The Impact of High-Standard Scenic Areas Construction on County-Level Carbon Emissions and Its Spatial Spillover Effects: Evidence from a Quasi-Natural Experiment
Abstract
:1. Introduction
2. Policy Background and Theoretical Analysis
2.1. Policy Background
2.2. Theoretical Analysis
3. Methodology
3.1. Models Specification
3.1.1. Staggered DID Model
3.1.2. Spatial DID Model
- Model specification
- 2.
- Spatial weight matrix construction
3.2. Variable Definitions
- Dependent variable
- 2.
- Independent variable
- 3.
- Control variables
3.3. Data Sources
4. Results
4.1. Baseline Results
4.2. Parallel Trend Test
4.3. Robustness Tests
4.3.1. Placebo Test
4.3.2. Replacing Variable
4.3.3. Excluding Outliers
4.3.4. Excluding Other Relevant Policy Interferences
4.3.5. PSM-DID Estimation
4.3.6. Endogeneity Treatment
4.4. Heterogeneity Analysis
4.4.1. Location Conditions Heterogeneity Analysis
4.4.2. Management System Heterogeneity Analysis
4.5. Spatial Spillover Effects
5. Discussion
5.1. The Effect of the CNSA on CEI Is Negative, Which Persists and Intensifies over Time
5.2. The Negative Effect of the CNSA on CEI Is Significantly More Evident in Western and Eastern Regions
5.3. The Negative Effect of the CNSA on CEI Is Not Significant in the Municipal District and County-Level City Subsamples
5.4. The Negative Effect of the CNSA on CEI Has a Spatial Spillover Characteristic
6. Conclusions and Implications
6.1. Conclusions
6.2. Policy Recommendations
6.3. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | https://www.unwto.org/sustainable-development/climate-action (accessed on 9 October 2024). |
2 | Signaling theory is an explanation framework to understand the way stakeholders negotiate information problems to assist them in making decisions and ultimately achieve goals [28], and is often applied to solve information asymmetry problems. |
3 | Since the number of counties with a CNSA in the study period was 84, 84 counties were sampled in the placebo test for consistency of numbers. |
References
- Dong, Z.; Xia, C.; Fang, K.; Zhang, W. Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control. Energy Policy 2022, 165, 112998. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Milcheva, S.; Shan, Y.; Guan, D.; Wang, S. Regional development and carbon emissions in China. Energy Econ. 2019, 81, 25–36. [Google Scholar] [CrossRef]
- Holden, A. Tourism and the Green Economy: A Place for an Environmental Ethic? Tour. Recreat. Res. 2015, 38, 3–13. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, R.; He, B. The Carbon Emission Reduction Effect of Tourism Economy and Its Formation Mechanism: An Empirical Study of China’s 92 Tourism-Dependent Cities. Int. J. Environ. Res. Public Health 2022, 19, 1824. [Google Scholar] [CrossRef]
- Koçak, E.; Ulucak, R.; Ulucak, Z.Ş. The impact of tourism developments on CO2 emissions: An advanced panel data estimation. Tour. Manag. Perspect. 2020, 33, 100611. [Google Scholar] [CrossRef]
- Jia, J.; Chen, D.; Ju, M.; Lu, C.; Zhong, C. China’s CO2 emissions: An innovative framework for analyzing carbon reduction in sustainable tourism under the guidance of the United Nations’ sustainable development goals. J. Clean. Prod. 2023, 430, 139752. [Google Scholar] [CrossRef]
- Yang, S.; Duan, Z.; Jiang, X. Spatial dynamics and influencing factors of carbon rebound effect in tourism transport: Evidence from the Yangtze-river delta urban agglomeration. J. Environ. Manag. 2023, 344, 118431. [Google Scholar] [CrossRef]
- Paramati, S.R.; Alam, M.S.; Chen, C.-F. The Effects of Tourism on Economic Growth and CO2 Emissions: A Comparison between Developed and Developing Economies. J. Travel Res. 2016, 56, 712–724. [Google Scholar] [CrossRef]
- Nosheen, M.; Iqbal, J.; Khan, H.U. Analyzing the linkage among CO2 emissions, economic growth, tourism, and energy consumption in the Asian economies. Environ. Sci. Pollut. Res. 2021, 28, 16707–16719. [Google Scholar] [CrossRef]
- Zhuang, T. Analysis of the impact of tourism on agricultural carbon emissions-based on the mediating effect of nonagricultural transfer of labor in China. Nat. Resour. Forum 2023, 47, 375–392. [Google Scholar] [CrossRef]
- Wang, C.-M.; Chang, T.; Wu, T.-P. Examining the asymmetric link between tourism and carbon emissions: Evidence from cross-quantilogram approach. Curr. Issues Tour. 2024, 1–7. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, B. Does tourism industry agglomeration improve China’s energy and carbon emissions performance? Sci. Prog. 2022, 105, 1–22. [Google Scholar] [CrossRef]
- De Siano, R.; Canale, R.R. Controversial effects of tourism on economic growth: A spatial analysis on Italian provincial data. Land Use Policy 2022, 117, 106081. [Google Scholar] [CrossRef]
- Li, Y.; Nassani, A.A.; Al-Aiban, K.M.; Rahman, S.u.; Naseem, I.; Zaman, K. Beyond the numbers: Unveiling the environmental impacts of international tourism and the role of renewable energy transition. Curr. Issues Tour. 2024, 1–16. [Google Scholar] [CrossRef]
- Alfaisal, A.; Xia, T.; Kafeel, K.; Khan, S. Economic performance and carbon emissions: Revisiting the role of tourism and energy efficiency for BRICS economies. Environ. Dev. Sustain. 2024, 29, 1–22. [Google Scholar] [CrossRef]
- Ullah, A.; Raza, K.; Mehmood, U. The impact of economic growth, tourism, natural resources, technological innovation on carbon dioxide emission: Evidence from BRICS countries. Environ. Sci. Pollut. Res. 2023, 30, 78825–78838. [Google Scholar] [CrossRef]
- Yıldırım, D.Ç.; Ektiren, B.; Erdoğan, F. The threshold effect of tourism, growth, and population interactions on environmental pollution in Mediterranean countries. Tour. Manag. Perspect. 2023, 47, 101118. [Google Scholar] [CrossRef]
- Munir, A.; Xiwei, Z.; Yiyun, W. The criticality of international tourism and technological innovation forcarbon neutrality across regional development levels. Technol. Forecast. Soc. Change 2022, 182, 121848. [Google Scholar]
- Zhang, J.; Zhang, Y. Tourism and regional carbon emissions: City-level evidence from China. Tour. Rev. 2022, 78, 888–906. [Google Scholar] [CrossRef]
- Yang, S.; Hao, Q.; Wang, Y.; Zhang, C. Impact of the Participation of the Tourism Sector on Carbon Emission Reduction in the Tourism Industry. Sustainability 2022, 14, 15570. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Hassan, M.A.; Hishan, S.S.; Rasli, A.M.; Zaman, K. Dynamic linkages between sustainable tourism, energy, health and wealth: Evidence from top 80 international tourist destination cities in 37 countries. J. Clean. Prod. 2017, 158, 143–155. [Google Scholar] [CrossRef]
- Kafy, A.A.; Faisal, A.-A.; Al Rakib, A.; Fattah, M.A.; Rahaman, Z.A.; Sattar, G.S. Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Build. Environ. 2022, 208, 108573. [Google Scholar] [CrossRef]
- Luo, F.; Moyle, B.D.; Moyle, C.-l.J.; Zhong, Y.; Shi, S. Drivers of carbon emissions in China’s tourism industry. J. Sustain. Tour. 2019, 28, 747–770. [Google Scholar] [CrossRef]
- Shi, F.; Weaver, D.; Zhao, Y.; Huang, M.-F.; Tang, C.; Liu, Y. Toward an ecological civilization: Mass comprehensive ecotourism indications among domestic visitors to a Chinese wetland protected area. Tour. Manag. 2019, 70, 59–68. [Google Scholar] [CrossRef]
- Huang, X.; Song, J.; Yang, L.; Zhong, L.; Yan, K. Ecotourism certification and regional low-carbon sustainable development: A quasi-experimental study based on the Prototype-zone of National Ecotourism Attractions in China. J. Clean. Prod. 2023, 423, 138731. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y. Can ‘brand effect’ promote the development of the tourism economy?—A quasi-natural experiment based on 204 cities. Curr. Issues Tour. 2024, 1–17. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Ren, L.; Sun, P. The role of city honor designations in influencing tourism performance: Evidence from the National Civilized City program in China. J. Hosp. Tour. Manag. 2023, 54, 437–446. [Google Scholar] [CrossRef]
- Spence, M. Job market signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Y.; Shi, X.; Sun, A.; Zhang, P. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q.; Zhou, P.; Cheng, F. Effects of carbon emission transfer on economic spillover and carbon emission reduction in China. J. Clean. Prod. 2016, 112, 1432–1442. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, N. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2021, 96, 105125. [Google Scholar] [CrossRef]
- Xie, L.; Li, S. Climate risk and energy-saving technology innovation: Evidence from Chinese prefecture-level cities. Energy Econ. 2024, 139, 107917. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46 (Supp. S1), 234–240. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, Y.; He, J.; Ni, Q. Does land transfer promote the development of new-type urbanization? New evidence from urban agglomerations in the middle reaches of the Yangtze River. Ecol. Indic. 2022, 136, 108705. [Google Scholar] [CrossRef]
- Piribauer, P.; Fischer, M.M. Model Uncertainty in Matrix Exponential Spatial Growth Regression Models. Geogr. Anal. 2014, 47, 240–261. [Google Scholar] [CrossRef]
- Peng, W.; Yin, Y.; Kuang, C.; Wen, Z.; Kuang, J. Spatial spillover effect of green innovation on economic development quality in China: Evidence from a panel data of 270 prefecture-level and above cities. Sustain. Cities Soc. 2021, 69, 102863. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, C.; Song, H.; Wang, Q. How does emission trading reduce China’s carbon intensity? An exploration using a decomposition and difference-in-differences approach. Sci. Total Environ. 2019, 676, 514–523. [Google Scholar] [CrossRef]
- Ghosh, S. Tourism and the environmental Kuznets Curve: A panel estimation. Int. J. Tour. Res. 2020, 22, 839–852. [Google Scholar] [CrossRef]
- Mahalik, M.K.; Mallick, H.; Padhan, H. Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renew. Energy 2021, 164, 419–432. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, W.; Zhou, Q.; Wang, K. Industrial structure, urban governance and haze pollution: Spatiotemporal evidence from China. Sci. Total Environ. 2020, 742, 139228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, S.; Wang, J. Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Sci. Total Environ. 2019, 675, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Z.; Liu, L.-C.; Liao, H.; Wei, Y.-M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Graham, S.; Schandl, H.; Williams, L.J.; Foran, T. The Effects of Climate and Socio-Demographics on Direct Household Carbon Dioxide Emissions in Australia. Geogr. Res. 2013, 51, 424–438. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, P. Analyzing the phased changes of socioeconomic drivers to carbon dioxide and particulate matter emissions in the Yangtze River Delta. Ecol. Indic. 2022, 140, 109044. [Google Scholar] [CrossRef]
- Tripathy, B.R.; Sajjad, H.; Elvidge, C.D.; Ting, Y.; Pandey, P.C.; Rani, M.; Kumar, P. Modeling of Electric Demand for Sustainable Energy and Management in India Using Spatio-Temporal DMSP-OLS Night-Time Data. Environ. Manag. 2017, 61, 615–623. [Google Scholar] [CrossRef]
- Xiang, Y.; Cui, H.; Bi, Y. The impact and channel effects of banking competition and government intervention on carbon emissions: Evidence from China. Energy Policy 2023, 175, 113476. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Moshirian, F.; Tian, X.; Zhang, B.; Zhang, W. Stock market liberalization and innovation. J. Financ. Econ. 2021, 139, 985–1014. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings losses of displaced workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Tong, Y.; Zhang, R. Do official high-standard scenic spots deteriorate carbon neutrality: A quasi-natural experiment with high-precision multi-source data. Curr. Issues Tour. 2023, 27, 1–8. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Peng, H.-R.; Ling, K.; Zhang, Y.-J. The carbon emission reduction effect of digital infrastructure development: Evidence from the broadband China policy. J. Clean. Prod. 2024, 434, 140060. [Google Scholar] [CrossRef]
- Shu, Y.; Deng, N.; Wu, Y.; Bao, S.; Bie, A. Urban governance and sustainable development: The effect of smart city on carbon emission in China. Technol. Forecast. Soc. Change 2023, 193, 122643. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, Z.; Wen, Z.; Cheng, S. Environmental regulation and OFDI: Evidence from Chinese listed firms. Econ. Anal. Policy 2022, 75, 191–208. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Abban, O.J.; Xing, Y.H.; Nuţă, A.C.; Nuţă, F.M.; Borah, P.S.; Ofori, C.; Jing, Y.J. Policies for carbon-zero targets: Examining the spillover effects of renewable energy and patent applications on environmental quality in Europe. Energy Econ. 2023, 126, 106954. [Google Scholar] [CrossRef]
- Song, M.; Wu, J.; Song, M.; Zhang, L.; Zhu, Y. Spatiotemporal regularity and spillover effects of carbon emission intensity in China’s Bohai Economic Rim. Sci. Total Environ. 2020, 740, 140184. [Google Scholar] [CrossRef]
- Gao, Y.; Su, W. The Disclosure of Quality on Tourism Performance: Evidence from Top Tourist Cities in China. J. Travel Res. 2020, 60, 1492–1509. [Google Scholar] [CrossRef]
- Shan, Y.; Ren, Z. Does tourism development and renewable energy consumption drive high quality economic development? Resour. Policy 2023, 80, 103270. [Google Scholar] [CrossRef]
- Zhou, Q.; Qu, S.; Hou, W. Do tourism clusters contribute to low-carbon destinations? The spillover effect of tourism agglomerations on urban residential CO2 emissions. J. Environ. Manag. 2023, 330, 117160. [Google Scholar] [CrossRef] [PubMed]
Proxy for Tourism | Study Scales | Key Findings | Source | |
---|---|---|---|---|
Revenue/arrivals | Countries | Linear | Increase | [8,9,14] |
Decrease | [15,16] | |||
Non-linear | [17] | |||
Revenue/arrivals | Provinces | Linear | Increase | [10] |
Non-linear | [11] | |||
Tourism agglomerations | Non-linear | [12] | ||
Comprehensive index | [18] | |||
Revenue/arrivals | Cities | Linear | Increase | [19] |
Decrease | [20] | |||
Non-linear | [21] | |||
Tourism specialization | Linear | Decrease | [4] |
Variables | Observations | Mean | S.D. | Min. | Max. | VIF |
---|---|---|---|---|---|---|
lnCEI | 29,628 | −5.2515 | 1.3335 | −18.4554 | 2.2379 | - |
Scenery | 29,628 | 0.0284 | 0.1660 | 0.0000 | 1.0000 | 1.01 |
lnEco | 29,628 | 1.9243 | 1.3927 | −3.8137 | 9.5429 | 3.58 |
lnInd | 29,628 | −0.9856 | 0.4657 | −4.8842 | 0.5130 | 1.68 |
lnPop | 29,628 | −2.6061 | 2.2388 | −14.0491 | 3.3557 | 5.27 |
lnUrb | 29,628 | −1.5638 | 0.2473 | −3.5165 | −0.5726 | 2.46 |
lnTemp | 29,628 | 2.4053 | 0.7379 | −5.8493 | 3.3923 | 1.94 |
lnEne | 29,628 | −3.2324 | 1.9461 | −12.1356 | 3.0994 | 2.96 |
lnGov | 29,628 | −1.8117 | 0.7554 | −4.7303 | 1.6923 | 1.56 |
lnVeg | 29,628 | −0.3814 | 0.3503 | −2.8968 | −0.1078 | 2.04 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
lnCEI | lnCEI | lnCEI | lnCEI | lnCEI | |
Scenery | −0.0559 *** | −0.0801 *** | −0.0772 *** | −0.0983 *** | −0.1024 *** |
(0.0169) | (0.0129) | (0.0134) | (0.0134) | (0.0138) | |
lnEco | −0.8976 *** | −0.8722 *** | −0.8965 *** | −0.8696 *** | |
(0.0113) | (0.0111) | (0.0117) | (0.0127) | ||
lnInd | 0.2603 *** | 0.2405 *** | 0.2003 *** | 0.2231 *** | |
(0.0243) | (0.0236) | (0.0234) | (0.0254) | ||
lnPop | 1.0633 *** | 1.1047 *** | 1.1436 *** | ||
(0.1766) | (0.1772) | (0.1817) | |||
lnUrb | −2.3622 *** | −2.6186 *** | −2.5343 *** | ||
(0.3120) | (0.3504) | (0.3534) | |||
lnTemp | −0.0461 * | −0.0453 * | |||
(0.0250) | (0.0251) | ||||
lnEne | 0.0891 *** | 0.0871 *** | |||
(0.0068) | (0.0068) | ||||
lnGov | 0.1254 *** | ||||
(0.0235) | |||||
lnVeg | −0.0267 | ||||
(0.0549) | |||||
_constant | −5.2499 *** | −3.2672 *** | −4.2585 *** | −4.1452 *** | −3.7325 *** |
(0.0029) | (0.0416) | (0.4982) | (0.5470) | (0.5930) | |
Observations | 29,628 | 29,628 | 29,628 | 29,628 | 29,628 |
R2 | 0.8639 | 0.8947 | 0.8967 | 0.8982 | 0.8986 |
County FE | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Replacing Dependent Variable | Excluding Outliers | Excluding Outlier | Excluding Smart Pilot Interference | Excluding 5ATA Interference | Cross-Sectional PSM-DID Estimation | Year-by-Year PSM-DID Estimation | IV-2SLS | |
Scenery | −0.1024 *** | −0.0866 *** | −0.0843 *** | −0.1068 *** | −0.1009 *** | −0.1043 *** | −0.0894 *** | −0.1453 *** |
(0.0138) | (0.0110) | (0.0116) | (0.0139) | (0.0137) | (0.0313) | (0.0295) | (0.0528) | |
Smart | −0.0772 *** | |||||||
(0.0070) | ||||||||
5ATA | −0.0633 *** | |||||||
(0.0147) | ||||||||
_constant | 2.3902 *** | −4.0038 *** | −3.6550 *** | −3.6468 *** | −3.6989 *** | −4.9826 *** | −5.6449 *** | |
(0.5930) | (0.8041) | (0.6787) | (0.5804) | (0.5928) | (1.0359) | (0.7971) | ||
Anderson canon. corr LM | 9031.660 *** | |||||||
Cragg–Donald Wald F | 1.3 × 100.4 {16.38} | |||||||
Controls | √ | √ | √ | √ | √ | √ | √ | √ |
Observations | 29,628 | 29,628 | 29,628 | 29,628 | 29,628 | 29,300 | 27,093 | 29,628 |
R2 | 0.8961 | 0.9656 | 0.9633 | 0.8988 | 0.8987 | 0.3807 | 0.4329 | 0.3358 |
County FE | √ | √ | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ | √ | √ |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
East | Central | West | Counties | Municipal Districts and County-Level Cities | |
Scenery | −0.0356 *** | 0.0126 | −0.1469 *** | −0.1186 *** | −0.0112 |
(0.0113) | (0.0111) | (0.0400) | (0.0170) | (0.0183) | |
_constant | −4.2242 *** | −5.9213 *** | 1.5367 | −1.9336 * | −4.4372 *** |
(0.3041) | (0.2441) | (1.4936) | (1.0378) | (0.1927) | |
Controls | √ | √ | √ | √ | √ |
Observations | 7866 | 11,070 | 10,692 | 23,184 | 6444 |
R2 | 0.9893 | 0.9873 | 0.8314 | 0.8798 | 0.9902 |
County FE | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ |
(1) | (2) | |
---|---|---|
W0−1 | Wk | |
Scenery | −0.0537 ** | −0.0549 ** |
(0.0238) | (0.0230) | |
W × Scenery | −0.0594 | −0.0812 * |
(0.0430) | (0.0432) | |
LR_direct | −0.0676 ** | −0.0745 *** |
(0.0265) | (0.0260) | |
LR_indirect | −0.1687 ** | −0.2325 ** |
(0.0845) | (0.0915) | |
LR_total | −0.2363 ** | −0.3070 *** |
(0.0984) | (0.1056) | |
Controls | √ | √ |
rho | 0.5348 *** | 0.5644 *** |
(0.0056) | (0.0051) | |
Observations | 29,628 | 29,628 |
R2 | 0.3213 | 0.3528 |
County FE | √ | √ |
Year FE | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Zhang, R.; Tong, Y. The Impact of High-Standard Scenic Areas Construction on County-Level Carbon Emissions and Its Spatial Spillover Effects: Evidence from a Quasi-Natural Experiment. Land 2024, 13, 1895. https://doi.org/10.3390/land13111895
Xu K, Zhang R, Tong Y. The Impact of High-Standard Scenic Areas Construction on County-Level Carbon Emissions and Its Spatial Spillover Effects: Evidence from a Quasi-Natural Experiment. Land. 2024; 13(11):1895. https://doi.org/10.3390/land13111895
Chicago/Turabian StyleXu, Ke, Rui Zhang, and Yun Tong. 2024. "The Impact of High-Standard Scenic Areas Construction on County-Level Carbon Emissions and Its Spatial Spillover Effects: Evidence from a Quasi-Natural Experiment" Land 13, no. 11: 1895. https://doi.org/10.3390/land13111895
APA StyleXu, K., Zhang, R., & Tong, Y. (2024). The Impact of High-Standard Scenic Areas Construction on County-Level Carbon Emissions and Its Spatial Spillover Effects: Evidence from a Quasi-Natural Experiment. Land, 13(11), 1895. https://doi.org/10.3390/land13111895