Comparison of Nitrous Oxide Consumption of Paddy Soils Developed from Three Parent Materials in Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Soil Physicochemical Properties
2.2. Experimental Design
2.3. Gas Collection and Measurement
2.4. Soil Sampling and Measurement
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Cumulative Concentrations Changes of N2O and N2 Above the Soil Cores
3.2. Total N2O Consumption and N2 Increment
3.3. Changes in Soil Inorganic Nitrogen and DOC
3.4. Correlation Between N2O Consumption and Soil Factors in Different Types of Paddy Soil
4. Discussion
4.1. N2O Consumption Potential of Flooded Paddy Soils Was Considerable
4.2. The Impact Factors Dominating the N2O Consumption and N2 Production of Flooded Paddy Soils Vary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.B.; Xia, L.L.; Yan, X.Y. Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil. Biol. Fertil. Soils 2014, 50, 891–900. [Google Scholar]
- Zou, J.W.; Huang, Y.; Zheng, X.H.; Wang, Y.S. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmos. Environ. 2007, 41, 8030–8042. [Google Scholar]
- Ravishankara, A.R.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar]
- Syakila, A.; Kroeze, C.; Slomp, C.P. Neglecting sinks for N2O at the earth’s surface: Does it matter? J. Integr. Environ. Sci. 2010, 7, 79–87. [Google Scholar] [CrossRef]
- Hansen, M.; Clough, T.J.; Elberling, B. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biol. Biochem. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Yang, W.H.; Silver, W.L. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape. Glob. Chang. Biol. 2016, 22, 2228–2237. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.L.; Bemoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Majumdar, D. Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2653–2684. [Google Scholar]
- Goldberg, S.D.; Gebauer, G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biol. Biochem. 2009, 41, 1986–1995. [Google Scholar]
- Shan, J.; Sanford, R.A.; Chee-Sanford, J.; Ooi, S.K.; Löffler, F.E.; Konstantinidis, K.T.; Yang, W.H. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob. Chang. Biol. 2021, 27, 2669–2683. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, R.; Yang, H.C.; Wang, Q.; Zhang, W.Z.; Hou, H.J.; Wu, J.S.; Wei, W.X. Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil. Geoderma 2017, 286, 64–72. [Google Scholar]
- Fowler, D.; Pyle, J.A.; Raven, J.A.; John, A.; Raven, J.A.; Sutton, M.A. The global nitrogen cycle in the twenty-first century: Introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130165. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.Y.; Xu, H.F.; Zhang, W.Z.; Hou, H.J.; Qin, H.L.; Liu, Y.; Zhang, L.M.; Fang, Y.; Wei, W.X.; Sheng, R. The characteristics of the community structure of typical nitrous oxide-reducing denitrifiers in agricultural soils derived from different parent materials. Appl. Soil Ecol. 2019, 142, 8–17. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Mooney, S.J. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases. Soil Till. Res. 2013, 132, 39–46. [Google Scholar] [CrossRef]
- ŠImek, M.; Cooper, J.E. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
- Liu, B.B.; Mørkved, P.T.; Frostegård, Å.; Bakken, L.R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol 2010, 72, 407–417. [Google Scholar]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Klemedtsson, L.; Arnold, K.V.; Weslien, P.; Gundersen, P. Soil C/N ratio as a scalar parameter to predict nitrous oxide emissions. Glob. Chang. Biol. 2005, 11, 1142–1147. [Google Scholar] [CrossRef]
- Ning, Q.S.; Gu, Q.; Shen, J.P.; Lv, X.T.; Yang, J.J.; Zhang, X.M.; He, J.Z.; Huang, J.H. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. J. Soil Sediment 2015, 15, 694–704. [Google Scholar] [CrossRef]
- Sanchez-Martin, L.; Vallejo, A.; Dick, J.; Skiba, U.M. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biol. Biochem. 2008, 40, 142–151. [Google Scholar] [CrossRef]
- Miller, M.N.; Zebarth, B.J.; Dandie, C.E.; Burton, D.L.; Trevors, J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562. [Google Scholar] [CrossRef]
- Saleh-Lakha, S.; Shannon, K.E.; Henderson, S.L.; Goyer, C.; Trevors, J.T.; Zebarth, B.J.; Burton, D.L. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl. Environ. Microbiol. 2009, 75, 3903–3911. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, T.; Stêpniewski, W.; Brzeziñska, M.; Majewska, U. Various textured soil as nitrous oxide emitter and consumer. Int. Agrophys. 2011, 25, 287–297. [Google Scholar] [CrossRef]
- Yano, M.; Toyoda, S.; Tokida, T.; Hayashi, K.; Hasegawa, T.; Makabe, A.; Koba, K.; Yoshida, N. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation. Soil Biol. Biochem. 2014, 70, 66–78. [Google Scholar] [CrossRef]
- Warneke, S.; Macdonald, B.C.T.; Macdonald, M.L.; Sanderman, J.; Farrell, M. Abiotic dissolution and biological uptake of nitrous oxide in Mediterranean woodland and pasture soil. Soil Biol. Biochem. 2015, 82, 62–64. [Google Scholar] [CrossRef]
- Yoon, S.; Song, B.; Phillips, R.L.; Chang, J.; Song, M.J. Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiol. Ecol. 2019, 95, fiz066. [Google Scholar] [CrossRef]
- Siljanen, H.M.P.; Welti, N.; Voigt, C.; Heiskanen, J.; Biasi, C.; Martikainen, P.J. Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake. Plant Soil 2020, 454, 121–138. [Google Scholar]
- Gao, D.; Hou, L.; Liu, M.; Zheng, Y.; Yin, G.; Niu, Y.H. N2O emission dynamics along an intertidal elevation gradient in a subtropical estuary: Importance of N2O consumption. Environ. Res. 2022, 205, 112432. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Liu, C.; Yang, M.; Zhong, J.; Wang, W.; Li, Z.; Li, K. Stronger link of nosZI than nosZII to the higher total N2O consumption in anoxic paddy surface soils. Geoderma 2022, 425, 116035. [Google Scholar] [CrossRef]
- Wang, W.; Li, K.; Li, J.; Zhong, J.M.; Xia, L.; Chen, W.Q.; Li, Z.H.; Wang, L. N2O consumption, uptake, and microbial reduction processes in flooded sandy loamy paddy soils. Soil Sci. Soc. Am. J. 2024, 88, 631–644. [Google Scholar] [CrossRef]
- Beare, M.H.; Gregorich, E.G.; St-Georges, P. Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem. 2009, 41, 611–621. [Google Scholar] [CrossRef]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said-Pullicino, D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar] [CrossRef]
- Liu, S.W.; Qin, Y.M.; Zou, J.W.; Liu, Q.H. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China. Sci. Total Environ. 2010, 408, 906–913. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Z.; Dannenmann, M.; Carminati, A.; Willibald, G.; Kiese, R.; Wolf, B.; Veldkamp, E.; Butterbach-Bahl, K.; Corre, M. Disentangling gross N2O production and consumption in soil. Sci. Rep. 2016, 6, 36517. [Google Scholar] [CrossRef]
- Gao, D.; Hou, L.; Liu, M.; Li, X.; Zheng, Y.; Yin, G.; Wu, D.; Yang, Y.; Han, P.; Liang, X.; et al. Mechanisms responsible for N2O emissions from intertidal soils of the Yangtze Estuary. Sci. Total Environ. 2020, 716, 137073. [Google Scholar] [CrossRef] [PubMed]
- Warneke, S.; Schipper, L.A.; Bruesewitz, D.A.; McDonald, I.; Cameron, S. Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol. Eng. 2011, 37, 511–522. [Google Scholar] [CrossRef]
- Liu, H.S.; Li, Y.F.; Pan, B.B.; Zheng, X.Z.; Yu, J.H.; Ding, H.; Zhang, Y.S. Pathways of soil N2O uptake, consumption, and its driving factors: A review. Environ. Sci. Pollut. Res. 2022, 29, 30850–30864. [Google Scholar] [CrossRef]
- Blackmer, A.M.; Bremner, J.M. Potential of soil as a sink for atmospheric nitrous oxide. Geophys. Res. Lett. 1976, 3, 739–742. [Google Scholar] [CrossRef]
- Qin, S.; Ding, K.; Clough, T.J. Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation. Biol. Fertil. Soils 2017, 53, 723–727. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, J.W.; Zheng, X.H.; Wang, Y.S.; Xu, X.K. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar]
- Murray, R.H.; Erler, D.V. Nitrous oxide fluxes in estuarine environments: Response to global change. Glob. Chang. Biol. 2015, 21, 3219–3245. [Google Scholar] [CrossRef] [PubMed]
- Domeignoz-Horta, L.A.; Putz, M.; Spor, A.; Bru, D.; Breuil, M.C.; Hallin, S.; Philippot, L. Non-denitrifying nitrous oxide-reducing bacteria—An effective N2O sink in soil. Soil Biol. Biochem. 2016, 103, 376–379. [Google Scholar] [CrossRef]
- IAEA. Manual on Measurement of Methane and Nitrous Oxide Emissions from Agriculture; Food and Agriculture Organization of the United Nations; The International Atomic Energy Agency: Vienna, Austria, 1992. [Google Scholar]
- IPCC. The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Schlesinger, W.H. An estimate of the global sink for nitrous oxide in soils. Glob. Chang. Biol. 2013, 19, 2929–2931. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.M.; Song, Y.Q.; Yang, M.; Wang, W.; Li, Z.H.; Zhao, L.Y.; Li, K.; Wang, L. Strong N2O uptake capacity of paddy soil under different water conditions. Agric. Water Manag. 2023, 278, 108146. [Google Scholar] [CrossRef]
- Rathnayaka, S.C.; Mankad, N.P. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coordin. Chem. Rev. 2021, 429, 213718. [Google Scholar] [CrossRef]
- Claudio, B.; Giacomo, S.; Mohammad, W.; Silvia, F. Background levels of trace elements and soil geochemistry at regional level in NE Italy. J. Geochem. Explor. 2011, 109, 125–133. [Google Scholar]
- Russenes, A.L.; Korsaeth, A.; Bakken, L.R.; Dörsch, P. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil. Soil Biol. Biochem. 2016, 99, 36–46. [Google Scholar] [CrossRef]
- Zhang, J.Q.; He, P.; Liu, Y.H.; Du, W.; Jing, H.C.; Nie, C. Soil properties and microbial abundance explain variations in N2O fluxes from temperate steppe soil treated with nitrogen and water in Inner Mongolia, China. Appl. Soil Ecol. 2021, 165, 103984. [Google Scholar] [CrossRef]
- Juhanson, J.; Hallin, S.; Söderström, M.; Stenberg, M.; Jones, C.M. Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biol. Biochem. 2017, 115, 82–91. [Google Scholar] [CrossRef]
Soil Types | Soil Texture | pH (H2O) | SOC (%) | OM (%) | DOC (mg kg−1) | AK (mg kg−1) | TN (mg kg−1) | NH4+-N (mg kg−1) | NO3—N (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | |||||||||
R1 | 46.31 ± 0.52 c | 42.78 ± 0.52 c | 10.91 ± 0.00 d | 5.13 ± 0.03 d | 1.66 ± 0.05 f | 2.87 ± 0.08 f | 295.13 ± 13.19 d | 234.76 ± 2.29 a | 1.64 ± 0.01 e | 38.80 ± 0.68 d | 7.32 ± 0.28 b |
R2 | 44.56 ± 0.08 d | 38.38 ± 0.08 d | 17.06 ± 0.00 b | 4.69 ± 0.02 f | 1.67 ± 0.07 f | 2.88 ± 0.11 f | 343.41 ± 3.13 c | 145.45 ± 4.20 c | 1.52 ± 0.00 f | 21.39 ± 0.52 f | 2.58 ± 0.03 d |
R3 | 42.01 ± 0.63 e | 42.99 ± 0.63 c | 15.00 ± 0.00 c | 5.11 ± 0.01 d | 1.97 ± 0.02 e | 3.40 ± 0.04 e | 338.78 ± 3.29 c | 182.65 ± 1.97 b | 2.03 ± 0.03 d | 138.84 ± 0.34 a | 4.19 ± 0.38 c |
S1 | 75.81 ± 0.72 b | 24.19 ± 0.72 e | 0.00 ± 0.00 f | 5.13 ± 0.06 d | 3.13 ± 0.01 a | 5.39 ± 0.02 a | 401.25 ± 29.79 b | 88.49 ± 2.02 ef | 2.69 ± 0.07 a | 41.40 ± 1.82 c | 2.49 ± 0.29 d |
S2 | 81.71 ± 0.12 a | 18.29 ± 0.12 g | 0.00 ± 0.00 f | 4.84 ± 0.05 e | 2.48 ± 0.04 c | 4.28 ± 0.06 c | 225.49 ± 7.56 e | 48.98 ± 2.85 g | 2.23 ± 0.04 c | 20.39 ± 0.39 f | 2.59 ± 0.55 d |
S3 | 76.54 ± 0.21 b | 22.74 ± 0.21 f | 0.71 ± 0.00 e | 4.85 ± 0.02 e | 2.83 ± 0.12 b | 4.88 ± 0.21 b | 596.42 ± 22.09 a | 51.18 ± 2.60 g | 2.48 ± 0.16 b | 92.90 ± 4.03 b | 4.18 ± 0.28 c |
C1 | 31.33 ± 1.37 f | 51.60 ± 1.37 b | 17.07 ± 0.01 b | 6.16 ± 0.02 a | 2.46 ± 0.06 c | 4.24 ± 0.10 c | 222.74 ± 5.02 e | 123.00 ± 1.35 d | 2.50 ± 0.01 b | 26.25 ± 0.04 e | 3.66 ± 0.16 c |
C2 | 27.65 ± 0.80 g | 55.31 ± 0.85 a | 17.03 ± 0.09 b | 5.33 ± 0.04 c | 2.17 ± 0.05 d | 3.75 ± 0.09 d | 191.84 ± 1.31 f | 91.61 ± 7.70 e | 1.94 ± 0.00 d | 20.90 ± 0.18 f | 2.38 ± 0.22 d |
C3 | 26.85 ± 0.11 g | 50.68 ± 1.07 b | 22.47 ± 1.10 a | 6.09 ± 0.01 b | 1.60 ± 0.04 f | 2.76 ± 0.07 f | 217.68 ± 9.82 e | 83.23 ± 0.20 f | 1.40 ± 0.01 g | 15.29 ± 0.17 g | 9.85 ± 0.88 a |
Times | Treatments | Soil Types | Times × Treatments | Times × Soil Types | Treatments × Soil Types | Treatments × Times × Soil Types | |
---|---|---|---|---|---|---|---|
N2O | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
N2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | n.s |
Soil Types | N2O Addition/µg | N2O Content in Pot/µg | N2O Total Consumption/µg | N2 Content of N2O Treatment in Pot/mg | N2 Content of CK Treatment in Pot/mg | N2 Total Increment/mg | |||
---|---|---|---|---|---|---|---|---|---|
0 h | 96 h | 0 h | 96 h | 0 h | 96 h | ||||
R1 | 3401.16 | 0.02 ± 0.01 c | 4.91 ± 0.56 d | 3396.27 ± 0.56 ab | 2.88 ± 0.28 a | 6.84 ± 0.54 a | 3.07 ± 0.27 a | 4.23 ± 0.47 a | 2.80 ± 0.25 a |
R2 | 0.02 ± 0.00 c | 78.04 ± 9.80 b | 3323.14 ± 9.80 c | 2.05 ± 0.16 b | 5.56 ± 0.39 b | 1.97 ± 0.31 b | 3.33 ± 0.47 b | 2.14 ± 0.07 d | |
R3 | 0.12 ± 0.00 a | 4.68 ± 0.43 d | 3396.60 ± 0.43 ab | 1.43 ± 0.26 c | 6.46 ± 0.46 a | 1.55 ± 0.38 d | 4.08 ± 0.29 a | 2.51 ± 0.25 abcd | |
S1 | 0.01 ± 0.00 c | 2.61 ± 0.67 f | 3398.56 ± 0.67 a | 1.16 ± 0.15 d | 4.65 ± 0.07 cd | 1.19 ± 0.17 e | 2.09 ± 0.11 d | 2.59 ± 0.19 abc | |
S2 | nd | 169.64 ± 22.51 a | 3231.53 ± 22.51 d | 1.01 ± 0.04 d | 3.88 ± 0.13 e | 1.05 ± 0.05 e | 1.70 ± 0.16 d | 2.22 ± 0.19 cd | |
S3 | 0.05 ± 0.01 b | 18.53 ± 3.00 c | 3382.68 ± 3.00 b | 1.06 ± 0.07 d | 4.35 ± 0.12 d | 1.06 ± 0.04 e | 1.92 ± 0.23 d | 2.42 ± 0.22 bcd | |
C1 | nd | 1.69 ± 0.37 f | 3399.47 ± 0.37 a | 1.02 ± 0.03 d | 5.04 ± 0.22 bc | 1.01 ± 0.06 e | 2.21 ± 0.17 d | 2.82 ± 0.23 a | |
C2 | nd | 2.14 ± 0.05 f | 3399.03 ± 0.05 a | 1.08 ± 0.02 d | 5.49 ± 0.15 b | 1.05 ± 0.03 e | 2.80 ± 0.20 c | 2.66 ± 0.03 ab | |
C3 | nd | 2.49 ± 0.67 f | 3398.67 ± 0.67 a | 1.61 ± 0.11 c | 6.73 ± 0.14 a | 1.59 ± 0.07 d | 3.87 ± 13 a | 2.84 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, M.; Li, J.; Li, Z.; Wright, A.; Li, K. Comparison of Nitrous Oxide Consumption of Paddy Soils Developed from Three Parent Materials in Subtropical China. Land 2024, 13, 1710. https://doi.org/10.3390/land13101710
Wang L, Yang M, Li J, Li Z, Wright A, Li K. Comparison of Nitrous Oxide Consumption of Paddy Soils Developed from Three Parent Materials in Subtropical China. Land. 2024; 13(10):1710. https://doi.org/10.3390/land13101710
Chicago/Turabian StyleWang, Ling, Man Yang, Jun Li, Zhaohua Li, Alan Wright, and Kun Li. 2024. "Comparison of Nitrous Oxide Consumption of Paddy Soils Developed from Three Parent Materials in Subtropical China" Land 13, no. 10: 1710. https://doi.org/10.3390/land13101710
APA StyleWang, L., Yang, M., Li, J., Li, Z., Wright, A., & Li, K. (2024). Comparison of Nitrous Oxide Consumption of Paddy Soils Developed from Three Parent Materials in Subtropical China. Land, 13(10), 1710. https://doi.org/10.3390/land13101710