Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources
2.2. LST Retrieval
2.3. Building Shadow Extraction
2.4. Sunlight Exposure Area Extraction
2.5. AHF Estimation
2.6. Spatial Autocorrelation Analysis
2.7. Geographical Detector
3. Results
3.1. LST Retrieval Results
3.2. Correlation Between LST and All Factors
3.3. Spatial Correlation Between LST and All Factors
3.4. Impact Weight of Each Factor on LST
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhang, Y.; Ding, N. Regulatory Effect Evaluation of Warming and Cooling Factors on Urban Land Surface Temperature Based on Multi-Source Satellite Data. Remote Sens. 2023, 15, 5025. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China. Land 2022, 11, 2135. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Wu, F.; Ma, H.; Xu, Z.; Jiang, W.; Wang, S.; Yang, J. Spatiotemporal Evolution of the Urban Thermal Environment Effect and Its Influencing Factors: A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2022, 11, 278. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Xia, J.; Jin, C.; Li, X.; Ge, Q. The Impact of Spatial Form of Urban Architecture on the Urban Thermal Environment: A Case Study of the Zhongshan District, Dalian, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2709–2716. [Google Scholar] [CrossRef]
- Zhao, K.; Ning, Z.; Xu, C.; Zhao, X.; Huang, X. How Do Driving Factors Affect the Diurnal Variation of Land Surface Temperature across Different Urban Functional Blocks? A Case Study of Xi’an, China. Sustain. Cities Soc. 2024, 114, 105738. [Google Scholar] [CrossRef]
- Patel, S.; Indraganti, M.; Jawarneh, R.N. Land Surface Temperature Responses to Land Use Dynamics in Urban Areas of Doha, Qatar. Sustain. Cities Soc. 2024, 104, 105273. [Google Scholar] [CrossRef]
- Lu, H.; Li, F.; Yang, G.; Sun, W. Multi-Scale Impacts of 2D/3D Urban Building Pattern in Intra-Annual Thermal Environment of Hangzhou, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102558. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Han, L.; Zhang, H.; Peng, J.; Yao, X. Day and Night: Impact of 2D/3D Urban Features on Land Surface Temperature and Their Spatiotemporal Non-Stationary Relationships in Urban Building Spaces. Sustain. Cities Soc. 2024, 108, 105507. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and Combined Effects of 3D Building Features and Urban Green Space on Land Surface Temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-Temporal Analysis of the Relationship between 2D/3D Urban Site Characteristics and Land Surface Temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Yelixiati, H.; Tong, L.; Luo, S.; Chen, Z. Spatiotemporal Heterogeneity of the Relationship between Urban Morphology and Land Surface Temperature at a Block Scale. Sustain. Cities Soc. 2024, 113, 105711. [Google Scholar] [CrossRef]
- Peng, F.; Cao, Y.; Sun, X.; Zou, B. Study on the Contributions of 2D and 3D Urban Morphologies to the Thermal Environment under Local Climate Zones. Build. Environ. 2024, 263, 111883. [Google Scholar] [CrossRef]
- Lin, L.; Deng, Y.; Peng, M.; Zhen, L.; Qin, S. Multi-Scale Influence Analysis of Urban Shadow and Spatial Form Features on Urban Thermal Environment. Remote Sens. 2023, 15, 4902. [Google Scholar] [CrossRef]
- Huang, C.; Xiao, C.; Rong, L. Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas. Remote Sens. 2022, 14, 4201. [Google Scholar] [CrossRef]
- Lu, C.; Pang, M.; Zhang, Y.; Li, H.; Lu, C.; Tang, X.; Cheng, W. Mapping Urban Spatial Structure Based on POI (Point of Interest) Data: A Case Study of the Central City of Lanzhou, China. ISPRS Int. J. Geo-Inf. 2020, 9, 92. [Google Scholar] [CrossRef]
- Ma, C.X.; Peng, F.L. Evaluation of Spatial Performance and Supply-Demand Ratios of Urban Underground Space Based on POI Data: A Case Study of Shanghai. Tunn. Undergr. Space Technol. 2023, 131, 104775. [Google Scholar] [CrossRef]
- Pan, C.; Wu, S.; Li, E.; Li, H.; Liu, X. Identification of Urban Functional Zones in Macau Peninsula Based on POI Data and Remote Information Sensors Technology for Sustainable Development. Phys. Chem. Earth Parts A/B/C 2023, 131, 103447. [Google Scholar] [CrossRef]
- National Meteorological Information Center—China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 23 August 2024).
- Baidu Map Open Platform. Available online: https://lbsyun.baidu.com (accessed on 23 August 2024).
- United States Geological Survey (USGS). Available online: https://earthexplorer.usgs.gov (accessed on 23 August 2024).
- National Oceanic and Atmospheric Administration (NOAA). Available online: https://payneinstitute.mines.edu/eog/nighttime-lights (accessed on 23 August 2024).
- Google Earth. Available online: https://earth.google.com (accessed on 23 August 2024).
- Wang, M.; Li, M.; Zhang, Z.; Hu, T.; He, G.; Zhang, Z.; Wang, G.; Li, H.; Tan, J.; Liu, X. Land Surface Temperature Retrieval from Landsat 9 TIRS-2 Data Using Radiance-Based Split-Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1100–1112. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Chen, L.; Liao, Z.; Wang, Y.; Wang, B.; Yang, X. A Modified Multi-Source Parallel Model for Estimating Urban Surface Evapotranspiration Based on ASTER Thermal Infrared Data. Remote Sens. 2017, 9, 1029. [Google Scholar] [CrossRef]
- Xiangchen, M.; Hua, L.; Yongming, D.; Biao, C.; Qinhuo, L.; Lin, S.; Jinshan, Z. Estimating Land Surface Emissivity from ASTER GED Products. Natl. Remote Sens. Bull. 2016, 20, 382–396. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Qin, K.; Wang, Y.; Chen, L.; Yang, X. Remote Sensing Estimation of Urban Surface Evapotranspiration Based on a Modified Penman–Monteith Model. J. Appl. Remote Sens. 2018, 12, 046006. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Wang, S.; Hu, D.; Chen, S.; Yu, C. A Partition Modeling for Anthropogenic Heat Flux Mapping in China. Remote Sens. 2019, 11, 1132. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D. Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data. Remote Sens. 2017, 9, 1165. [Google Scholar] [CrossRef]
- An, W.; Wang, B.; Duan, L.; Giovanni, C.; Yu, G. Emerging Contaminants in the Northwest Area of the Tai Lake Basin, China: Spatial Autocorrelation Analysis for Source Apportionment and Wastewater-Based Epidemiological Analysis. Sci. Total Environ. 2023, 865, 161176. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, G.; Wang, J.; Zhang, T.-L.; Meng, X.; Yang, D.; Liu, Y.; Lu, B. Understanding and Extending the Geographical Detector Model under a Linear Regression Framework. Int. J. Geogr. Inf. Sci. 2023, 37, 2437–2453. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, R.; Xie, Y.; Xu, J.; Yang, J.; Liao, W. Exploring the Impacts and Temporal Variations of Different Building Roof Types on Surface Urban Heat Island. Remote Sens. 2021, 13, 2840. [Google Scholar] [CrossRef]
- Asadi, A.; Arefi, H.; Fathipoor, H. Simulation of Green Roofs and Their Potential Mitigating Effects on the Urban Heat Island Using an Artificial Neural Network: A Case Study in Austin, Texas. Adv. Space Res. 2020, 66, 1846–1862. [Google Scholar] [CrossRef]
- Liu, F.; Jia, X.; Li, W.; Du, A.; Wang, D. Analysis of Land Surface Temperature Evolution Based on Regional Road Scope. Adv. Civ. Eng. 2020, 2020, 4350787. [Google Scholar] [CrossRef]
- Mathew, A.; Sreekumar, S.; Khandelwal, S.; Kaul, N.; Kumar, R. Prediction of Surface Temperatures for the Assessment of Urban Heat Island Effect over Ahmedabad City Using Linear Time Series Model. Energy Build. 2016, 128, 605–616. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S. Assessing the Spatiotemporal Variation in Anthropogenic Heat and Its Impact on the Surface Thermal Environment over Global Land Areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Wu, H.; Huang, B.; Zheng, Z.; Sun, R.; Hu, D.; Zeng, Y. Urban Anthropogenic Heat Index Derived from Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103261. [Google Scholar] [CrossRef]
- Liu, X.; Yue, W.; Zhou, Y.; Liu, Y.; Xiong, C.; Li, Q. Estimating Multi-Temporal Anthropogenic Heat Flux Based on the Top-down Method and Temporal Downscaling Methods in Beijing, China. Resour. Conserv. Recycl. 2021, 172, 105682. [Google Scholar] [CrossRef]
- Huang, G.; Cadenasso, M.L. People, Landscape, and Urban Heat Island: Dynamics among Neighborhood Social Conditions, Land Cover and Surface Temperatures. Landsc. Ecol. 2016, 31, 2507–2515. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, X.; Qi, M.; Zhao, X.; Zhang, Y.; Yang, M. Impact of Built Environment on Urban Surface Temperature Based on Multi-Source Data at the Community Level in Beilin District, Xi’an, China. Environ. Sci. Pollut. Res. 2023, 30, 111410–111422. [Google Scholar] [CrossRef]
Data Type | Data Name | Acquisition Time (UTC + 8) | Data Source |
---|---|---|---|
POI Data | Building Rooftop Contour and Building Height Data | September 2021 (Hefei) July 2023 (Xuzhou) | Baidu Map Open Platform [19] |
Road Data | September 2021 (Hefei) July 2023 (Xuzhou) | ||
Population Spatial Heatmap | 16 June 2022, 11:00 AM (Hefei) 5 July 2023, 11:00 AM (Xuzhou) | ||
Satellite Data | Landsat 9 Imagery | Scene ID: LC09_L1TP_121038_20220616_20230411_02_T1 16 June 2022, 10:43:10 AM (Hefei) Scene ID: LC09_L1TP_121036_20230705_20230705_02_T1 5 July 2023, 10:42:16 AM (Xuzhou) | United States Geological Survey (USGS) [20] |
VIIRS/NPP NTL Data | Sense ID: SVDNB_npp_20220601-20220627_75N060E_vcmcfg_v10_c202207141300 June 2022 (Hefei) Sense ID: SVDNB_npp_20230701-20230726_75N060E_vcmcfg_v10_c202308111200 July 2023 (Xuzhou) | Earth Observation Group (EOG) [21] | |
Google Earth Imagery | 19 September 2022 (Hefei) 20 November 2023 (Xuzhou) | Google Earth [22] |
Study Area | Date | Weather | Dew Point Temperature (°C) | Latitude | Average Elevation (m) |
---|---|---|---|---|---|
Hefei | 16 June 2022 | Sunny and cloudless | 16.00 | 31.85° | 28.4 |
Xuzhou | 5 July 2023 | Sunny and cloudless | 20.90 | 34.24° | 39.8 |
Coefficients | Landsat 9 TIR Band 10 | Landsat 9 TIR Band 11 |
---|---|---|
a0 | −0.0523 | −0.0531 |
a1 | 0.9495 | 0.8315 |
a2 | 1.4073 | 0.6079 |
a3 | 1.1641 | 0.4856 |
Landsat 9 TIR Band 10 | Landsat 9 TIR Band 11 | |
---|---|---|
Pure Vegetation Emissivity | 0.9816 | 0.9843 |
Pure Soil Emissivity | 0.9741 | 0.9787 |
Study Area | Beijing Longitude (lb) | Local Longitude (lh) | Latitude (ψ) | Beijing Time (tb) | Day Number (Dn) |
---|---|---|---|---|---|
Hefei | 2.0944 | 2.0469 | 0.5559 | 10.7197 | 167 |
Xuzhou | 2.0460 | 0.5976 | 10.7044 | 186 |
Factor Abbreviation | Description |
---|---|
Roof | Sunlight exposure area of building roofs |
Facade | Sunlight exposure area of building facade |
Road | Sunlight exposure area of roads |
Population | Population density |
AHF | Anthropogenic heat flux |
Hefei | Xuzhou | |||
---|---|---|---|---|
q Statistic | p Value | q Statistic | p Value | |
Roof | 0.314 | 0.000 | 0.343 | 0.000 |
Facade | 0.166 | 0.000 | 0.174 | 0.000 |
Road | 0.233 | 0.000 | 0.302 | 0.000 |
Population | 0.063 | 0.000 | 0.126 | 0.000 |
AHF | 0.392 | 0.000 | 0.218 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Ding, N. Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data. Land 2024, 13, 1879. https://doi.org/10.3390/land13111879
Wang Y, Zhang Y, Ding N. Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data. Land. 2024; 13(11):1879. https://doi.org/10.3390/land13111879
Chicago/Turabian StyleWang, Yuchen, Yu Zhang, and Nan Ding. 2024. "Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data" Land 13, no. 11: 1879. https://doi.org/10.3390/land13111879
APA StyleWang, Y., Zhang, Y., & Ding, N. (2024). Investigation into the Mechanism of the Impact of Sunlight Exposure Area of Urban Artificial Structures and Human Activities on Land Surface Temperature Based on Point of Interest Data. Land, 13(11), 1879. https://doi.org/10.3390/land13111879