The Application of Rain Gardens in Urban Environments: A Bibliometric Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Bibliometric Methods
3. Results
3.1. Publication Development Trends
3.2. Author and Country Analysis
3.3. Delving into Dominant Research Themes
4. Discussion
4.1. The Role of Rain Gardens in Urban Stormwater Management
4.2. The Role of Rain Gardens in Urban Ecological Benefits
4.2.1. Improve the Urban Microclimate
4.2.2. Enhancement of Urban Biodiversity
4.2.3. Improvement of Air Quality
4.3. The Role of Rain Gardens in Enhancing Urban Landscape Value
4.4. Future Research Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.S.; Guo, H.; Wang, F.L.; Li, M.; Xue, X.S.; Liu, X.; Zeng, S.Y. Is the sponge city construction sufficiently adaptable for the future stormwater management under climate change? J. Hydrol. 2020, 588, 14. [Google Scholar] [CrossRef]
- Hasankhan, A.; Ghaeini-Hessaroeyeh, M.; Fadaei-Kermani, E. Enhancing Stormwater Management through Hydromodification Measures and Low Impact Development Strategies in Urban Areas: A Neighborhood-Scale Study. Water Resour. Manag. 2024, 19, 1–19. [Google Scholar] [CrossRef]
- Birthe Marie, S.; Louis, M.; Øivind, H.; Gunnar, M. Future urban heat island influence on precipitation. Clim. Dyn. 2022, 58, 3393–3403. [Google Scholar] [CrossRef]
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Menus, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for sustainable development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Recent Progress in Low-Impact Development in South Korea: Water-Management Policies, Challenges and Opportunities. Water 2018, 10, 18. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.H.; Zhang, D.Q. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ. Res. 2023, 236, 13. [Google Scholar] [CrossRef]
- Cettner, A.; Söderholm, K.; Viklander, M. An Adaptive Stormwater Culture? Historical Perspectives on the Status of Stormwater within the Swedish Urban Water System. J. Urban Technol. 2012, 19, 25–40. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.Q.; Zhang, Y.; Su, J.; Zhou, S.Q.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 14. [Google Scholar] [CrossRef]
- Brooke, W.; Eduard, R.; David, N.B. Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: A system dynamics analysis. Sustain. Cities Soc. 2021, 79, 103602. [Google Scholar] [CrossRef]
- Shi, L.; Maruthaveeran, S.; Yusof, M.J.M.; Zhao, J.; Liu, R.S. Exploring Herbaceous Plant Biodiversity Design in Chinese Rain Gardens: A Literature Review. Water 2024, 16, 28. [Google Scholar] [CrossRef]
- Sharma, R.; Malaviya, P. Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdiscip. Rev.-Water 2021, 8, 21. [Google Scholar] [CrossRef]
- Su, J.; Wang, M.; Zhang, D.Q.; Sun, C.H.; Zhao, X.L.; Razi, M.A.B. A systematic and bibliometric review of bioretention system (BRS) for urban services. Urban Clim. 2024, 55, 18. [Google Scholar] [CrossRef]
- Sagrelius, P.O.; Blecken, G.; Hedstrom, A.; Ashley, R.; Viklander, M. Environmental impacts of stormwater bioretention systems with various design and construction components. J. Clean. Prod. 2022, 359, 9. [Google Scholar] [CrossRef]
- Nasrollahpour, R.; Skorobogatov, A.; He, J.; Valeo, C.; Chu, A.; van Duin, B. The impact of vegetation and media on evapotranspiration in bioretention systems. Urban For. Urban Green. 2022, 74, 13. [Google Scholar] [CrossRef]
- Fetscherin, M.; Usunier, J.C. Corporate branding: An interdisciplinary literature review. Eur. J. Mark. 2012, 46, 733–753. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Yu, K.H. Research paradigms of contemporary knowledge management studies: 1998–2007. J. Knowl. Manag. 2010, 14, 175–189. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Shen, G.Q.P.; Wang, X.Y.; Teng, Y. Mapping the knowledge domains of Building Information Modeling (BIM): A bibliometric approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Meyer, M.; Grant, K.; Morlacchi, P.; Weckowska, D. Triple Helix indicators as an emergent area of enquiry: A bibliometric perspective. Scientometrics 2014, 99, 151–174. [Google Scholar] [CrossRef]
- Mukherjee, D.; Lim, W.M.; Kumar, S.; Donthu, N. Guidelines for advancing theory and practice through bibliometric research. J. Bus. Res. 2022, 148, 101–115. [Google Scholar] [CrossRef]
- Liu, H.Q.; Kong, F.H.; Yin, H.W.; Middel, A.; Zheng, X.D.; Huang, J.; Xu, H.R.; Wang, D.; Wen, Z.H. Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Build. Environ. 2021, 196, 16. [Google Scholar] [CrossRef]
- Chen, T.; Wang, M.; Su, J.; Li, J.J. Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review. Sustainability 2023, 15, 19. [Google Scholar] [CrossRef]
- Jonathan, H.; Ewe-Chai, S.; Louis, Y.Y.L.; John, S.L. Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technol. Forecast. Soc. Chang. 2014, 82, 66–79. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Guo, C.; Li, J.K.; Li, H.E.; Li, Y.J. Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere 2019, 233, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Li, J.K.; Li, Y.; Li, Y.J. SWMM-based evaluation of the effect of rain gardens on urbanized areas. Environ. Earth Sci. 2016, 75, 14. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Deletic, A.; Mitchell, V.G.; Hatt, B.E. Reuse of urban runoff in Australia: A review of recent advances and remaining challenges. J. Environ. Qual. 2008, 37, S116–S127. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Adhityan, A.; Ng, W.J.; Dong, J.W.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Neo, T.H.; Xu, D.; Fowdar, H.; McCarthy, D.T.; Chen, E.Y.; Lee, T.M.; Ong, G.S.; Lim, F.Y.; Ong, S.L.; Hu, J.Y. Evaluation of Active, Beautiful, Clean Waters Design Features in Tropical Urban Cities: A Case Study in Singapore. Water 2022, 14, 18. [Google Scholar] [CrossRef]
- Jiang, R.Q.; Cao, M.N.; Mei, S.H.; Guo, S.S.; Zhang, W.; Ji, N.; Zhao, Z.G. Trends in metabolic signaling pathways of tumor drug resistance: A scientometric analysis. Front. Oncol. 2022, 12, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.D.; Jia, Z.J.; Hui, J.Q.; Xin, Q.Q.; Zhou, Q.B.; Cong, W.H.; Xu, F.Q. A Bibliometric Analysis of Research on the Links Between Gut Microbiota and Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 17. [Google Scholar] [CrossRef]
- Rinaldi, M.; Murino, T.; Gebennini, E.; Morea, D.; Bottani, E. A literature review on quantitative models for supply chain risk management: Can they be applied to pandemic disruptions? Comput. Ind. Eng. 2022, 170, 18. [Google Scholar] [CrossRef] [PubMed]
- Kirty, M.; Thakur, B.N.; Abhijit, M. Natural Fiber Reinforced Concrete: Bibliometric and Network Analyses to Delineate the Current Status and Future Pathways. J. Nat. Fibers 2022, 19, 15963–15983. [Google Scholar] [CrossRef]
- Angelito, C.; Gabriele, S. Mapping international business and international business policy research: Intellectual structure and research trends. Int. Bus. Rev. 2020, 29, 101691. [Google Scholar] [CrossRef]
- Morsy, M.M.; Goodall, J.L.; Shatnawi, F.M.; Meadows, M.E. Distributed Stormwater Controls for Flood Mitigation within Urbanized Watersheds: Case Study of Rocky Branch Watershed in Columbia, South Carolina. J. Hydrol. Eng. 2016, 21, 10. [Google Scholar] [CrossRef]
- Rosa, A.; Prokopiuk, M.; de Macedo, M.B.; do Lago, C.A.F.; Sample, D.; de Souza, V.C.; Mendiondo, M.E. Bioretention as a control to urban drainage system with an ecohydrological base: GIS as a tool on decision making. Sustain. Resil. Infrastruct. 2024, 16, 1–16. [Google Scholar] [CrossRef]
- Alves, R.A.; dos Santos, M.M.; Rudke, A.P.; Venturin, P.R.F.; Martins, J.A. Site selection for nature-based solutions for stormwater management in urban areas: An approach combining GIS and multi-criteria analysis. J. Environ. Manag. 2024, 359, 13. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Li, R.R. The COVID-19 pandemic reshapes the plastic pollution research—A comparative analysis of plastic pollution research before and during the pandemic. Environ. Res. 2022, 208, 11. [Google Scholar] [CrossRef]
- Wan, Y.T.; Shen, J.Y.; Ouyang, J.F.; Dong, P.; Hong, Y.H.; Liang, L.X.; Liu, J.H. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front. Immunol. 2022, 13, 1098082. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Bratieres, K.; Fletcher, T.D.; Deletic, A.; Zinger, Y. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Res. 2008, 42, 3930–3940. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Luan, B.; Yin, R.X.; Xu, P.; Wang, X.; Yang, X.M.; Zhang, L.; Tang, X.Y. Evaluating Green Stormwater Infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based TOPSIS. J. Clean. Prod. 2019, 223, 680–691. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, S.; Cha, S.M.; Pyo, J.; Yoon, K.S.; Lee, H.K.Y.; Park, Y.; Jang, I.S.; Kim, K.J.; Yu, J.W.; et al. Simulations of low impact development designs using the storm water management model. Environ. Eng. Res. 2024, 29, 11. [Google Scholar] [CrossRef]
- Yergeau, S.E.; Obropta, C.C. Preliminary Field Evaluation of Soil Compaction in Rain Gardens. J. Environ. Eng. 2013, 139, 1233–1236. [Google Scholar] [CrossRef]
- David, N.; Leatherbarrow, J.E.; Yee, D.; McKee, L.J. Removal Efficiencies of a Bioretention System for Trace Metals, PCBs, PAHs, and Dioxins in a Semiarid Environment. J. Environ. Eng. 2015, 141, 8. [Google Scholar] [CrossRef]
- McPhillips, L.; Walter, M.T. Hydrologic conditions drive denitrification and greenhouse gas emissions in stormwater detention basins. Ecol. Eng. 2015, 85, 67–75. [Google Scholar] [CrossRef]
- Whaley, L.; Weatherhead, E. Managing water through change and uncertainty: Comparing lessons from the adaptive co-management literature to recent policy developments in England. J. Environ. Plan. Manag. 2016, 59, 1775–1794. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Sándor, S.; Zoltán, T. Change in Stream Flow of Gumara Watershed, upper Blue Nile Basin, Ethiopia under Representative Concentration Pathway Climate Change Scenarios. Water 2020, 12, 14. [Google Scholar] [CrossRef]
- Swarna, M.; Matt, O. Effects of Lime Amendment on the pH of Engineered Soil Mix for the Purposes of Bioretention. J. Irrig. Drain. Eng.-Asce 2008, 134, 675–679. [Google Scholar] [CrossRef]
- Mehring, A.S.; Levin, L.A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 2015, 52, 1445–1454. [Google Scholar] [CrossRef]
- Björklund, K.; Li, L. Removal of organic contaminants in bioretention medium amended with activated carbon from sewage sludge. Environ. Sci. Pollut. Res. 2017, 24, 19167–19180. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dunnett, N.; Stovin, V. The influence of vegetation on rain garden hydrological performance. Urban Water J. 2017, 14, 1083–1089. [Google Scholar] [CrossRef]
- Monrose, J.; Tota-Maharaj, K. Technological Review of Permeable Pavement Systems for Applications in Small Island Developing States. Clean-Soil Air Water 2018, 46, 17. [Google Scholar] [CrossRef]
- Somayeh, A.; Petri, N.; Anne, O. Urban Wetlands: A Review on Ecological and Cultural Values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Ebadat Ghanbari, P.; Marco, A.; Elizabeth, T.; Stephen, J.L. Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban For. Urban Green. 2016, 20, 160–171. [Google Scholar] [CrossRef]
- Kazemi, F.; Beecham, S.; Gibbs, J. Streetscale bioretention basins in Melbourne and their effect on local biodiversity. Ecol. Eng. 2009, 35, 1454–1465. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Szpakowski, W.; Poznanska, E.; Boogaard, F.C.; Bobkowska, K.; Gajewska, M. Technical solutions and benefits of introducing rain gardens—Gdansk case study. Sci. Total Environ. 2022, 835, 14. [Google Scholar] [CrossRef]
- Kazemi, F.; Beecham, S.; Gibbs, J. Streetscape biodiversity and the role of bioretention swales in an Australian urban environment. Landsc. Urban Plan. 2011, 101, 139–148. [Google Scholar] [CrossRef]
- Morash, J.; Wright, A.; LeBleu, C.; Meder, A.; Kessler, R.; Brantley, E.; Howe, J. Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability 2019, 11, 18. [Google Scholar] [CrossRef]
- Shreewatsav, M.; Sheriff, V.A. Augmentation of the Urban Green Infrastructure Using Stormwater Surface Runoff as a Resource in the Nice Expressway, Karnataka, India. J. Environ. Eng. Landsc. Manag. 2022, 30, 165–178. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Xiong, Y.J.; Zhao, S.H.; Tian, F.; Qiu, G.Y. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing. J. Hydrol. 2015, 530, 392–404. [Google Scholar] [CrossRef]
- Ma, C.D.; Chen, Y.Y.; Gao, W.L.; Liu, B.Y. Optimization of Landscape Spatial Configuration and Form for Thermal Comfort: A Case Study of Urban Square, Shanghai. Atmosphere 2023, 14, 23. [Google Scholar] [CrossRef]
- Ge, M.T.; Huang, Y.; Zhu, Y.F.Z.; Kim, M.; Cui, X.L. Examining the Microclimate Pattern and Related Spatial Perception of the Urban Stormwater Management Landscape: The Case of Rain Gardens. Atmosphere 2023, 14, 19. [Google Scholar] [CrossRef]
- Zheng, J.; Tarin, M.W.K.; Chen, G.; Zhang, Q.; Deng, C. The characteristics of plant clusters influence on the cooling effect: A case study in a subtropical Island Park, China. Glob. Ecol. Conserv. 2022, 34, e02055. [Google Scholar] [CrossRef]
- Qi, Y.S.; Li, H.; Pang, Z.L.; Gao, W.J.; Liu, C. A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins. Front. Plant Sci. 2022, 13, 15. [Google Scholar] [CrossRef]
- Xiao, C.; Shi, Q.; Gu, C.J. Assessing the Spatial Distribution Pattern of Street Greenery and Its Relationship with Socioeconomic Status and the Built Environment in Shanghai, China. Land 2021, 10, 871. [Google Scholar] [CrossRef]
- Bowman, R.M.; Latta, L.C.; Edgehouse, M. The Effect of Disturbance on Macroinvertebrate Community Structure in Northeastern Oregon. Northwest Sci. 2019, 92, 364–374. [Google Scholar] [CrossRef]
- Öckinger, E.; Dannestam, Å.; Smith, H.G. The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landsc. Urban Plan. 2009, 93, 31–37. [Google Scholar] [CrossRef]
- Jin, Y.; Behrens, P.; Tukker, A.; Scherer, L. Biodiversity Loss from Freshwater Use for China’s Electricity Generation. Environ. Sci. Technol. 2022, 56, 3277–3287. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Ramandeep Kaur, M.M.; Prashant, K.S.; Prachi, S.; Ashwini, M.; George, P.P.; Kiran, G.S. Optimal band characterization in reformation of hyperspectral indices for species diversity estimation. Phys. Chem. Earth Parts A/B/C 2022, 126, 103040. [Google Scholar] [CrossRef]
- Simon, T.; Marco, M.; Renée-Claire Le, B.; Paul, M.; Andrea, Z.; David, F.; Andreas, F. A Gardener’s Influence on Urban Soil Quality. Front. Environ. Sci. 2018, 6, 1–17. [Google Scholar] [CrossRef]
- Dustin, R.P.; Clark, J.A. Small Urban Green Roof Plots Near Larger Green Spaces May Not Provide Additional Habitat for Birds. Front. Ecol. Evol. 2022, 10, 779005. [Google Scholar] [CrossRef]
- Zhang, L.F.; Fang, C.L.; Zhu, C.; Gao, Q. Ecosystem service trade-offs and identification of eco-optimal regions in urban agglomerations in arid regions of China. J. Clean Prod. 2022, 373, 10. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Guo, Q.Z. Drainage Alternatives for Rain Gardens on Subsoil of Low Permeability: Balance among Ponding Time, Soil Moisture, and Runoff Reduction. J. Sustain. Water Built Environ. 2022, 8, 12. [Google Scholar] [CrossRef]
- Zhang, M.M.; He, J.H.; Liu, D.F.; Huang, J.L.; Yue, Q.B.; Li, Y.J. Urban green corridor construction considering daily life circles: A case study of Wuhan city, China. Ecol. Eng. 2022, 184, 15. [Google Scholar] [CrossRef]
- Azhari, A.; Halim, N.D.A.; Othman, M.; Latif, M.T.; Juneng, L.; Sofwan, N.M.; Stocker, J.; Johnson, K. Highly spatially resolved emission inventory of selected air pollutants in Kuala Lumpur’s urban environment. Atmos. Pollut. Res. 2021, 12, 12–22. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chien, S.S. Wind-Human Resonance in a Polluted City: The Case of Dalinpu in Kaohsiung, Taiwan. Ann. Am. Assoc. Geogr. 2023, 113, 1135–1152. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, Ü.; Guarino, C. Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environ. Pollut. 2021, 277, 11. [Google Scholar] [CrossRef]
- Shaneyfelt, K.M.; Anderson, A.R.; Kumar, P.; Hunt, W.F. Air quality considerations for stormwater green street design. Environ. Pollut. 2017, 231, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.K.; Bolan, N.; Zhu, Y.G.; Balasubramanian, R. Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. Resour. Conserv. Recycl. 2022, 186, 18. [Google Scholar] [CrossRef]
- Zheng, T.; Jia, Y.P.; Zhang, S.J.; Li, X.B.; Wu, Y.; Wu, C.L.; He, H.D.; Peng, Z.R. Impacts of vegetation on particle concentrations in roadside environments. Environ. Pollut. 2021, 282, 10. [Google Scholar] [CrossRef] [PubMed]
- Al-Dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef]
- Deshmukh, P.; Kimbrough, S.; Krabbe, S.; Logan, R.; Isakov, V.; Baldauf, R. Identifying air pollution source impacts in urban communities using mobile monitoring. Sci. Total Environ. 2020, 715, 14. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; LeFevre, G.H. Emerging investigator series: The role of vegetation in bioretention for stormwater treatment in the built environment: Pollutant removal, hydrologic function, and ancillary benefits. Environ. Sci.-Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Chen, L.X.; Liu, C.M.; Zou, R.; Yang, M.; Zhang, Z.Q. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Zhang, K.M.; Zhang, S.J.; Baldauf, R.W.; Snow, R.; Deshmukh, P.; Zheng, X.; He, L.Q.; Hao, J.M. Evaluating mobile monitoring of on -road emission factors by comparing concurrent PEMS measurements. Sci. Total Environ. 2020, 736, 10. [Google Scholar] [CrossRef]
- Donaldson, G.H.; Joao, E.M. Using green infrastructure to add value and assist place-making in public realm developments. Impact Assess. Proj. Apprais. 2020, 38, 464–478. [Google Scholar] [CrossRef]
- Bruner, S.G.; Palmer, M.I.; Griffin, K.L.; Naeem, S. Planting design influences green infrastructure performance: Plant species identity and complementarity in rain gardens. Ecol. Appl. 2023, 33, 15. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Winfrey, B.K.; Payne, E.G.; Ambrose, R.F. Understanding the Roles of Biodiversity and Functional Diversity in Provision of Co-Benefits by Stormwater Biofilter Plant Communities. In Proceedings of the International Low Impact Development Conference, Nashville, TN, USA, 12–15 August 2018; pp. 203–212. [Google Scholar]
- Bortolini, L.; Semenzato, P. Low Impact Development Techniques for Urban Sustainable Design: A Rain Garden Case Study. In Proceedings of the 2nd International Conference on Landscape and Urban Horticulture, Bologna, Italy, 9–13 June 2009; pp. 327–330. [Google Scholar]
- Addas, A. Exploring the pattern of use and accessibility of urban green spaces: Evidence from a coastal desert megacity in Saudi Arabia. Environ. Sci. Pollut. Res. 2022, 29, 55757–55774. [Google Scholar] [CrossRef] [PubMed]
- Retno Nur, U.; Siti Nurul Rofiqo, I.; Yudi, S. Assessing Visual Quality of Landscape on Roadside Greenery in Yogyakarta City, Indonesia. Int. Rev. Spat. Plan. Sustain. Dev. 2022, 10, 256–279. [Google Scholar] [CrossRef]
- Pirotti, F.; Piragnolo, M.; D’Agostini, M.; Cavalli, R. Information Technologies for Real-Time Mapping of Human Well-Being Indicators in an Urban Historical Garden. Future Internet 2022, 14, 17. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Shuster, W.D.; Garmestani, A.S.; Furio, B.; Albro, S.L.; Gardiner, M.; Spring, M.; Green, O.O. A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. J. Environ. Manage. 2016, 183, 431–441. [Google Scholar] [CrossRef]
- Cilliers, S.S.; Siebert, S.J.; Du Toit, M.J.; Barthel, S.; Mishra, S.; Cornelius, S.F.; Davoren, E. Garden ecosystem services of Sub-Saharan Africa and the role of health clinic gardens as social-ecological systems. Landsc. Urban Plan. 2018, 180, 294–307. [Google Scholar] [CrossRef]
- Chen, S.Y.; van de Ven, F.H.M.; Zevenbergen, C.; Verbeeck, S.; Ye, Q.H.; Zhang, W.J.; Wei, L. Revisiting China’s Sponge City Planning Approach: Lessons from a Case Study on Qinhuai District, Nanjing. Front. Environ. Sci. 2021, 9, 17. [Google Scholar] [CrossRef]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance Assessment of Rain Gardens. J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Skorobogatov, A.; He, J.X.; Chu, A.; Valeo, C.; van Duin, B. The impact of media, plants and their interactions on bioretention performance: A review. Sci. Total Environ. 2020, 715, 14. [Google Scholar] [CrossRef]
- Barrett, M.E.; Limouzin, M.; Lawler, D.F. Effects of Media and Plant Selection on Biofiltration Performance. J. Environ. Eng.-ASCE 2013, 139, 462–470. [Google Scholar] [CrossRef]
- Zou, S.Z.; Zeng, Y.; Duan, W.J.; Li, R. Discussion about Plant Landscape Configuration in the Construction of Urban Rainwater Gardens. In Proceedings of the International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT), Bangkok, Thailand, 2–3 December 2017; pp. 77–83. [Google Scholar]
- Bahrou, A.; Bessette, D.L.; Brooks, J. Factors That Drive Resident Support for Planned Rain Gardens in Urban Neighborhoods. J. Sustain. Water Built Environ. 2024, 10, 11. [Google Scholar] [CrossRef]
Author | Authors’ Local Impact (m_Index) | Citation Frequency | Publication Number | Year First Published |
---|---|---|---|---|
LI JIAKE | 1.111 | 198 | 12 | 2016 |
TIRPAK R. ANDREW | 0.857 | 152 | 6 | 2018 |
LI YAJIAO | 0.778 | 151 | 8 | 2016 |
KAZEZYILMAZ-ALHAN CEVZA MELEK | 0.625 | 114 | 6 | 2017 |
CHUI TING FONG MAY | 0.600 | 232 | 7 | 2015 |
WANG MO | 0.556 | 178 | 8 | 2016 |
DELETIC ANA | 0.500 | 144 | 8 | 2013 |
ENGEL BERNARD A. | 0.385 | 920 | 5 | 2012 |
DAVIS ALLEN P. | 0.353 | 1178 | 7 | 2008 |
HUNT WILLIAM F. | 0.313 | 899 | 6 | 2009 |
Source | Country | Research Content | Conclusions |
---|---|---|---|
Davis et al. [23] | USA | The current status of bioretention technology applications is discussed, and future needs are analyzed. | Bioretention technologies are effective in reducing runoff and improving water quality, but pollutant removal mechanisms need to be improved. |
Guo et al. [24] | China | Effect of runoff infiltration on nitrogen and phosphorus contents of rain garden soils and their relationship with enzyme activities. | Runoff infiltration affects the nitrogen and phosphorus content of the soil, which in turn affects the ecological function of the rain garden. |
Li et al. [25] | China | Evaluating the impacts of rain gardens on hydrology and water quality in urbanized areas using SWMM (Stormwater Water Management Model) modeling. | Demonstrate that rain gardens have significant ecological benefits and water quality improvement in urban stormwater management. |
Fletcher et al. [26] | Australia | An overview of recent advances in urban runoff reuse in Australia. | Challenges remain, such as complexity of water quality management and high system maintenance costs. |
Wang et al. [27] | China | Analyzed the cost-effectiveness of bioretention systems in the context of climate change and urbanization scenarios. | The design and implementation of bioretention systems need to take into account regional climate and urbanization to achieve optimal benefits |
Source | Country | Research Content | Conclusions | Cluster |
---|---|---|---|---|
Davis et al. [23] | USA | Current application practices of bioretention technologies and their future development needs are summarized. | Bioretention technologies effectively reduce runoff and enhance water quality, but their stability and overall effectiveness require further improvement. | #0 using bioretention |
Ahiablame et al. [41] | USA | Evaluated the effectiveness of low-impact development (LID) practices in managing urban stormwater. | LID practices are very effective at reducing urban runoff and enhancing water quality. | #3 stormwater management |
Bratieres et al. [40] | Australia | Assessed the effectiveness of bioretention systems in removing nutrients and sediments. | Enhanced biofiltration systems have demonstrated outstanding effectiveness in removing nutrients like nitrogen and phosphorus. | #0 using bioretention |
Hatt et al. [39] | Australia | The hydrologic performance and pollutant removal capabilities of bioretention systems were assessed. | Stormwater biofiltration systems provide significant runoff reduction and pollutant removal under field conditions. | #7 biological retention |
Davis et al. [42] | USA | The effectiveness of bioretention systems in managing urban stormwater is examined. | Bioretention systems reduce runoff volume and remove pollutants under laboratory conditions. | #7 biological retention |
Source | Country | Research Content | Conclusions |
---|---|---|---|
Kazemi et al. [57] | Australia | A study of street-scale bioretention basins in Melbourne and their impact on local biodiversity. | Melbourne’s street bioretention basins enhance local biodiversity. |
Kazemi et al. [59] | Australia | A study of streetscape biodiversity in Australian urban environments and the role of bioretention drains in it. | Bioretention drains significantly increased the biodiversity of the streetscape in the Australian urban environment. |
Morash et al. [60] | USA | Focuses on the role of rain gardens in capturing pollutants, increasing biodiversity, and enhancing ecosystem resilience. | Rain gardens significantly increase pollutant capture rates, enhance biodiversity, and increase ecosystem resilience in residential neighborhoods. |
Kasprzyk et al. [58] | Poland | The technical solution of introducing rain gardens and the benefits they bring is explored using the city of Gdansk, Poland, as a case study. | The introduction of rain gardens has significantly improved stormwater management in Gdańsk and enhanced biodiversity. |
Shreewatsav, M et al. [61] | India | Exploring how rainwater runoff can be used as a resource to enhance urban green infrastructure on the Karnataka Nice Highway. | Effective management of stormwater runoff can contribute to the improvement of green space construction and ecological restoration around highways, thus promoting environmental sustainability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhuang, J.; Sun, C.; Wang, L.; Zhang, M.; Fan, C.; Li, J. The Application of Rain Gardens in Urban Environments: A Bibliometric Review. Land 2024, 13, 1702. https://doi.org/10.3390/land13101702
Wang M, Zhuang J, Sun C, Wang L, Zhang M, Fan C, Li J. The Application of Rain Gardens in Urban Environments: A Bibliometric Review. Land. 2024; 13(10):1702. https://doi.org/10.3390/land13101702
Chicago/Turabian StyleWang, Mo, Ji’an Zhuang, Chuanhao Sun, Lie Wang, Menghan Zhang, Chengliang Fan, and Jianjun Li. 2024. "The Application of Rain Gardens in Urban Environments: A Bibliometric Review" Land 13, no. 10: 1702. https://doi.org/10.3390/land13101702
APA StyleWang, M., Zhuang, J., Sun, C., Wang, L., Zhang, M., Fan, C., & Li, J. (2024). The Application of Rain Gardens in Urban Environments: A Bibliometric Review. Land, 13(10), 1702. https://doi.org/10.3390/land13101702