Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Territorial Space Classification and Its Associated Carbon Emission Sectors
2.2.2. Carbon Emission/Sequestration Calculation
2.2.3. Transfer Matrix of Territorial Space
2.2.4. Standard Deviation Ellipse
2.2.5. Carbon Transition Flux
2.2.6. Decomposition of Changes in Carbon Emission Density
2.3. Data Sources
3. Results and Analysis
3.1. Spatial-Temporal Evolution Characteristics of Territorial Spaces
3.1.1. Spatiotemporal Variation Characteristics
3.1.2. Transfer Characteristics of Territorial Space
3.2. Spatiotemporal Evolution Characteristics of Carbon Emissions in Territorial Spaces
3.2.1. Temporal Changes in Carbon Emissions
3.2.2. Spatial Distribution and Evolution Characteristics of Carbon Emissions
3.3. Impact of Territorial Spatial Transfer on Carbon Emissions
3.3.1. Carbon Transition Flux Caused by Space Transfers
3.3.2. Changes in Carbon Emission Density Caused by Space Type Transfer and Socio-Economic Development
4. Discussion
4.1. Evolution of Territorial Spaces and Its Effect on Carbon Emissions
4.2. The Evolution of Carbon Emissions in Qingdao and Its Implications
4.3. Implication for Territorial Spatial Planning and Governance
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical Carbon Dioxide Emissions Caused by Land-Use Changes Are Possibly Larger than Assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower Land-Use Emissions Responsible for Increased Net Land Carbon Sink during the Slow Warming Period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the Efficiency of Changes in Land Use for Mitigating Climate Change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Industrialization, Urbanization and CO2 Emissions in Saudi Arabia: Asymmetry Analysis. Energy Rep. 2020, 6, 1553–1560. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change Climate Change 2022: Mitigation of Climate Change. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ (accessed on 10 September 2023).
- Qin, Z.; Zhu, Y.; Canadell, J.G.; Chen, M.; Li, T.; Mishra, U.; Yuan, W. Global Spatially Explicit Carbon Emissions from Land-Use Change over the Past Six Decades (1961–2020). One Earth 2024, 7, 835–847. [Google Scholar] [CrossRef]
- Wang, D.; Fu, J.; Xie, X.; Ding, F.; Jiang, D. Spatiotemporal Evolution of Urban-Agricultural-Ecological Space in China and Its Driving Mechanism. J. Clean. Prod. 2022, 371, 133684. [Google Scholar] [CrossRef]
- Mishra, A.; Humpenöder, F.; Churkina, G.; Reyer, C.P.O.; Beier, F.; Bodirsky, B.L.; Schellnhuber, H.J.; Lotze-Campen, H.; Popp, A. Land Use Change and Carbon Emissions of a Transformation to Timber Cities. Nat. Commun. 2022, 13, 4889. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, C.; Wang, Q.; Yang, C.; Suo, X.; Zhang, Q. Climate Extremes and Land Use Carbon Emissions: Insight from the Perspective of Sustainable Land Use in the Eastern Coast of China. J. Clean. Prod. 2024, 452, 142219. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Quéré, C.L.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Schwingshackl, C.; Bastos, A.; Conchedda, G.; Gasser, T.; Grassi, G.; Houghton, R.A.; Tubiello, F.N.; Sitch, S.; Pongratz, J. Country-Level Estimates of Gross and Net Carbon Fluxes from Land Use, Land-Use Change and Forestry. Earth Syst. Sci. Data 2024, 16, 605–645. [Google Scholar] [CrossRef]
- Duffy, C.; Prudhomme, R.; Duffy, B.; Gibbons, J.; Iannetta, P.P.M.; O’Donoghue, C.; Ryan, M.; Styles, D. Randomized National Land Management Strategies for Net-Zero Emissions. Nat. Sustain. 2022, 5, 973–980. [Google Scholar] [CrossRef]
- Hartung, K.; Bastos, A.; Chini, L.; Ganzenmüller, R.; Havermann, F.; Hurtt, G.C.; Loughran, T.; Nabel, J.E.M.S.; Nützel, T.; Obermeier, W.A.; et al. Bookkeeping Estimates of the Net Land-Use Change Flux—A Sensitivity Study with the CMIP6 Land-Use Dataset. Earth Syst. Dynam. 2021, 12, 763–782. [Google Scholar] [CrossRef]
- Liu, H.; Yin, W.; Yan, F.; Cai, W.; Du, Y.; Wu, Y. A Coupled STIRPAT-SD Model Method for Land-Use Carbon Emission Prediction and Scenario Simulation at the County Level. Environ. Impact Assess. Rev. 2024, 108, 107595. [Google Scholar] [CrossRef]
- Yang, F.; He, F.; Li, S.; Li, M.; Wu, P. A New Estimation of Carbon Emissions from Land Use and Land Cover Change in China over the Past 300 Years. Sci. Total Environ. 2023, 863, 160963. [Google Scholar] [CrossRef]
- Jing, X.; Tian, G.; He, Y.; Wang, M. Spatial and Temporal Differentiation and Coupling Analysis of Land Use Change and Ecosystem Service Value in Jiangsu Province. Ecol. Indic. 2024, 163, 112076. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.; Wang, M.; Zhao, L.; Zhao, Y.; Zhang, Q.; Zhang, C. Decoupling Analysis to Assess the Impact of Land Use Patterns on Carbon Emissions: A Case Study in the Yellow River Delta Efficient Eco-Economic Zone, China. J. Clean. Prod. 2023, 412, 137415. [Google Scholar] [CrossRef]
- Crivelari-Costa, P.M.; Lima, M.; La Scala, N., Jr.; Rossi, F.S.; Della-Silva, J.L.; Dalagnol, R.; Teodoro, P.E.; Teodoro, L.P.R.; Oliveira, G.D.; Junior, J.F.D.O.; et al. Changes in Carbon Dioxide Balance Associated with Land Use and Land Cover in Brazilian Legal Amazon Based on Remotely Sensed Imagery. Remote Sens. 2023, 15, 2780. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Z.; Xue, Z. Spatiotemporal Evolution Characteristics, Influencing Factors of Land Use Carbon Emissions, and Low-Carbon Development in Hubei Province, China. Ecol. Inform. 2024, 81, 102567. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Yang, H. Optimizing Land Use Patterns to Improve the Contribution of Land Use Planning to Carbon Neutrality Target. Land. Use Policy 2023, 135, 106959. [Google Scholar] [CrossRef]
- Rong, T.; Zhang, P.; Zhu, H.; Jiang, L.; Li, Y.; Liu, Z. Spatial Correlation Evolution and Prediction Scenario of Land Use Carbon Emissions in China. Ecol. Inform. 2022, 71, 101802. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Hou, Y.; Chen, T.; Lu, Y.; Sun, H. Carbon Emission Patterns and Carbon Balance Zoning in Urban Territorial Spaces Based on Multisource Data: A Case Study of Suzhou City, China. ISPRS Int. J. Geo-Inf. 2023, 12, 385. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land. Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wu, K.; Feng, Z. Analysis and Prediction of Carbon Balance in Production-Living-Ecological Space of Henan Province, China. Environ. Sci. Pollut. Res. 2023, 30, 75973–75988. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, F.; Li, J.; Xu, Z.; Ou, J. Temporal-Spatial Variation and Regulatory Mechanism of Carbon Budgets in Territorial Space through the Lens of Carbon Balance: A Case of the Middle Reaches of the Yangtze River Urban Agglomerations, China. Ecol. Indic. 2023, 154, 110885. [Google Scholar] [CrossRef]
- Fu, B.; Wu, M.; Che, Y.; Yang, K. Effects of Land-Use Changes on City-Level Net Carbon Emissions Based on a Coupled Model. Carbon Manag. 2017, 8, 245–262. [Google Scholar] [CrossRef]
- Cao, W.; Yuan, X. Region-County Characteristic of Spatial-Temporal Evolution and Influencing Factor on Land Use-Related CO2 Emissions in Chongqing of China, 1997–2015. J. Clean. Prod. 2019, 231, 619–632. [Google Scholar] [CrossRef]
- Yan, H.; Guo, X.; Zhao, S.; Yang, H. Variation of Net Carbon Emissions from Land Use Change in the Beijing-Tianjin-Hebei Region during 1990–2020. Land 2022, 11, 997. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wei, G.; Bi, M.; He, B.-J. Carbon Surplus or Carbon Deficit under Land Use Transformation in China? Land. Use Policy 2024, 143, 107218. [Google Scholar] [CrossRef]
- Zhang, Y.; Linlin, X.; Weining, X. Analyzing Spatial Patterns of Urban Carbon Metabolism: A Case Study in Beijing, China. Landsc. Urban. Plan. 2014, 130, 184–200. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Spatiotemporal Dynamic Decoupling States of Eco-Environmental Quality and Land-Use Carbon Emissions: A Case Study of Qingdao City, China. Ecol. Inform. 2023, 75, 101992. [Google Scholar] [CrossRef]
- Bian, R.; Chen, J.; Zhang, T.; Gao, C.; Niu, Y.; Sun, Y.; Zhan, M.; Zhao, F.; Zhang, G. Influence of the Classification of Municipal Solid Wastes on the Reduction of Greenhouse Gas Emissions: A Case Study of Qingdao City, China. J. Clean. Prod. 2022, 376, 134275. [Google Scholar] [CrossRef]
- Wu, C.B.; Huang, G.H.; Liu, Z.P.; Zhen, J.L.; Yin, J.G. Scenario Analysis of Carbon Emissions’ Anti-Driving Effect on Qingdao’s Energy Structure Adjustment with an Optimization Model, Part II: Energy System Planning and Management. J. Environ. Manag. 2017, 188, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Duan, W.; Zhao, D.; Song, Q. Identifying the Influence Factors of Residents’ Low-Carbon Behavior under the Background of “Carbon Neutrality”: An Empirical Study of Qingdao City, China. Energy Rep. 2022, 8, 6876–6886. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z.; Niu, L. Identification and Evolution of Territorial Space from the Perspective of Composite Functions. Habitat. Int. 2022, 128, 102662. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land Use, Total Carbon Emissions Change and Low Carbon Land Management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 10 September 2023).
- Li, W.; Chen, Z.; Li, M.; Zhang, H.; Li, M.; Qiu, X.; Zhou, C. Carbon Emission and Economic Development Trade-Offs for Optimizing Land-Use Allocation in the Yangtze River Delta, China. Ecol. Indic. 2023, 147, 109950. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Yang, X. Evolution Characteristics and Driving Mechanism of the Territorial Space Pattern in the Yangtze River Economic Belt, China. Land 2022, 11, 1447. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Gui, D.; He, H.; Liu, C.; Han, S. Spatio-Temporal Dynamic Evolution of Carbon Emissions from Land Use Change in Guangdong Province, China, 2000–2020. Ecol. Indic. 2023, 156, 111131. [Google Scholar] [CrossRef]
- Duman, Z.; Mao, X.; Cai, B.; Zhang, Q.; Chen, Y.; Gao, Y.; Guo, Z. Exploring the Spatiotemporal Pattern Evolution of Carbon Emissions and Air Pollution in Chinese Cities. J. Environ. Manag. 2023, 345, 118870. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Yin, Z. Land Spatial Evolution and Ecosystem Response of Coastal Cities Based on Ecological-Production-Living Function: A Case Study in Qingdao City, Shandong Province. Geomat. Spat. Inf. Technol. 2023, 46, 12–16. [Google Scholar]
- Li, X.; Lei, L.; Li, J. Integrating Ecosystem Service Value into the Evaluation of Sustainable Land Use in Fast-Growing Cities: A Case Study of Qingdao, China. Ecol. Indic. 2023, 153, 110434. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Wang, M.; Yu, Y. Coastal Urban Expansion and Its Eco-Environmental Effects Using Multi-Source Data. Geospat. Inf. 2024, 22, 49–53. [Google Scholar]
- Zhang, P.; Zhou, Y.; Luan, K.; Jia, B. Spatiotemporal Evolution and Driving Factors of Carbon Emissions in Qingdao City Based on GeoDetector. Glob. NEST J. 2023, 25, 170–177. [Google Scholar]
- Liu, S.; Xiao, W.; Ye, Y.; He, T.; Luo, H. Rural Residential Land Expansion and Its Impacts on Cultivated Land in China between 1990 and 2020. Land Use Policy 2023, 132, 106816. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S.; Guan, D. An Emissions-Socioeconomic Inventory of Chinese Cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef]
- Hasan, A.S.M.M.; Trianni, A. Boosting the Adoption of Industrial Energy Efficiency Measures through Industry 4.0 Technologies to Improve Operational Performance. J. Clean. Prod. 2023, 425, 138597. [Google Scholar] [CrossRef]
- Shang, W.-L.; Ling, Y.; Ochieng, W.; Yang, L.; Gao, X.; Ren, Q.; Chen, Y.; Cao, M. Driving Forces of CO2 Emissions from the Transport, Storage and Postal Sectors: A Pathway to Achieving Carbon Neutrality. Appl. Energy 2024, 365, 123226. [Google Scholar] [CrossRef]
- Ji, M.; Li, J.; Zhang, M. What Drives the Agricultural Carbon Emissions for Low-Carbon Transition? Evidence from China. Environ. Impact Assess. Rev. 2024, 105, 107440. [Google Scholar] [CrossRef]
- Xu, X. Investigating the Impacts of Three-Dimensional Spatial Structures on CO2 Emissions at the Urban Scale. Sci. Total Environ. 2021, 762, 143096. [Google Scholar] [CrossRef] [PubMed]
- Leibowicz, B.D. Effects of Urban Land-Use Regulations on Greenhouse Gas Emissions. Cities 2017, 70, 135–152. [Google Scholar] [CrossRef]
- Liu, J.; Peng, K.; Zuo, C.; Li, Q. Spatiotemporal Variation of Land-Use Carbon Emissions and Its Implications for Low Carbon and Ecological Civilization Strategies: Evidence from Xiamen-Zhangzhou-Quanzhou Metropolitan Circle, China. Sustain. Cities Soc. 2022, 86, 104083. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Li, B. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resour. Sci. 2012, 34, 2097–2105. (In Chinese) [Google Scholar]
- Wu, X.; Zhang, J.; Tian, Y. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resour. Sci. 2014, 36, 129–138. (In Chinese) [Google Scholar]
- Qu, Y. The Research on Carbon Flux Calculation, Carbon Emission Effects and Regulation Mechanism of Wuhan Land Use; Huazhong Agricultural University: Wuhan, China, 2015. (In Chinese) [Google Scholar]
- Long, Z. Spatiotemporal Pattern of Carbon Emissions and Carbon Balance Zoning Optimization in the County Scale; Lanzhou University: Lanzhou, China, 2022. (In Chinese) [Google Scholar]
- Fang, J.; Guo, Z.; Piao, S. Estimation of carbon sinks in terrestrial vegetation in China from 1981 to 2000. Sci. Sin. 2007, 6, 804–812. (In Chinese) [Google Scholar]
- Zhang, J.; Zhang, A.; Dong, J. Carbon emission effects of land use and Influencing factors decomposition of carbon emissions in Wuhan urban agglomeration. Resour. Environ. Yangtze Basin 2014, 23, 595–602. (In Chinese) [Google Scholar]
- Duan, X.; Wang, X.; Lu, F.; Ouyang, Z.Y. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecol. Sin. 2008, 28, 463–469. (In Chinese) [Google Scholar]
Territorial Space Classification | Land Use Classification * | Catalog of Carbon Emissions/Sequestration | ||
---|---|---|---|---|
Primary Space Type | Secondary Space Type | Land Use Type | Carbon Emissions | Carbon Sinks |
Urban space | Urban living space (ULS) | Urban land | Energy consumption from urban households, wholesale retail trade and catering services; Urban domestic sewage; Urban domestic solid waste; Respiration of urban population. | |
Urban production space (UPS) | Other built-up land | Energy consumption from industry, construction, transport, storage, and postal services; Industrial sewage; Industrial production processes. | ||
Agricultural space | Agricultural production space (APS) | Paddy field, dry farmland | Energy consumption from agriculture; Rice cultivation; Agricultural production processes. | |
Rural living space (RLS) | Rural residential land | Energy consumption from rural households and graziers; Rural domestic sewage; Rural domestic solid waste; Respiration of rural population and livestock; Enteric fermentation and livestock manure. | ||
Ecological space | Forestland ecological space (FES) | Forestland | — | Forestland carbon uptake |
Grassland ecological space (GES) | Grassland | — | Grassland carbon uptake | |
Water ecological space (WES) | Water area | — | Water carbon uptake | |
Other ecological space (OES) | Unused land | — | — |
Type | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
ULS | 497.38 | 643.27 | 908.58 | 2416.86 | 2351.46 |
UPS | 5988.98 | 13,960.04 | 26,026.22 | 30,879.02 | 27,442.29 |
APS | 17.82 | 19.33 | 15.28 | 12.38 | 12.52 |
RLS | 1128.57 | 1169.86 | 1091.4 | 1101.78 | 1055.84 |
FES | −64.40 | −64.40 | −64.40 | −64.40 | −64.40 |
GES | −2.40 | −2.40 | −2.40 | −2.40 | −2.40 |
WES | −21.80 | −21.80 | −21.80 | −22.80 | −21.80 |
Year | Area /km2 | Long Half-Axis /km | Short Half-Axis /km | Azimuth/◦ | The Coordinates of the Gravity Center |
---|---|---|---|---|---|
2000 | 35.79 | 15.86 | 0.72 | 141.82 | 120.25° E, 35.65° N |
2005 | 19.20 | 11.78 | 0.52 | 142.80 | 120.26° E, 35.64° N |
2010 | 192.82 | 8.57 | 7.16 | 167.50 | 120.11° E, 35.66° N |
2015 | 186.60 | 8.83 | 6.73 | 172.31 | 120.11° E, 35.66° N |
2020 | 106.09 | 8.53 | 3.96 | 135.66 | 120.14° E, 35.68° N |
Year | Area /km2 | Long Half-Axis /km | Short Half-Axis /km | Azimuth/◦ | The Coordinates of the Gravity Center |
---|---|---|---|---|---|
2000 | 52.87 | 8.35 | 2.01 | 111.03 | 120.27° E, 35.67° N |
2005 | 91.74 | 9.09 | 3.21 | 125.81 | 120.27° E, 35.67° N |
2010 | 23.86 | 8.92 | 0.85 | 152.00 | 120.30° E, 35.69° N |
2015 | 21.20 | 8.96 | 0.76 | 150.01 | 120.30° E, 35.69° N |
2020 | 0.75 | 7.36 | 0.04 | 137.46 | 120.29° E, 35.68° N |
Years | Beneficial Carbon Transition | Harmful Carbon Transition | ||||
---|---|---|---|---|---|---|
Main Space Transfer Path | Carbon Transition Flux (×103 t) | Contribution Rate % | Main Space Transfer Path | Carbon Transition Flux (×103 t) | Contribution Rate % | |
2000–2005 | UPS → ULS | −34.01 | 25.45 | APS → UPS | 149.25 | 33.67 |
RLS → APS | −27.17 | 20.33 | APS → RLS | 120.78 | 27.25 | |
UPS → RLS | −26.44 | 19.79 | APS → ULS | 68.94 | 15.55 | |
UPS → APS | −19.52 | 14.61 | WES → UPS | 55.31 | 12.48 | |
RLS → ULS | −13.06 | 9.77 | GES → UPS | 23.89 | 5.39 | |
—— | GES → RLS | 9.04 | 2.04 | |||
2005–2010 | UPS → WES | −2085.01 | 66.41 | APS → UPS | 1950.95 | 55.56 |
UPS → ULS | −601.85 | 19.17 | GES → UPS | 443.1 | 12.62 | |
RLS → APS | −223.74 | 7.13 | APS → RLS | 346.54 | 9.87 | |
UPS → RLS | −105.72 | 3.37 | RLS → UPS | 236.73 | 6.74 | |
UPS → APS | −69.78 | 2.22 | WES → UPS | 185.51 | 5.28 | |
—— | APS → ULS | 104.29 | 2.97 | |||
2010–2015 | UPS → WES | −38.03 | 39.60 | APS → UPS | 798.99 | 88.93 |
UPS → APS | −35.49 | 36.96 | APS → ULS | 35.54 | 3.96 | |
RLS → APS | −13.14 | 13.68 | APS → RLS | 34.63 | 3.85 | |
UPS → GES | −2.3 | 2.40 | WES → UPS | 9.62 | 1.07 | |
UPS → RLS | −1.97 | 2.05 | —— | |||
2015–2020 | UPS → WES | −897.31 | 49.56 | APS → UPS | 1375.33 | 55.75 |
UPS → APS | −676.66 | 37.37 | WES → UPS | 746.31 | 30.25 | |
RLS → APS | −96.17 | 5.31 | APS → RLS | 139.88 | 5.67 | |
UPS → RLS | −54.97 | 3.04 | RLS → UPS | 65.52 | 2.66 | |
UPS → FES | −23.03 | 1.27 | APS → ULS | 48.08 | 1.95 | |
—— | GES → UPS | 36.73 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liu, X.; Wang, X.; Li, X.; Yu, L.; Niu, B. Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China. Land 2024, 13, 1717. https://doi.org/10.3390/land13101717
He J, Liu X, Wang X, Li X, Yu L, Niu B. Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China. Land. 2024; 13(10):1717. https://doi.org/10.3390/land13101717
Chicago/Turabian StyleHe, Jiali, Xiangfei Liu, Xuetong Wang, Xueyang Li, Linger Yu, and Beibei Niu. 2024. "Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China" Land 13, no. 10: 1717. https://doi.org/10.3390/land13101717
APA StyleHe, J., Liu, X., Wang, X., Li, X., Yu, L., & Niu, B. (2024). Spatiotemporal Evolution of Territorial Spaces and Its Effect on Carbon Emissions in Qingdao City, China. Land, 13(10), 1717. https://doi.org/10.3390/land13101717