How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Expectations: The Soil Texture Classes and Agronomic Categories According to the Maps (ASMs) and Their Representativeness
3.2. Reality: Agreement of the Topsoil Texture Classes According to the Agricultural Soil Maps of the Fields with the Topsoil Texture Determined in This Study
3.3. Reality: Agreement of the Topsoil Agronomic Categories According to the Agricultural Soil Map of the Fields with the Agronomic Categories Determined in This Study
3.4. Agreement of the Topsoil Agronomic Categories Derived from the Agricultural Soil Maps and Determined in the Recent Studies Across the Whole Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
AC * | ST Classification | The Content of Soil Separates (%) Range: Min.–Max. | Main Equivalents According to USDA ST Classification ** (Probability) | ||
---|---|---|---|---|---|
ST (Granulometric) Class PTG 1956 | Sand (1.0–0.1 mm) | Silt (0.02–0.1 mm) | Fine Particles (<0.02 mm) | ||
1. Very light soils | pl—loose sand | 70–100 | 0–25 | 0–5 | S (98%) |
plp—silty loose sand | 55–75 | 25–40 | 0–5 | S (54%), LS (43%) | |
ps—weakly loamy sand | 65–95 | 0–25 | 5–10 | S (67%), LS (33%) | |
psp—silty weakly loamy sand | 50–70 | 25–40 | 5–10 | LS (83%), S (12%) | |
2. Light soils | pgl—light loamy sand | 60–90 | 0–25 | 10–15 | LS (87%), S (7%) |
pglp—silty light loamy sand | 45–65 | 25–40 | 10–15 | LS (53%), SL (47%) | |
pgm—strong loamy sand | 55–85 | 0–25 | 15–20 | SL (58%), LS (42%) | |
pgmp—silty strong loamy sand | 40–60 | 25–40 | 15–20 | SL (93%), LS (7%) | |
2/3. Light/medium (silty) soils *** | płz—ordinary silt | 0–60 | 40–100 | 0–35 | SiL (45%), SL (35%) |
3. Medium soils | gl—light loam | 40–80 | 0–25 | 20–35 | SL (91%), SCL (6%) |
glp—silty light loam | 25–55 | 25–40 | 20–35 | SL (77%), L (16%) | |
4. Heavy soils | gs—medium loam | 25–65 | 0–25 | 35–50 | SCL (48%), SL (24%) |
gsp—silty medium loam | 10–40 | 25–40 | 35–50 | SiL (42%), L (33%) | |
gc—heavy loam | 10–50 | 0–25 | 50–90 | CL (48%), C (27%) | |
gcp—silty heavy loam | 10–25 | 25–40 | 50–65 | SiL (72%), CL (17%) | |
i—clay | 0–10 | 0–25 | 65–100 | C (32%), SiCL (30%) SiC (26%) | |
ip—silty clay | 0–10 | 25–50 | 50–75 | SiL (65%), SiCL (16%) | |
płi—clayey silt | data | data | 35–50 | SiL (89%) |
According to This Study | ACs, STCs * and Other Mapping Units ** According to Agricultural Soil Map | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | Number of Samples | ST Class | Number of Samples | 1. Very Light | 2. Light | 2/3. Light/ Medium | 3. Medium | 4. Heavy | Emt | N | T | ||||||||
ps | psp | pgl | pglp | pgm | pgmp | płz | gl | glp | płi | gsp | gcp | ip | |||||||
2. Light | 69 | pgl | 18 | 1 | 1 | 9 | 5 | 2 | |||||||||||
pgm | 42 | 3 | 12 | 19 | 4 | 2 | 1 | 1 | |||||||||||
pgmp | 9 | 1 | 3 | 3 | 1 | 1 | |||||||||||||
2/3. Light/ medium | 7 | płz | 7 | 3 | 1 | 2 | 1 | ||||||||||||
3. Medium | 251 | gl | 227 | 3 | 20 | 4 | 77 | 6 | 5 | 56 | 52 | 4 | 4 | ||||||
glp | 24 | 1 | 4 | 10 | 2 | 3 | |||||||||||||
4. Heavy | 112 | płi | 13 | 4 | 2 | 4 | 3 | ||||||||||||
gs | 11 | 1 | 3 | 2 | 2 | 3 | |||||||||||||
gsp | 59 | 1 | 8 | 19 | 12 | 6 | 13 | ||||||||||||
gc | 1 | 1 | |||||||||||||||||
gcp | 27 | 1 | 5 | 13 | 3 | 3 | 2 | ||||||||||||
ip | 1 | 1 | |||||||||||||||||
Sum | 439 | 439 | 7 | 4 | 45 | 4 | 111 | 6 | 34 | 64 | 59 | 26 | 33 | 13 | 28 | 1 | 1 | 3 | |
Sum in category (map) | 11 | 166 | 34 | 123 | 100 | 1 | 1 | 3 |
Soil Type ASM | Number of Soil Samples | Mean STCagr | Mean ACagr |
---|---|---|---|
A | 22 | 0.432 | 0.727 |
B | 271 | 0.607 | 0.793 |
D | 68 | 0.581 | 0.831 |
E | 1 | 0.000 | 0.000 |
F | 73 | 0.418 | 0.788 |
N | 1 | 0.000 | 0.000 |
T | 3 | 0.000 | 0.000 |
p-Values | <0.001 * | 0.002 * |
Characteristics | Static Measure | DeltaHfld (m) | DeltaHfldperarea (m/ha) | Hrel_Point (m) |
---|---|---|---|---|
STCpagr | s | 0.037 | −0.136 | 0.097 |
p-Values | 0.442 | 0.004 * | 0.043 * | |
ACagr | s | −0.232 | −0.139 | −0.105 |
p-Values | 0.000 * | 0.003 * | 0.028 * |
References
- Rossifer, D.G. Soil mapping today: Computer-generated predictive soil maps—Their role in soil survey and land evaluation. Agric. Dev. 2021, 44, 26–31. [Google Scholar]
- Samborski, S. (Ed.) Rolnictwo Precyzyjne, 1st ed.; Wydawnictwo Naukowe PWN S.A.: Warsaw, Poland, 2018; pp. 1–522. [Google Scholar]
- Bartoszewski, Z.; Czarnowski, F.; Dombek, E.; Siuta, J.; Strzemski, M.; Truszkowska, R.; Witek, T. Instrukcja w Sprawie Wykonywania Map Glebowo-Rolniczych w Skali 1:5000 i 1:25000 Oraz Map Glebowo-Przyrodniczych w skali 1:25000 (Tymczasowa); Ministerstwo Rolnictwa Departament Urządzeń Rolnych and Instytut Uprawy, Nawożenia i Gleboznawstwa: Warsaw, Poland, 1965; pp. 1–154. Available online: https://www.gov.pl/web/gugik/materialy-dotyczace-map-glebowo-rolniczych (accessed on 30 October 2024).
- Witek, T. Mapy Glebowo-Rolnicze Oraz Kierunki ich Wykorzystania; Instytut Uprawy, Nawożenia i Gleboznawstwa: Puławy, Poland; PWRiL: Warszawa, Poland, 1973; pp. 1–75. Available online: https://www.gov.pl/web/gugik/materialy-dotyczace-map-glebowo-rolniczych (accessed on 30 October 2024).
- Kabała, C.; Komisarek, R.; Świtoniak, M.; Kozłowski, M. Zgodność legendy jednostek mapy gleb Polski (1:300000), mapy glebowo-rolniczej (i mapy glebowo-siedliskowej z typami Systematyki gleb Polski (2019) w oparciu o analizę profili glebowych. Soil Sci. Ann. 2022, 73, 156069. [Google Scholar] [CrossRef]
- Strzemski, M.; Siuta, J.; Witek, T. Przydatność Rolnicza gleb Polski, 1st ed.; PWRiL: Warsaw, Poland, 1973; pp. 1–288. [Google Scholar]
- Musierowicz, A. Gleboznawstwo Ogólne, 2nd ed.; PWRiL: Warsaw, Poland, 1956; pp. 1–500. [Google Scholar]
- Łopatka, A. Europejski monitoring użytkowania gruntówi baza danych projektu LUCAS. Stud. Rap. IUNG-PIB 2017, 51, 73–89. [Google Scholar]
- BN-78/9180-11; Gleby i Utwory Mineralne. Podział na Frakcje i Grupy Granulometryczne. Norma Branżowa: Wydawnictwo Normalizacyjne: Warsaw, Poland, 1978.
- Zalecenia Nawozowe Cz., I. Liczby Graniczne do Wyceny Zawartości Makro-i Mikroelementów w Glebach, 2nd ed.; Instytut Uprawy Nawożenia i Gleboznawstwa: Puławy, Poland, 1990; pp. 1–28. [Google Scholar]
- Jadczyszyn, J.; Niedźwiecki, J.; Debaene, J. Analysis of agronomic categories in different soil texture classification systems. Pol. J. Soil Sci. 2016, 49, 61–72. [Google Scholar] [CrossRef]
- Koćmit, A.; Podlasiński, M. O potrzebie aktualizacji opracowań glebowo-kartograficznych dla młodoglacjalnych terenów urzeźbionych w aspekcie tworzenia cyfrowej bazy danych o glebach. Zesz. Probl. Post. Nauk Rol. 2002, 487, 119–127. [Google Scholar]
- Podlasiński, M. Wpływ Denudacji Antropogenicznej na Zróżnicowanie Pokrywy Glebowej i Jej Przestrzennejstruktury w Rolniczym Krajobrazie Morenowym; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie: Szczecin, Poland, 2013; pp. 1–120. [Google Scholar]
- Stępień, M.; Gozdowski, D.; Samborski, S.; Dobers, E.S.; Szatyłowicz, J.; Choromański, J. Validation of topsoil texture derived from agricultural soil maps by current dense soil sampling. J. Plant Nutr. Soil Sci. 2015, 179, 618–629. [Google Scholar] [CrossRef]
- Van den Berg, M.; Oliveira, J.B. Variability of apparently homogenous soilscapes in São Paulo State, Brazil: II. Quality of soil maps. Rev. Bras. Ci. Solo 2000, 24, 393–407. [Google Scholar] [CrossRef]
- Hengl, T.; Husnjak, S. Evaluating adequacy and usability of soil maps in Croatia. Soil Sci. Am. J. 2006, 70, 20–929. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Rapčan, I.; Domazetović, F.; Milošević, R.; Plaščak, I. An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia. Land 2023, 12, 1034. [Google Scholar] [CrossRef]
- Richer-De-Forges, A.C.; Arrouays, D.; Poggio, L.; Chen, S.; Lacoste, M.; Minasny, B.; Libohova, Z.; Roudier, P.; Mulder, L.M.; Nedelec, H.; et al. Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France. Pedosphere 2023, 33, 731–743. [Google Scholar] [CrossRef]
- Buenemann, M.; Coetzee, M.E.; Kutuahupira, J.; Maynard, J.J.; Herrick, J.E. Errors in soil maps: The need for better on-site estimates and soil map predictions. PLoS ONE 2023, 18, e0270176. [Google Scholar] [CrossRef] [PubMed]
- ISRIC. ISRIC-WISE Derived Soil Properties on a 30 by 30 Arcsec Global Grid (WISE30sec), Version 1.0. 2015. Available online: https://www.isric.org/explore/wise-databases (accessed on 31 October 2024).
- Maynard, J.J.; Yeboah, E.; Owusu, S.; Buenemann, M.; Neff, J.C.; Herrick, J.E. Accuracy of regional-to-global soil maps for on-farm decision-making: Are soil maps “good enough”? Soil 2023, 9, 277–2023. [Google Scholar] [CrossRef]
- Lleverino González, E.; Solorio, C.A.O.; del C, M. Quality of soil maps of the ‘ejido’ Atenco in the State of Mexico. Terra 2000, 18, 103–113. [Google Scholar]
- Brevik, E.C.; Fenton, T.E.; Jaynes, D.B. Evaluation of the accuracy of a central Iowa soil survey and implications for precision soil management. Precis. Agric. 2003, 4, 331–342. [Google Scholar] [CrossRef]
- Witek, T. Treść i metody sporządzania wielkoskalowych map glebowo-rolniczych. Rocz. Gleboz.-Soil. Sci. Ann. 1965, 15, 99–117. [Google Scholar]
- Richling, A.; Solon, J.; Macias, A.; Balon, J.; Borzyszkowski, J.; Kistowski, M. (Eds.) Regionalna Geografia Fizyczna Polski: Praca Zbiorowa; Bogucki Wydawnictwo Naukowe; na Zlecenie Generalnej Dyrekcji Ochrony Środowiska: Warszawa, Poland, 2021; pp. 1–608. ISBN 978-83-7986-381-5. Available online: https://www.gov.pl/attachment/90dc9f90-9a4b-4a3c-8fbe-a75dead2990c (accessed on 31 October 2024).
- Bednarek, R.; Prusinkiewicz, Z. Geografia Gleb; Wyd. 2 Poprawione i Rozszerzone; Państ. Wydaw. Naukowe: Warszawa, Poland, 1990; pp. 1–273. ISBN 83-01-09760-4. [Google Scholar]
- Jones, A.; Montanarella, L.; Jones, R. (Eds.) Soil Atlas of Europe; European Soil Bureau Network European Commission: Luxembourg, 2005; pp. 1–18. [Google Scholar]
- Brach, M. Analiza dokładności wyznaczania współrzędnych wybranymi odbiornikami GNSS w środowisku leśnym (Accuracy analysis for determination of coordinates by the selected GNSS receivers in the forest environment). Sylwan 2012, 156, 47–56. [Google Scholar]
- Belinska, V.; Kluga, A.; Kluga, J.; Bricis, A. Accuracy Estimation of TOPCON GRS-1 GNSS Receiver Parameters in Static and Dynamic Mode. ElAEE 2014, 20, 89–92. [Google Scholar] [CrossRef]
- Korabiewski, B. Ćwiczenia Laboratoryjne z Gleboznawstwa (Laboratory Exercises in Soil Science); Uniwersytet Wrocławski: Wrocław, Poland, 2011; pp. 1–31. Available online: https://www.zgf.uni.wroc.pl/dydaktyka/przedmioty/Gleboznawstwo/skrypt_v8.pdf (accessed on 31 October 2024).
- Stępień, M.; Bodecka, E.; Gozdowski, D.; Wijata, J.; Groszyk, J.; Studnicki, M.; Sobczyński, G.; Rozbicki, J.; Samborski, S. Zgodność pomiędzy grupami granulometrycznymi określonymi wg normy BN-78/9180-11 a grupami granulometrycznymi według PTG 2008 i klasami uziarnienia USDA. Soil Sci. Ann. 2018, 69, 223–233. [Google Scholar] [CrossRef]
- Moeys, J. The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring Soil Texture Data. CRAN. R-Project. 2024. Available online: https://cran.r-project.org/web//packages//soiltexture/vignettes/soiltexture_vignette.pdf (accessed on 22 July 2024).
- Bie, S.W.; Beckett, P.H.T. Comparison of four independent soil surveys by air-photo interpretation, Paphos area (Cyprus). Photogrammetria 1973, 29, 189–202. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Profile Description, 2nd ed.; FAO: Rome, Italy, 1977; pp. 1–50. [Google Scholar]
- Bielska, A. Problemy cyfryzacji analogowych map glebowo-rolniczych w skali 1:5000. Acta Sci. Pol. Adm. Loc. 2012, 11, 41–48. [Google Scholar]
- Zembaczyński, A. Porównanie wyników oznaczeń składu mechanicznego gleb metodą polową i laboratoryjną. Soil Sci. Ann. 1965, 15, 211–214. [Google Scholar]
- Salley, S.W.; Herrick, J.E.; Holmes, C.V.; Karl, J.W.; Levi, M.R.; McCord, S.E.; van der Waal, C.; Van Zee, J.W. A comparison of soil texture-by-feel estimates: Implications for the citizen soil scientist. Soil Sci. Soc. Am. J. 2018, 82, 1526–1537. [Google Scholar] [CrossRef]
- Cebrykow, P. Cartographic generalization yesterday and today. Pol. Cartogr. Rev. 2017, 49, 5–15. [Google Scholar] [CrossRef]
- Pindral, S.; Świtoniak, M. The usefulness of soil-agricultural maps to identify classes of soil truncation. Soil Sci. Ann. 2017, 68, 2–10. [Google Scholar] [CrossRef]
- Hůla, J.; Novák, P. Translocation of soil particles during primary soil tillage. Agron. Res. 2016, 14, 392–399. [Google Scholar]
- Stępień, M.; Gozdowski, D.; Bodecka, E.; Groszyk, J.; Rozbicki, J.; Samborski, S. Topsoil texture maps based on calibration of soil electrical conductivity with soil datasets varying in size. Pol. J. Soil Sci. 2017, 50, 265–278. [Google Scholar] [CrossRef]
- Stępień, M.; Gozdowski, D.; Samborski, S. Możliwości Przypisania Zawartości Frakcji Granulometrycznych Według PTG 2008/USDA do Wybranych Grup Granulometrycznych PTG 1956 Wyróżnionych na Mapie Glebowo-Rolniczej. Soil Sci. Ann. 2024, 75. Available online: https://www.soilsa.com/Mozliwosci-przypisania-zawartosci-frakcji-granulometrycznych-wedlug-PTG-2008-USDA,193375,0,2.html (accessed on 31 October 2024).
- Petersen, H.; Wunderlich, T.; Attia Al Hagrey, S.; Rabbel, W. Characterization of Some Middle European Soil Textures by Gamma-spectrometry. Z. Pflanzenernähr. Bodenk. 2012, 175, 651–660. [Google Scholar] [CrossRef]
- Mahmood, H.; Hoogmoed, W.; Van Henten, E. Proximal Gamma-Ray Spectroscopy to Predict Soil Properties Using Windows and Full-Spectrum Analysis Methods. Sensors 2013, 13, 16263–16280. [Google Scholar] [CrossRef]
- Stępień, M.; Samborski, S.; Gozdowski, D.; Dobers, E.S.; Chormański, J.; Szatyłowicz, J. Assessment of Soil Texture Class on Agricultural Fields Using ECa, Amber NDVI, and Topographic Properties. J. Plant Nutr. Soil Sci. 2015, 178, 523–536. [Google Scholar] [CrossRef]
- Jędrejek, A.; Jadczyszyn, J.; Pudełko, R. Increasing Accuracy of the Soil-Agricultural Map by Sentinel-2 Images Analysis—Case Study of Maize Cultivation under Drought Conditions. Remote Sens. 2023, 15, 1281. [Google Scholar] [CrossRef]
Region (Voivodship) | Locality | Latitude Longitude | Field | Area (ha) | Altitude Min.–Max. (m) | Prevailing (Associated) Soil Unit | Prevailing (Associated) Topsoil Texture Class | Soil Examination | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil Type and Subtype (ASM) * | Soil Reference Group WRB 2023 (Recent Studies) | PTG 1956 (ASM) | USDA (Recent Studies) | Number of Topsoil Samples | Years of Soil Sampling | ||||||
Pomerania | Bobrowniki | 54°31′ N 17°21′ E | PB | 107 | 65–74 | Bw (B and Dd) | Luvisols (Regosols, Phaeozems, Gleysols) | gl (pgmp) | SL (LS) | 61 | 2015 |
Damno | 54°32′ N 17°18′ E | PD1 | 22 | 54–63 | Bw | Luvisols (Regosols, Cambisols) | pgm (glp) | SL (LS) | 37 | 2011–2013 | |
PD2 | 44 | 58–69 | Bw | Luvisols (Cambisols, Arenosols, Phaeozems) | glp (pgm) | SL (LS, L) | 60 | 2013–2014 | |||
PD3 | 40 | 60–66 | Bw | Luvisols (Regosols, Cambisols) | glp (pgm, pgl) | SL (LS) | 26 | 2013–2014 | |||
Grapice | 54°31′ N 17°26′ E | PG | 111 | 63–81 | Bw (D, Dd, A, B, Emt) | Luvisols (Retisols, Phaeozems, Arenosols) | pgm (pgl, pglp, ps, EmT | SL (LS) | 56 | 2015 | |
Podole Wielkie | 54°35′ N 17°30′ E | PPW | 50 | 62–75 | Bw (Dz) | Luvisols (Retisols, Phaeozems) | pgl (pgm, gl) | SL (LS) | 26 | 2015 | |
Mazovia | Imielin | 52°05′ N 21°11′ E | MI1 | 21 | 88–89 | F | Fluvisols | płz (ip) | SiL (L, LS) | 33 | 2013–2014 |
MI2 | 21 | 87–89 | F (N) | Fluvisols | ip (płz, pgl, psp, N) | L (SL, SiL, LS) | 41 | 2013–2014 | |||
Obory | 52°04′ N 21°09′ E | MO | 19 | 105–108 | A (Dz) | Luvisols (Phaeozems, Arenosols) | pgl (ps, gl) | SL (LS, L) | 24 | 2015 | |
Lower Silesia | Górzec | 50°49′ N 17°04′ E | LSG | 21 | 149–155 | D (Dz, T) | Phaeozems | gcp and gsp (płi, T) | SiL (L, SL) | 38 | 2013–2014 |
Chociwel | 50°48′ N 17°06′ E | LSC | 20 | 165–168 | B (D) | Luvisols (Phaeozems, Cambisols) | płi (gsp) | SiL (L) | 37 | 2013–2014 |
STC (Granulometric Group) According to PTG 1956 Classification, Shown on the Map * | STC (Granulometric Group) According to PTG 1956 Classification, Determined in a Laboratory for the Studied Fields | Level of Soil Texture Agreement Between the Map and This Study | |
---|---|---|---|
Kind | Value (STCagr) | ||
ps ** | ps | G (good) | 1.0 |
pl, plp, psp, pgl, pglp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
psp | psp | G (good) | 1.0 |
pl, plp, płz, pgl, pglp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
pgl | pgl | G (good) | 1.0 |
ps, psp, pglp, pgm, pgmp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
pglp | pglp | G (good) | 1.0 |
ps, psp, płz, pgl, pgm, pgmp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
pgm | pgm | G (good) | 1.0 |
pgl, pglp, pgmp, gl, glp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
pgmp | pgmp | G (good) | 1.0 |
pgm, pgl, pglp, płz, gl, glp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
płz | płz | G (good) | 1.0 |
plp, psp, pglp, pgmp, glp, gsp, płi | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
gl | gl | G (good) | 1.0 |
pgm, pgmp, glp, gl, gs, gsp | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
glp | glp | G (good) | 1.0 |
gl, pgm, pgmp, płz, płi, gsp, gs | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
gsp | gsp | G (good) | 1.0 |
gs, gl, glp, płz, płi, ip, gcp, gc | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
gcp | gcp | G (good) | 1.0 |
gc, gs, gsp, płi, ip, i | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
ip | ip | G (good) | 1.0 |
gc, gcp, gsp, płi, i | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
płi | płi | G (good) | 1.0 |
ip, gcp, gsp, glp, płz | M (medium) | 0.5 | |
any other | P (poor) | 0.0 |
AC Derived from Agricultural Soil Map (STCs According to PTG 1956) * | ACs (STCs According to PTG 1956) Determined for the Studied Fields | Level of Agreement Between the Map and This Study | |
---|---|---|---|
Kind | Value (ACagr) | ||
1. Very light soils (ps and psp) | 1. (pl, plp, ps, psp) | G (good) | 1.0 |
2. (pgl, pglp, pgm, pgmp, płz) and 2/3 (płz) | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
2. Light soils (pgl, pglp, pgm, pgmp) | 2. (pgl, pglp, pgm, pgmp) | G (good) | 1.0 |
1. (pl, plp, ps, psp), 2/3 (płz) and 3 (gl, glp) | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
2/3. Light/medium (silty) soils (płz) | 2. (pgl, pglp, pgm, pgmp), and 3 (gl, glp) and 2/3 (płz) | G (good) | 1.0 |
1. (pl, plp, ps, psp) and 4 (gs, gsp, płi, gc, gcp, i, ip) | M (medium) | 0.5 | |
- | P (poor) | 0.0 | |
3. Medium soils (gl, glp) | 3. (gl, glp) and 2/3 (płz) | G (good) | 1.0 |
2. (pgl, pglp, pgm, pgmp) and 4. (gs, gsp, płi, gc, gcp, i, ip) | M (medium) | 0.5 | |
any other | P (poor) | 0.0 | |
4. Heavy soils (gsp, gcp, ip, płi) | 4. (gs, gsp, płi, gc, gcp, i, ip) | G (good) | 1.0 |
3. (gl, glp) and 2/3 (płz) | M (medium) | 0.5 | |
any other | P (poor) | 0.0 |
Region | Locality | Field | ACs, STCs *, and Other Mapping Units ** According to the Agricultural Soil Maps | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Very Light | 2. Light | 2/3. Light/Medium | 3. Medium | 4. Heavy | Emt | N | T | |||||||||||
ps | psp | pgl | pglp | pgm | pgmp | płz | gl | glp | gsp | gcp | ip | płi | ||||||
Pomerania | Bobrowniki | PB | 6 7.0 | 55 99.9 | ||||||||||||||
Damno | PD1 | 34 19.2 | 3 2.7 | |||||||||||||||
PD2 | 16 12.4 | 44 31.4 | ||||||||||||||||
PD3 | 2 0.9 | 12 15.8 | 12 23.1 | |||||||||||||||
Grapice | PG | 2 2.7 | 7 16.5 | 4 3.8 | 42 86.7 | 1 0.9 | ||||||||||||
Podole Wielkie | PPW | 13 21.2 | 7 14.5 | 6 13.9 | ||||||||||||||
Mazovia | Imielin | MI1 | 22 14.2 | 11 7.4 | ||||||||||||||
MI2 | 4 0.5 | 7 3.6 | 12 6.4 | 17 10.1 | 1 0.4 | |||||||||||||
Obory | MO | 5 2.4 | 16 12.9 | 3 3.1 | ||||||||||||||
Lower Silesia | Górzec | LSG | 20 8.6 | 13 8.8 | 2 1.9 | 3 0.9 | ||||||||||||
Chociwel | LSC | 13 7.8 | 24 12.5 | |||||||||||||||
Sum within | ST class | 7 5.1 | 4 0.5 | 45 55.1 | 4 3.8 | 111 149.0 | 6 7.0 | 34 20.6 | 64 116.9 | 59 57.2 | 33 16.0 | 13 8.8 | 28 17.5 | 26 14.4 | 1 0.9 | 1 0.4 | 3 0.9 | |
AC | 11 5.6 | 166 214.9 | 34 20.6 | 123 174.1 | 100 56.7 | 1 0.9 | 1 0.4 | 3 0.9 |
Region | Locality | Field | Delineations on the Map | Map Agreement with Recent ST Status | ||||
---|---|---|---|---|---|---|---|---|
STC * (Number of Samples) | Within Delineation | Within the Field | ||||||
According to the Map | According to Recent Studies | Pur. (%) | AA (%) | Pur. (%) | AA (%) | |||
Pomerania | Bobrowniki | PB | pgmp (6) | gl (6) | 0.0 | 50.0 | 78.7 | 87.7 |
gl (55) | gl (48), pgm (4), pgl (2), gs (1) | 87.3 | 91.8 | |||||
Damno | PD1 | pgm (34) | gl (23), pgm (7), pgl (2), pgmp (1), gs (1) | 20.6 | 58.8 | 21.6 | 59.5 | |
glp (3) | gl (2), glp (3) | 33.3 | 66.7 | |||||
PD2 | pgm (16) | gl (13), pgm (2), gs (1) | 12.5 | 53.1 | 5.0 | 51.7 | ||
glp (44) | gl (39), glp (1), gs (2), pgm (2) | 2.2 | 51.1 | |||||
PD3 | pgl (2) | gl (2) | 0.0 | 0.0 | 11.5 | 50.0 | ||
pgm (12) | gl (7), pgm (3), pgl (1), gs (1) | 25.0 | 58.3 | |||||
glp (12) | gl (11), gs (1) | 0.0 | 50.0 | |||||
Grapice | PG | ps (2) | pgm (1), pgmp (1) | 0.0 | 0.0 | 10.7 | 46.4 | |
pgl (7) | gl (3), pgmp (2), pgm (1), pgl (1) | 14.3 | 35.7 | |||||
pglp (4) | gl (4) | 0.0 | 0.0 | |||||
pgm (42) | gl (29), pgm (5), glp (4), pgmp (2), pgl (2) | 11.9 | 56.0 | |||||
Emt ** (1) | pgm (1) | 0.0 | 0.0 | |||||
Podole Wielkie | PPW | pgl (13) | gl (11), pgm (2) | 0.0 | 7.7 | 30.8 | 44.2 | |
pgm (7) | gl (5), pgm (2) | 28.6 | 64.3 | |||||
gl (6) | gl (6) | 100.0 | 100.0 | |||||
Mazovia | Imielin | MI1 | ip (11) | gsp (7), płz (2), płi (2) | 0.0 | 40.9 | 9.1 | 47.0 |
płz (22) | gsp (6), glp (6), płz (3), płi (3), gs (2), gl (1), pgmp (1) | 12.0 | 50.0 | |||||
MI2 | psp (4) | gl (3), pgl (1) | 0.0 | 12.5 | 9.8 | 36.6 | ||
pgl (7) | pgl (3), pgm (3), gl(1) | 42.9 | 64.3 | |||||
płz (12) | gl (4), glp (4), gsp (2), płi (1), gcp (1) | 0.0 | 29.2 | |||||
ip (17) | gsp (6), glp (4), gcp (3), ip (1), płi (1), gc (1), pgm (1) | 5.9 | 38.2 | |||||
N *** (1) | pgmp (1) | 0.0 | 0.0 | |||||
Obory | MO | ps (5) | pgm (2), pgl (1), gs (1), gsp (1) | 0.0 | 10.0 | 29.2 | 47.9 | |
pgl (16) | pgm (6), pgl (5), gl (3), pgmp (1), glp (1) | 31.3 | 53.1 | |||||
gl (3) | gl (2), gs (1) | 66.7 | 83.3 | |||||
Lower Silesia | Górzec | LSG | gsp (20) | gsp (8), gcp (4), gl (4), glp (3), płz (1) | 40.0 | 70.0 | 31.6 | 61.8 |
gcp (13) | gsp (6), płi (4), gcp (3) | 23.1 | 61.5 | |||||
płi (2) | płi (1), gsp (1) | 50.0 | 75.0 | |||||
T **** (3) | płz (1) | 0.0 | 0.0 | |||||
Chociwel | LSC | gsp (13) | gcp (9), gsp (4) | 30.8 | 65.4 | 13.5 | 56.8 | |
płi (24) | gsp (18), gcp (5), płi (1) | 4.2 | 52.1 |
Region | Locality | Field | Delineations on the Map | Map Agreement with Recent ST Status | ||||
---|---|---|---|---|---|---|---|---|
AC * (Number of Samples) | Within Delineation | Within the Field | ||||||
According to the Map | According to Recent Studies | Pur. (%) | AA (%) | Pur. (%) | AA (%) | |||
Pomerania | Bobrowniki | PB | Light (6) | Medium (6) | 0.0 | 50.0 | 78.7 | 93.6 |
Medium (55) | Medium (48), light (6), heavy (1) | 87.3 | 93.6 | |||||
Damno | PD1 | Light (34) | Medium (23), light (10), heavy (1) | 29.4 | 63.2 | 38.2 | 66.2 | |
Medium (3) | Medium (3) | 33.3 | 66.7 | |||||
PD2 | Light (15) | Medium (12), light (2), heavy (1) | 12.5 | 56.3 | 70.0 | 84.2 | ||
Medium (45) | Medium (42), heavy (2), light (2) | 90/9 | 95.5 | |||||
PD3 | Light (14) | Medium (9), light (4), heavy (1) | 28.6 | 60.7 | 57.7 | 76.9 | ||
Medium (12) | Medium(11), heavy (1) | 91.7 | 95.8 | |||||
Grapice | PG | Very light (2) | Light (2) | 0.0 | 50.0 | 23.2 | 60.7 | |
Light (53) | Medium (40), light (13) | 24.5 | 62.3 | |||||
Emt ** (1) | Light (1) | 0.0 | 0.0 | |||||
Podole Wielkie | PPW | Light (20) | Medium (16), light (4) | 20.0 | 60.0 | 38.5 | 69.2 | |
Medium (6) | Medium (6) | 100.0 | 100.0 | |||||
Mazovia | Imielin | MI1 | Heavy (11) | Heavy (9), light/medium (2) | 81.8 | 90.9 | 60.6 | 80.3 |
Light/medium (22) | Heavy (11), medium (7), light/medium (3), light (1) | 50.0 | 75.0 | |||||
MI2 | Very light (4) | Medium (3), light (1) | 0.0 | 12.5 | 63.4 | 75.6 | ||
Light (7) | Light (7), medium (1) | 85.7 | 92.9 | |||||
Light/medium (12) | Medium (8), heavy (4) | 66.7 | 83.3 | |||||
Heavy (17) | Heavy (12, medium (4), light (1) | 70.6 | 82.4 | |||||
N *** (1) | Light (1) | 0.0 | 0.0 | |||||
Obory | MO | Very light (5) | Light (3), heavy (2) | 0.0 | 30.0 | 50.0 | 75.0 | |
Light (16) | Light (12), medium (4) | 75.0 | 87.5 | |||||
Medium (3) | Medium (2), heavy (1) | 66.7 | 83.3 | |||||
Lower Silesia | LSG | Heavy (35) | Heavy (27), medium (7), light/medium (1) | 77.1 | 88.6 | 71.0 | 81.6 | |
T **** (3) | Light/medium (1) | 0.0 | 0.0 | |||||
Chociwel | LSC | Heavy (37) | Heavy (37) | 100.0 | 100.0 | 100.0 | 100.0 |
Agreement Between ASM and Recent ST Evaluation | ACs, STCs *, and Other Mapping Units ** According to the Agricultural Soil Map | Across all Fields and Delineations | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Very Light | 2. Light | 2/3. Light/ Medium | 3. Medium | 4. Heavy | Emt | N | T | |||||||||||
Within | Measure of agreement | ps | psp | pgl | pglp | pgm | pgmp | płz | gl | glp | gsp | gcp | ip | płi | ||||
ST class | Pur. (%) | 0.0 | 0.0 | 20.0 | 0.0 | 17.1 | 0.0 | 8.8 | 87.5 | 3.4 | 42.9 | 23.1 | 3.6 | 7.7 | 0.0 | 0.0 | 0.0 | 24.4 |
AA (%) | 7.1 | 12.5 | 28.9 | 0.0 | 57.7 | 50.0 | 42.6 | 92.2 | 51.7 | 68.2 | 61.5 | 39.3 | 53.8 | 0.0 | 0.0 | 0.0 | 55.6 | |
AC in ST classes delineated | Pur. (%) | 0.0 | 0.0 | 53.3 | 0.0 | 25.5 | 0.0 | 55.9 | 87.5 | 90.0 | 75.8 | 100.0 | 75.0 | 100.0 | 0.0 | 0.0 | 0.0 | 60.3 |
AA (%) | 35.7 | 12.5 | 76.7 | 50.0 | 60.9 | 50.0 | 77.9 | 93.8 | 95.0 | 87.9 | 100.0 | 85.7 | 100.0 | 0.0 | 0.0 | 0.0 | 78.6 | |
AC in general | Pur. (%) | 0.0 | 30.7 | 55.9 | 89.4 | 85.0 | 60.3 | |||||||||||
AA (%) | 27.3 | 64.5 | 77.9 | 94.7 | 92.0 | 78.6 | ||||||||||||
Number of soil samples/fields/regions (ST class) | 7/2/2 | 4/1/1 | 45/5/2 | 4/1/1 | 111/5/1 | 6/1/1 | 34/2/1 | 64/3/2 | 59/3/1 | 33/2/1 | 13/1/1 | 28/2/1 | 26/2/1 | 1/1/1 | 1/1/1 | 3/1/1 | ||
Number of soil samples/fields/regions (AC) | 11/3/2 | 166/9/2 | 34/2/1 | 123/6/2 | 100/4/2 | 1/1/1 | 1/1/1 | 3/1/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępień, M.; Gozdowski, D.; Samborski, S. How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland. Land 2024, 13, 1852. https://doi.org/10.3390/land13111852
Stępień M, Gozdowski D, Samborski S. How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland. Land. 2024; 13(11):1852. https://doi.org/10.3390/land13111852
Chicago/Turabian StyleStępień, Michał, Dariusz Gozdowski, and Stanisław Samborski. 2024. "How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland" Land 13, no. 11: 1852. https://doi.org/10.3390/land13111852
APA StyleStępień, M., Gozdowski, D., & Samborski, S. (2024). How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland. Land, 13(11), 1852. https://doi.org/10.3390/land13111852