The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia
Abstract
:1. Introduction
- (1)
- To use the FCarbon model and available data from the Information System of Forest Management to simulate the medium-term impacts of CTNF on the growing stock, wood increment and harvesting possibilities of forests in Slovakia;
- (2)
- To compare the impacts of transition to CTNF with the simulated medium-term impacts of current forest management and to verify the hypothesis of the equivalence of these two management systems in terms of wood production.
2. Materials and Methods
2.1. Study Design
2.2. Study Area
2.3. Forest Growth Model
2.4. Model Calibration
2.5. Scenario Business as Usual (BAU)
2.6. Scenario Close-to-Nature Forestry (CTNF)
3. Results
4. Discussion
4.1. Close-to-Nature Forestry and Wood Production
4.2. Projections of Forest Management and Wood Production
4.3. Species Specific Growth Dispositions for CTNF
4.4. Close-to-Nature Forestry and Climate Change
4.5. Close-to-Nature Forestry and Ecosystem Services
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassegawa, M.; Van Brusselen, J.; Cramm, M.; Verkerk, P.J. Wood-based products in the circular bioeconomy: Status and opportunities towards environmental sustainability. Land 2022, 11, 2131. [Google Scholar] [CrossRef]
- Giurca, A.; Nichiforel, L.; Stăncioiu, P.T.; Drăgoi, M.; Dima, D.P. Unlocking Romania’s forest-based bioeconomy potential: Knowledge-aAction-aaps and the way forward. Land 2022, 11, 2001. [Google Scholar] [CrossRef]
- Cornelis van Kooten, G. The challenge of mitigating climate change through forestry activities: What are the rules of the game? Ecol. Econ. 2018, 146, 35–43. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2012, 3, 203–207. [Google Scholar] [CrossRef]
- Roitsch, D.; Abruscato, S.; Lovrić, M.; Lindner, M.; Orazio, C.; Winkel, G. Close-to-nature forestry and intensive forestry—Two response patterns of forestry professionals towards climate change adaptation. For. Policy Econ. 2023, 154, 103035. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncina, A.; Chauvin, C.; Drössler, L.; García-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Hlásny, T.; Trombik, J.; Dobor, L.; Barcza, Z.; Barka, I. Future climate of the Carpathians: Climate change hot-spots and implications for ecosystems. Reg. Environ. Chang. 2016, 16, 1495–1506. [Google Scholar] [CrossRef]
- Gubka, A.; Nikolov, C.; Gubka, K.; Galko, J.; Vakula, J.; Kunca, A.; Leontovyč, R. History, present and expected future of forests in Slovakia. Am. J. Plant Sci. 2013, 4, 711–716. [Google Scholar] [CrossRef]
- Báliková, K.; Šálka, J. Are silvicultural subsidies an effective payment for ecosystem services in Slovakia? Land Use Policy 2022, 116, 106056. [Google Scholar] [CrossRef]
- Renčo, M.; Gömöryová, E.; Čerevková, A. Close-to-nature forest management effects on soil nematodes and microbial activity in pine plantations on aeolian sands. Community Ecol. 2024, 1–12. [Google Scholar] [CrossRef]
- Roessiger, J.; Kulla, L.; Murgaš, V.; Sedliak, M.; Šebeň, V. Economically optimised target state of uneven-aged forest management for main forest types in Slovakia. Cent. Eur. For. J. 2023, 69, 233–247. [Google Scholar] [CrossRef]
- PRO SILVA Association. Pro Silva Principles; PRO SILVA Association: Zürich, Switzerland, 2012; 67p. [Google Scholar]
- O’Hara, K.L.; Ramage, B.S. Silviculture in an uncertain world: Utilizing multi-aged management systems to integrate disturbance. Forestry 2013, 86, 401–410. [Google Scholar] [CrossRef]
- Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Knoke, T.; Paul, C.; Gosling, E.; Jarisch, I.; Mohr, J.; Seidl, R. Assessing the economic resilience of different management systems to severe forest disturbance. Environ. Resour. Econ. 2023, 84, 343–381. [Google Scholar] [CrossRef]
- Ammon, W. Das plenterprinzip in der schweizerischen forstwirtschaft; folgerungen aus 30 jahren bewirtschaftung von plenterwalden; Haupt: Bern, Switzerland, 1937; 108p. [Google Scholar]
- Knoke, T. The economics of continuous cover forestry. In Managing Forest Ecosystems—Continuous Cover Forestry, 2nd ed.; Pukkala, T., Gadow, K., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 167–193. [Google Scholar]
- Schütz, J.P. Der Planterbetrieb; ETH: Zürich, Switzerland, 1989; 54p. [Google Scholar]
- Tarp, P.; Helles, F.; Holten-Andersen, P.; Bo Larsen, J.; Strange, N. Modelling near-natural silvicultural regimes for beech—An economic sensitivity analysis. For. Ecol. Manag. 2000, 130, 187–198. [Google Scholar] [CrossRef]
- Kulla, L.; Roessiger, J.; Kovalčík, M.; Murgaš, V.; Sedliak, M. Modelové porovnanie nákladov a výnosov prírode blízkeho a bežného hospodárenia v lesoch (Model comparison of costs and benefits of close-to-nature and conventional forest management). In Current Issues of the Economy and Forestry Policy of the Slovak Republic: Proceedings from the Scientific Conference; Šebeň, V., Sarvašová, Z., Eds.; National Forest Centre—Forest Research Institute: Zvolen, Slovakia, 2021; pp. 73–82. (In Slovak) [Google Scholar]
- O’Hara, K. What is close-to-nature silviculture in a changing world? For. Int. J. For. Res. 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Pukkala, T. Which type of forest management provides most ecosystem services? For. Ecosyst. 2016, 3, 9. [Google Scholar] [CrossRef]
- NFC; MARD SR. Koncepcia Prírode Blízkeho Hospodárenia v Lesoch Slovenskej Republiky (The Concept of Close-to-Nature Management in the Forests of Slovakia); National Forest Centre: Zvolen, Slovakia, 2019; 31p. (In Slovak) [Google Scholar]
- Wikström, P. A solution method for uneven-aged management applied to norway spruce. For. Sci. 2000, 46, 452–463. [Google Scholar] [CrossRef]
- Václavík, J. Budoucnost lesnictví nemůže být postavená na mýtech (The future of forestry cannot be built on myths). Les-Letokruhy 2019, 75, 18–22. (In Czech) [Google Scholar]
- NFC; MARD SR. Národný Lesnícky Program Slovenskej Republiky pre Obdobie Rokov 2025–2030 (National Foresty Programme of the Slovak Republiky for the Period 2025–2030); National Forest Centre: Zvolen, Slovakia, 2024; 95p. (In Slovak) [Google Scholar]
- Bravo, F.; Fabrika, M.; Ammer, C.; Barreiro, S.; Bielak, K.; Coll, L.; Fonseca Fidalgo, T.; Kangur, A.; Löf, M.; Merganičová, K.; et al. Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. For. Syst. 2019, 28, eR002. [Google Scholar] [CrossRef]
- Schneider, R.; Franceschini, T.; Duchateau, E.; Bérubé-Deschênes, A.; Dupont-Leduc, L.; Proudfoot, S.; Power, H.; de Coligny, F. Influencing plantation stand structure through close-to-nature silviculture. Eur. J. For. Res. 2021, 140, 567–587. [Google Scholar] [CrossRef]
- Caicoya, A.T.; Poschenrieder, W.; Blattert, C.; Eyvindson, K.; Hartikainen, M.; Burgas, D.; Mönkkönen, M.; Uhl, E.; Vergarechea, M.; Pretzsch, H. Sectoral policies as drivers of forest management and ecosystems services: A case study in Bavaria, Germany. Land Use Policy 2023, 130, 106673. [Google Scholar] [CrossRef]
- Barka, I. FCarbon. 2024. Available online: https://web.nlcsk.org/?page_id=17445 (accessed on 20 August 2024).
- Grassi, G.; Pilli, R. Projecting Forest GHG Emissions and Removals Based on the “Continuation of Current Forest Management”: The JRC Method. EUR 28623 EN; Publications Office of the European Union: Luxembourg, 2017; 26p. [Google Scholar]
- Forsell, N.; Korosuo, A.; Federici, S.; Gusti, M.; Rincón-Cristóbal, J.J.; Rüter, S.; Sánchez-Jiménez, B.; Dore, C.; Brajterman, O.; Gardiner, J. Guidance on Developing and Reporting Forest Reference Levels in Accordance with Regulation (EU) 2018/841; European Commision: Brussels, Belgium, 2018; 120p. [Google Scholar]
- Barka, I.; Priwitzer, T.; Hušťáková, E. National Forestry Accounting Plan of the Slovak Republic Including a Proposed Forest Reference Level; Ministry of Agriculture and Rural Development: Bratislava, Slovakia, 2018; 97p.
- Halaj, J.; Petráš, R. Rastové Tabuľky Hlavných Drevín (Growth Charts of the Main Trees); Slovak Academic Press: Bratislava, Slovakia, 1998; 325p. (In Slovak) [Google Scholar]
- Petráš, R.; Mecko, J. Rastové Tabuľky Topoľových Klonov (Poplar Clone Growth Charts); Slovak Academic Press: Bratislava, Slovakia, 2005; 136p. (In Slovak) [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 22 August 2024).
- Šebeň, V. Národná inventarizácia a monitoring lesov Slovenskej republiky 2015–2016. Informácie, metódy, výsledky (National Forest Inventory of the Slovak Republic 2015–2016. Information’s, Methods, Results); National Forest Centre: Zvolen, Slovakia, 2017; 255p. (In Slovak)
- MARD SR; NFC. Report on Forest Management in the Slovak Republic for the Year 2022 (Green Report); Ministry of Agriculture and Rural Development of the Slovak Republic: Bratislava, Slovakia, 2023; 66p. [Google Scholar]
- Vladovič, J. Oblastné Východiská a Princípy Hodnotenia Drevinového Zloženia a Ekologickej Stability Lesov Slovenska (Regional Starting Points and Principles of Assessment of Wood Species Composition and Ecological Stability of Forests in Slovakia); Príroda: Bratislava, Slovakia, 2003; 160p. (In Slovak) [Google Scholar]
- Machanský, M. Metodický Postup Kalkulácie Zásoba—Ťažba—Prírastok pre Alternatívne Spôsoby Obhospodarovania Lesov (Methodical Procedure for Calculating Stock—Extraction—Increase for Alternative Methods of Forest Management); National Forest Centre: Zvolen, Slovakia, 2017; 53p. (In Slovak) [Google Scholar]
- Šmelko, Š. Dendrometria (Dendrometry); Technical University in Zvolen: Zvolen, Slovakia, 2000; 399p. (In Slovak) [Google Scholar]
- Fabrika, M.; Pretzsch, H. Analýza a Modelovanie Lesných Ekosystémov (Analysis and Modeling of Forest Ecosystems); Technical University in Zvolen: Zvolen, Slovakia, 2011; 599p. (In Slovak) [Google Scholar]
- Pukkala, T.; Lähde, E.; Laiho, O. Continuous cover forestry in Finland—Recent research results. In Continuous Cover Forestry. Managing Forest Ecosystems; Pukkala, T., von Gadow, K., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2012; pp. 85–128. [Google Scholar]
- Knoke, T. Ökonomische aspekte der holzproduktion in ungleichaltrigen Wäldern: Einführende untersuchungen zur forstbetriebsplanung im kreuzberger gemeindewald. Economic aspects on timber production in uneven-aged forests: Preliminary studies on forest management planning in the Kreuzberg Municipal Forest. Forstwiss. Cent. 1997, 116, 178–196. [Google Scholar]
- Räty, M.; Juutinen, A.; Korhonen, K.T.; Syrjänen, K.; Kärkkäinen, L. EU wood production vs. biodiversity goals—Possible reconciliation in Finland? Scand. J. For. Res. 2023, 38, 287–299. [Google Scholar] [CrossRef]
- Díaz-Yáńez, O.; Pukkala, T.; Packalen, P.; Peltola, H. Multifunctional comparison of different management strategies in boreal forests. Forestry 2019, 93, 84–95. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Berger, A.; Gschwantner, T.; Schadauer, K.; Lejeune, P.; Perin, J.; Pitchugin, M.; Adolt, R.; Zeman, M.; Johannsen, V.K.; et al. Harmonised projections of future forest resources in Europe. Ann. For. Sci. 2019, 76, 79. [Google Scholar] [CrossRef]
- Moravčík, M.; Konôpka, J.; Tutka, J.; Burgan, K.; Zúbrik, M.; Balogh, P. Vízia, Prognóza a Stratégia Rozvoja Lesníctva na Slovensku (Vision, Prognosis and Strategy for the Development of Forestry in Slovakia); National Forest Centre: Zvolen, Slovakia, 2009; 172p, Available online: https://www.forestportal.sk/wp-content/uploads/2022/06/VIZIA-PROGNOZA-A-STRATEGIA-ROZVOJA-LESNICTVA-NA-SLOVENSKU.pdf (accessed on 19 August 2024). (In Slovak)
- Roessiger, J.; Kulla, L.; Murgaš, V.; Sedliak, M.; Šebeň, V.; Štefančík, I. Aké rozdiely medzi PBHL a bežným hospodárením ukazujú údaje? (What differences between near-natural and business-as-usual show the data? In Current Issues of the Economy and Forestry Policy of the Slovak Republic: Proceedings from the Scientific Conference; Šebeň, V., Sarvašová, Z., Eds.; National Forest Centre—Forest Research Institute: Zvolen, Slovakia, 2023; pp. 151–161. (In Slovak) [Google Scholar]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef]
- Zimmermann, J.; Hauck, M.; Dulamsuren, C.; Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems 2015, 18, 560–572. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 2016, 31, 673–686. [Google Scholar] [CrossRef]
- Hlásny, T.; Mátyás, C.; Seidl, R.; Kulla, L.; Merganičová, K.; Trombik, J.; Dobor, L.; Barcza, Z.; Konôpka, B. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Cent. Eur. For. J. 2014, 60, 5–18. [Google Scholar] [CrossRef]
- Hlásny, T.; Barka, I.; Roessiger, J.; Kulla, L.; Trombik, J.; Sarvašová, Z.; Bucha, T.; Kovalčík, M.; Čihák, T. Conversion of Norway spruce forests in the face of climate change: A case study in Central Europe. Eur. J. For. Res. 2017, 136, 1013–1028. [Google Scholar] [CrossRef]
- Frank, A.; Howe, G.T.; Sperisen, C.; Brang, P.; St. Clair, J.B.; Schmatz, D.R.; Heiri, C. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Chang. Biol. 2017, 23, 5358–5371. [Google Scholar] [CrossRef] [PubMed]
- Leites, L.; Benito Garzón, M. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change. Glob. Chang. Biol. 2023, 29, 4711–4730. [Google Scholar] [CrossRef]
- Bruchánik, R. LESY SR, š.p. a ProSilva—Spoločne k Prírode Blízkemu Obhospodarovaniu Lesa; (LESY SR, š.p. and ProSilva—Together for Close-to-Nature Forestry); Lesy SR, š.p.: Banská Bystrica, Slovakia, 2019; 154p. (In Slovak) [Google Scholar]
- Pommerening, A. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 2004, 77, 27–44. [Google Scholar] [CrossRef]
- Schütz, J.P. Der Plenterwald und Weitere Formen Strukturierter und Gemischter Wälder; Parey: Berlin, Germany, 2001; 207p. [Google Scholar]
- Boncina, A. History, current status and future prospects of unevenaged forest management in the Dinaric region: An overview. Forestry 2011, 84, 467–478. [Google Scholar] [CrossRef]
- Ciancio, O.; Iovino, F.; Menguzzato, G.; Nicolaci, A.; Nocentini, S. Structure and growth of a small group selection forest of calabrian pine in Southern Italy: A hypothesis for continuous cover forestry based on traditional silviculture. For. Ecol. Manag. 2006, 224, 229–234. [Google Scholar] [CrossRef]
- Huth, F.; Wagner, S. Ökosystemleistungen von Dauerwäldern—Eine aktuelle Analyse des Waldbaus. Schweiz. Z. Forstwes. 2013, 164, 27–36. [Google Scholar] [CrossRef]
- Knoke, T. Zur finanziellen attraktivität von dauerwaldwirtschaft und überführung: Eine Literaturanalyse | On the financial attractiveness of continuous cover forest management and transformation: A review. Swiss For. J. 2009, 160, 152–161. [Google Scholar] [CrossRef]
- Pukkala, T. Does biofuel harvesting and continuous cover management increase carbon sequestration? For. Policy Econ. 2014, 43, 41–50. [Google Scholar] [CrossRef]
Scenario | Initial State | Business as Usual (BAU) | Realistic Transition (25% CTNF) | Total Transition (100% CTNF) | |||
---|---|---|---|---|---|---|---|
Year | 2023 | 2035 | 2050 | 2035 | 2050 | 2035 | 2050 |
Units | 103 m3 | ||||||
Total volume production | 448.8 | 570.8 | 733.4 | 575.8 | 743.9 | 591.0 | 775.3 |
Growing stock | 444.8 | 457.2 | 490 | 462.0 | 504.6 | 476.4 | 548.2 |
Annual increment | 10.2 | 9.5 | 9.8 | 9.5 | 9.7 | 9.5 | 9.3 |
Annual harvest | 8.3 | 8.2 | 7.5 | 8.0 | 7.4 | 7.4 | 7.2 |
Units | m3·ha−1 | ||||||
Total volume production | 248.4 | 314.6 | 396.9 | 317.4 | 402.7 | 325.7 | 420.1 |
Growing stock | 248.4 | 253.3 | 265.8 | 256.0 | 273.8 | 263.9 | 297.7 |
Annual increment | 5.7 | 5.3 | 5.4 | 5.3 | 5.3 | 5.3 | 5.1 |
Annual harvest | 4.7 | 4.5 | 4.1 | 4.4 | 4.1 | 4.1 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štěrbová, M.; Barka, I.; Kulla, L.; Roessiger, J. The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia. Land 2024, 13, 1714. https://doi.org/10.3390/land13101714
Štěrbová M, Barka I, Kulla L, Roessiger J. The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia. Land. 2024; 13(10):1714. https://doi.org/10.3390/land13101714
Chicago/Turabian StyleŠtěrbová, Martina, Ivan Barka, Ladislav Kulla, and Joerg Roessiger. 2024. "The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia" Land 13, no. 10: 1714. https://doi.org/10.3390/land13101714
APA StyleŠtěrbová, M., Barka, I., Kulla, L., & Roessiger, J. (2024). The Effect of Transition to Close-to-Nature Forestry on Growing Stock, Wood Increment and Harvest Possibilities of Forests in Slovakia. Land, 13(10), 1714. https://doi.org/10.3390/land13101714