Hotspots
3.3.1. Keyword Co-Occurrence
3.3.2. Keyword Cluster
3.4. Co-Citation Analysis of References and Journals
3.4.1. Reference Co-Citation Network
3.4.2. Journal Co-Citation Network
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.H.; Yun, W.J.; Wu, K.N.; Li, S.S.; Liu, B.R.; Lu, Q.Y. Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China. Land 2023, 12, 515. [Google Scholar] [CrossRef]
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021; pp. 1–6. [Google Scholar]
- Zhou, Y.; Li, X.H.; Liu, Y.S. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Liu, L.M.; Zhou, D.; Chang, X.; Lin, Z.L. A new grading system for evaluating China’s cultivated land quality. Land Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Lu, M.X.; He, L.Y.; Wu, L.S. Fertility evaluation of cultivated land in China: A review. Ecol. Environ. 2006, 15, 866–871. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality-A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators-Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Strube, M.J.; Gardner, W.; Hartmann, D.P. Limitations, liabilities, and obstacles in reviews of the literature: The current status of meta-analysis. Clin. Psychol. Rev. 1985, 5, 63–78. [Google Scholar] [CrossRef]
- Ma, C.Q.; Su, H.; Li, H.J. Global research trends on prostate diseases and erectile dysfunction: A bibliometric and visualized study. Front. Oncol. 2021, 10, 627891. [Google Scholar] [CrossRef]
- Zou, X.; Yue, W.L.; Vu, H.L. Visualization and Analysis of Mapping Knowledge Domain of Road Safety Studies. Accid. Anal. Prev. 2018, 118, 131–145. [Google Scholar] [CrossRef]
- Khudzari, J.M.; Kurian, J.; Tartakovsky, B.; Raghavan, G.S.V. Bibliometric Analysis of Global Research Trends on Microbial Fuel Cells Using Scopus Database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- Gao, Y.F.; Xu, Y.N.; Zhu, Y.X.; Zhang, J.H. An analysis of the hotspot and frontier of mine eco-environment restoration based on big data visualization of VOSviewer and CiteSpace. Geol. Bull. China 2018, 37, 2144–2153. [Google Scholar]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientifc information and as a source of data for scientifc evaluation-Review of the Literature. J. Informetr. 2017, 11, 823–834. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; López-Cózar, E.D. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Bao, L.G.; Kusadokoro, M.; Chitose, A.; Chen, C.B. Development of socially sustainable transport research: A bibliometric and visualization analysis. Travel Behave. Soc. 2023, 30, 60–73. [Google Scholar] [CrossRef]
- Gaviria-Marin, M.; Merigó, J.M.; Baier-Fuentes, H. Knowledge management: A global examination based on bibliometric analysis. Technol. Forecast Soc. Chang. 2019, 140, 194–220. [Google Scholar] [CrossRef]
- Carvalho, M.M.; Fleury, A.; Lopes, A.P. An overview of the literature on technology road mapping (TRM): Contributions and trends. Technol. Forecast Soc. Chang. 2013, 80, 1418–1437. [Google Scholar] [CrossRef]
- Zhan, J.J.; Ma, Y.X.; Zhao, D.; Li, Z.; Tan, H.C.; Wang, X.; Liu, H.X.; Yang, T.T. Knowledge atlas of post-traumatic epilepsy research: Based on citespace visualization analysis. Epilepsy Res. 2021, 178, 106790. [Google Scholar] [CrossRef]
- Brody, T.; Harnad, S.; Carr, L. Earlier web usage statistics as predictors of later citation impact. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1060–1072. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Gebeyehu, D.T.; East, L.; Wark, S.; Islam, M.S. Impact of COVID-19 on the food security and identifying the compromised food security dimension: A systematic review protocol. PLoS ONE 2022, 17, e0272859. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia-Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef]
- Geng, Y.Q.; Zhang, N.G.; Zhu, R.J. Research progress analysis of sustainable smart grid based on CiteSpace. Energy Strategy Rev. 2023, 48, 101111. [Google Scholar] [CrossRef]
- Lal, R. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Pimentel, M.L.; de Oliveira, A.B.; Schiebelbein, B.E.; Carvalho, M.L.; Tenelli, S.; Cherubin, M.R.; Carvalho, J.L.N.; Briedis, C.; Panosso, A.R.; de Oliveira Bordonal, R. Quantity, quality and physical protection of soil carbon associated with sugarcane straw removal in southern Brazil. Soil Till. Res. 2024, 237, 105976. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 2016, 11, e0150860. [Google Scholar] [CrossRef]
- Malone, R.W.; Radke, A.; Herbstritt, S.; Wu, H.Q.; Qi, Z.M.; Emmett, B.D.; Helmers, M.J.; Schulte, L.A.; Feyereisen, G.W.; O’Brien, P.L.; et al. Harvested winter rye energy cover crop: Multiple benefits for North Central US. Environ. Res. Lett. 2023, 18, 074009. [Google Scholar] [CrossRef]
- Phillips, C.L.; Tekeste, M.Z.; Ebrahimi, E.; Logsdon, S.D.; Malone, R.W.; O’Brien, P.L.; Emmett, B.D.; Karlen, D.L. Thirteen-year stover harvest and tillage effects on soil compaction in Iowa. Agrosyst. Geosci. Environ. 2023, 6, e20361. [Google Scholar] [CrossRef]
- Xu, Y.X.; Lyu, J.; Liu, H.B.; Xue, Y. A Bibliometric and Visualized Analysis of the Global Literature on Black Soil Conservation from 1983–2022 Based on CiteSpace and VOSviewer. Agronomy 2022, 12, 2432. [Google Scholar] [CrossRef]
- Xiang, C.Y.; Wang, Y.; Liu, H.W. A Scientometrics Review on Nonpoint Source Pollution Research. Ecol. Eng. 2017, 99, 400–408. [Google Scholar] [CrossRef]
- Ma, T.Y.; Wu, Q.L.; Jiang, L.; Zeng, X.Y.; Wang, Y.Y.; Yuan, Y.; Wang, B.X.; Zhang, T.H. Artificial Intelligence and Machine (Deep) Learning in Otorhinolaryngology: A Bibliometric Analysis Based on VOSviewer and CiteSpace. Ear Nose Throat J. 2023, 29, 1455613231185074. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Stoorvogel, J.J.; Jansen, D.M.; Vlaming, J.; Groot, J.J.R. Land quality indicators for sustainable land management: Proposed method for yield gap and soil nutrient balance. Agric. Ecosyst. Environ. 2000, 81, 103–112. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Huo, X.H.; Li, W.C.; Xiao, L.F.; Li, M.; Wang, C.F.; Sun, Y.Y.; Sun, T. Knowledge Atlas of the Co-Occurrence of Epilepsy and Autism: A Bibliometric Analysis and Visualization Using VOSviewer and CiteSpace. Neuropsychiatr. Dis. Treat. 2022, 18, 2107–2119. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, W.; Yin, L. Research Progress and Prospects of Traditional Knowledge Associated with Biodiversity in China: A Cite Space Bibliometric Analysis. J. West China For. Sci. 2022, 51, 148–153. [Google Scholar]
- Liu, H.B.; Wu, M.Y.; Li, S.T.; Sun, F.J.; Wang, Q.B.; Dong, X.R. International Research Hotspots and Trend Analysis of Agent Model in Land Use Change Science: Quantitative Research Based on CiteSpace Atlas. Chin. J. Soil Sci. 2020, 51, 1496–1503. [Google Scholar]
- Huang, H.; Zhou, Y.; Qian, M.J.; Zeng, Z.Q. Land use transition and driving forces in Chinese Loess Plateau: A case study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Tang, M.M.; Wang, C.T.; Ying, C.Y.; Mei, S.; Tong, T.; Ma, Y.H.; Wang, Q. Research on Cultivated Land Quality Restriction Factors Based on Cultivated Land Quality Level Evaluation. Sustainability 2023, 15, 7567. [Google Scholar] [CrossRef]
- Li, H.; Liang, S.; Liang, Y.H.; Li, K.; Qi, J.C.; Yang, X.C.; Feng, C.Y.; Cai, Y.P.; Yang, Z.F. Multi-pollutant based grey water footprint of Chinese regions. Resour. Conserv. Recycl. 2021, 164, 105202. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.T.; Hall, J.W.; Ni, Y.; He, L.H.; Yi, J.W.; Zhao, N.; Du, Y.Y.; Pei, T.; et al. Pollution exacerbates China’ s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325–328. [Google Scholar] [CrossRef]
- Johnson, J.M.; Vandamme, E.; Senthilkumar, K.; Sila, A.; Shepherd, K.D.; Saito, K. Near-infrared, mid-infrared or combined diffuse refectance spectroscopy for assessing soil fertility in rice fields in sub-Saharan Africa. Geoderma 2019, 354, 113840. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Bakshi, A.; Saha, M.; Al Faisal, A.; Almulhim, A.I.; Rahaman, Z.A.; Mohammad, P. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Sci. Total Environ. 2023, 867, 161394. [Google Scholar] [CrossRef]
- Fugazza, D.; Aletti, G.; Bertoni, D.; Cavicchioli, D. Farmland use data and remote sensing for ex-post assessment of CAP environmental performances: An application to soil quality dynamics in Lombardy. Remote Sens. Appl. Soc. Environ. 2022, 26, 100723. [Google Scholar] [CrossRef]
- Li, X.Y.; Shi, Z.Y.; Xing, Z.H.; Wang, M.; Wang, M.C. Dynamic evaluation of cropland degradation risk by combining multi-temporal remote sensing and geographical data in the Black Soil Region of Jilin Province, China. Appl. Geogr. 2023, 154, 102920. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Xue, J.; Zhang, X.L.; Huang, J.Y.; Biswas, A.; He, Y.; Shi, Z. A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network. Geoderma 2022, 409, 115656. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.F.; Keshtkar, H.; Haack, B.N.; Rijal, S.; Zhang, P. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov Chain. ISPRS Int. J. Geo-Inf. 2018, 7, 154. [Google Scholar] [CrossRef]
- Salas, E.A.L. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review. Geo Spat. Inf. Sci. 2020, 24, 179–200. [Google Scholar] [CrossRef]
- Shao, Z.F.; Zhang, L.J.; Wang, L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest aboveground biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5569–5582. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Song, W.; Zhang, H.Z.; Li, X.J.; Song, H.F.; Niu, B.B.; Shi, X.J.; Li, J.Y. Safe utilization of cultivated land in high-risk areas of soil heavy metal pollution based on soil resilience. Front. Environ. Sci. 2022, 10, 889069. [Google Scholar] [CrossRef]
- Wang, M.C.; Liu, X.N.; Liu, Z.W.; Wang, F.Y.; Li, X.Y.; Hou, G.L.; Zhao, S.J. Evaluation and Driving Force Analysis of Cultivated Land Quality in Black Soil Region of Northeast China. Chin. Geogr. Sci. 2023, 33, 601–615. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, H.H.; Cai, Z.Y.; Zhou, Y.M.; Xu, Y. Evaluation of Cultivated Land Quality in Semiarid Sandy Areas: A Case Study of the Horqin Zuoyihou Banner. Land 2022, 11, 1457. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, P.T.; Zhang, G.J.; Cui, J.H. Agricultural Land Quality Evaluation and Utilization Zoning Based on the Production–Ecology–Health Dimension: A Case Study of Huanghua City. Land 2023, 12, 1367. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M. Precipitation dominates interannual variability of riverine nitrogen loading across the Continental United States. Environ. Sci. Technol. 2016, 50, 12874–12884. [Google Scholar] [CrossRef]
- Braam, R.R.; Moed, H.F.; van Raan, A.F.J. Mapping of science by combined co-citation and word analysis, I. Structural aspects. J. Am. Soc. Inf. Sci. 1991, 42, 233–251. [Google Scholar] [CrossRef]
- Braam, R.R.; Moed, H.F.; van Raan, A.F.J. Mapping of science by combined co-citation and word analysis, II: Dynamical aspects. J. Am. Soc. Inf. Sci. 1991, 42, 252–264. [Google Scholar] [CrossRef]
- Liu, Z.G.; Yin, Y.M.; Liu, W.D.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Sun, X.B.; Kong, X.B.; Wen, L.Y. Evaluation Index System of Cultivated Land Quality and its Development Trend Based on Cultivated Land Elements. Chin. J. Soil Sci. 2019, 50, 739–747. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Münzenberg, U.; Bürger, C.; Thies, C.; Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 2002, 83, 1421–1432. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; Volume 35. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
Search Name | Search Rule |
---|---|
Citation indexes | SCI-Expanded, SSCI |
Searching period | 1 January 2000 to 31 December 2023 |
Searching topic | Cultivated land quality assessment OR Cultivated land quality evaluation OR Arable land quality assessment OR Arable land quality evaluation OR Farmland quality assessment OR Farmland quality evaluation OR Cropland quality evaluation OR Cropland quality assessment OR Tillage land quality evaluation OR Tillage land quality assessment |
Document types | Article or review |
Language | English |
Sample size | 2478 |
Ranking | Author | Documents | Citations |
---|---|---|---|
1 | Lal R | 16 | 733 |
2 | Cherubin MR | 14 | 489 |
3 | Karlen DL | 13 | 642 |
4 | Arnold JG | 12 | 708 |
5 | White MJ | 12 | 335 |
6 | Mccarty GW | 10 | 183 |
7 | Lee S | 9 | 127 |
8 | Shen ZY | 9 | 353 |
9 | Srinivasan R | 9 | 317 |
10 | Zhao R | 9 | 435 |
Ranking | Institution | Documents | Citations |
---|---|---|---|
1 | Chinese Academy of Sciences | 252 | 8508 |
2 | Agricultural Research Service | 111 | 4564 |
3 | University of Chinese Academy of Sciences | 88 | 2212 |
4 | Beijing Normal University | 64 | 1905 |
5 | China Agricultural University | 63 | 1727 |
6 | Northwest A&F University | 41 | 772 |
7 | Chinese Academy of Agricultural Sciences | 35 | 1039 |
8 | Zhejiang University | 30 | 1010 |
9 | Nanjing University | 29 | 1002 |
10 | China University of Geosciences | 29 | 576 |
Ranking | Country | Documents | Citations |
---|---|---|---|
1 | China | 987 | 22,176 |
2 | United States | 544 | 21,644 |
3 | Germany | 158 | 5313 |
4 | United Kingdom | 122 | 6639 |
5 | Italy | 106 | 4581 |
6 | Netherlands | 87 | 3792 |
7 | Brazil | 85 | 2101 |
8 | Canada | 79 | 1966 |
9 | India | 76 | 1643 |
10 | France | 72 | 2921 |
11 | Spain | 72 | 1755 |
12 | Iran | 56 | 1255 |
13 | Switzerland | 52 | 2712 |
14 | Japan | 51 | 1972 |
15 | Poland | 50 | 943 |
Ranking | Keyword | Count | Ranking | Keyword | Centrality |
---|---|---|---|---|---|
1 | quality | 366 | 1 | systems | 0.14 |
2 | management | 340 | 2 | land use | 0.11 |
3 | land use | 309 | 3 | area | 0.11 |
4 | water quality | 247 | |||
5 | indicators | 178 | |||
6 | nitrogen | 177 | |||
7 | model | 162 | |||
8 | tillage | 155 | |||
9 | ecosystem services | 148 | |||
10 | climate change | 147 |
Ranking | Reference | Citations | Journal | Five Year Impact Factor |
---|---|---|---|---|
1 | Arnold JG, 1998 [68] | 126 | J. Am. Water Resour. Assoc. | 2.9 |
2 | Andrews SS, 2002 [69] | 121 | Agr. Ecosyst. Environ. | 6.4 |
3 | Andrews SS, 2004 [70] | 109 | Soil Sci. Soc. Am. J. | 2.8 |
4 | Karlen DL, 1997 [71] | 107 | Soil Sci. Soc. Am. J. | 2.8 |
5 | Nash JE, 1970 [72] | 106 | J. Hydrol. | 6.4 |
6 | Moriasi DN, 2007 [74] | 100 | T. Asabe | 1.5 |
7 | Steffan-Dewenter I, 2002 [75] | 76 | Ecology | 5.5 |
8 | Bünemann EK, 2018 [7] | 75 | Soil Biol. Biochem. | 10.4 |
9 | Doran JW, 1994 [76] | 73 | SSSA Special Publications | |
10 | Gassman PW, 2007 [77] | 68 | T. Asabe | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, P.; Shen, C.; Tang, H.; Liu, Y.; Huang, Y. Knowledge Atlas of Cultivated Land Quality Evaluation Based on Web of Science Since the 21st Century (2000–2023). Land 2024, 13, 1697. https://doi.org/10.3390/land13101697
Xue P, Shen C, Tang H, Liu Y, Huang Y. Knowledge Atlas of Cultivated Land Quality Evaluation Based on Web of Science Since the 21st Century (2000–2023). Land. 2024; 13(10):1697. https://doi.org/10.3390/land13101697
Chicago/Turabian StyleXue, Pingluo, Chongyang Shen, Huaizhi Tang, Yunjia Liu, and Yuanfang Huang. 2024. "Knowledge Atlas of Cultivated Land Quality Evaluation Based on Web of Science Since the 21st Century (2000–2023)" Land 13, no. 10: 1697. https://doi.org/10.3390/land13101697
APA StyleXue, P., Shen, C., Tang, H., Liu, Y., & Huang, Y. (2024). Knowledge Atlas of Cultivated Land Quality Evaluation Based on Web of Science Since the 21st Century (2000–2023). Land, 13(10), 1697. https://doi.org/10.3390/land13101697