The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Facility
2.2. Research Methodology
3. Results and Discussion
3.1. Beaver Activity
3.2. Groundwater Levels
3.3. Groundwater Flow
3.4. Phytocoenoses of the Area
4. Conclusions
- Water resources of the Mała River and adjacent ditches were closely related to the activity of beavers and atmospheric precipitation occurring in this area. For the beaver dam in location D1, in the beginning of 2020, the water levels above the dam were 1.0 m higher than below the dam (Figure 2), which resulted in water from the R-29 ditch irrigating the plot, while it was partially drained by the R-27 ditch (Year 2020 in Figure 3). For the locations of dams D2 and D3 in 2022, water levels in ditches R-29 and R-27 were similar (Year 2022 in Figure 3).
- The activity of beavers was closely related to their annual life cycle and human activity consisting of periodic removal of rebuilt beaver dams. The dam in location D1 was destroyed four times, and the dam in location D3 twice. After the fourth destruction of the dam in location D1 in 2020, beavers refrained from rebuilding it again in this place (Figure 3).
- Beaver activity influenced the dynamics of changes in groundwater levels in the plot by changing surface water levels in ditches adjacent to the plot. The greatest impact on these changes was at the location of the D1 beaver dam on the section of the river halfway between the R-27 and R-29 ditches, when the R-29 ditch was under the influence of the upper water of the D1 dam, and the R-27 ditch connected with the lower water (Figure 3).
- Due to the nature of habitat 6510 and local conditions, it is not possible to improve the conservation status of this natural habitat without taking remedial action.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosell, F.; Bozsér, O.; Collen, P.; Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal. Rev. 2005, 35, 248–276. [Google Scholar] [CrossRef]
- Gatti, R.C.; Callaghan, T.V.; Rozhkova-Timina, I.; Dudko, A.; Lim, A.; Vorobyev, S.N.; Kirpotin, S.N.; Pokrovsky, O.S. The role of Eurasian beaver (Castor fiber) in the storage, emission and deposition of carbon in lakes and rivers of the River Ob flood plain, western Siberia. Sci. Total Environ. 2018, 644, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Čiuldienė, D.; Vigricas, E.; Belova, O.; Aleinikovas, M.; Armolaitis, K. The effect of beaver dams on organic carbon, nutrients and methyl mercury distribution in impounded waterbodies. Wildl. Biol. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Brazier, R.E.; Puttock, A.; Graham, H.A.; Auster, R.E.; Davies, K.H.; Brown, C.M.L. Beaver: Nature’s ecosystem engineers. Wiley Interdiscip. Rev. Water 2021, 8, e149. [Google Scholar] [CrossRef] [PubMed]
- Dittbrenner, B.J.; Schilling, J.W.; Torgersen, C.E.; Lawler, J.J. Relocated Beaver Can Increase Water Storage and Decrease Stream Temperature in Headwater Streams. Ecosphere 2022, 13, e4168. [Google Scholar] [CrossRef]
- Pietrek, A.G.; Escobar, J.M.; Fasola, L.; Roesler, I.; Schiavini, A. Why invasive Patagonian beavers thrive in unlikely habitats: A demographic perspective. J. Mammal. 2016, 98, 283–292. [Google Scholar] [CrossRef]
- Crawford, J.C.; Liu, Z.; Nelson, T.A.; Nielsen, C.K.; Bloomquist, C.K. Microsatellite analysis of mating and kinship in beavers (Castor canadensis). J. Mammal. 2008, 89, 575–581. [Google Scholar] [CrossRef]
- Boczoń, A.; Wróbel, M.; Syniaiev, V. The impact of beaver ponds on water resources in the catchment area in the Browsk Forest District—A case study. For. Res. Pap. 2009, 70, 363–371. [Google Scholar] [CrossRef]
- Grygoruk, M.; Nowak, M. Spatial and Temporal Variability of Channel Retention in a Lowland Temperate Forest Stream Settled by European Beaver (Castor fiber). Forests 2014, 5, 2276–2288. [Google Scholar] [CrossRef]
- Jones, B.M.; Tape, K.D.; Clark, J.A.; Nitze, I.; Grosse, G.; Disbrow, J. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 2020, 15, 075005. [Google Scholar] [CrossRef]
- Spyra, A.; Cieplok, A.; Krodkiewska, M. Beavers ecosystem altering: Influence of beaver dams on aquatic invertebrates in newly created beavers ponds and small mountain river. Ecohydrol. Hydrobiol. 2023, 24, 249–261. [Google Scholar] [CrossRef]
- Stefen, C.; Habersetzer, J.; Witzel, U. Biomechanical aspects of incisor action of beavers (Castor fiber L.). J. Mammal. 2016, 97, 619–630. [Google Scholar] [CrossRef]
- Wróbel, M. Population of Eurasian beaver (Castor fiber) in Europe. Glob. Ecol. Conserv. 2020, 23, e01046. [Google Scholar] [CrossRef]
- Piętka, S.; Misiukiewicz, W. Impact of European Beaver (Castor fiber L.) on Vegetation Diversity in Protected Area River Valleys’. Conservation 2022, 2, 613–626. [Google Scholar] [CrossRef]
- Yanuta, G.; Wróbel, M.; Klich, D.; Haidt, A.; Drobik-Czwarno, W.; Balcerak, M.; Mitrenkov, A. How should we manage a strong Eurasian Beaver population? A comparison of population trends in Poland and Belarus. J. Environ. Manag. 2022, 318, 115608. [Google Scholar] [CrossRef] [PubMed]
- Naiman, R.J.; Johnston, C.A.; Kelley, J.C. Alteration of North American Streams by Beaver. BioScience 1988, 38, 753–762. [Google Scholar] [CrossRef]
- Johnson, M.K. Tent Building in Mountain Beavers (Aplodontia rufa). J. Mammal. 1975, 56, 715–716. [Google Scholar] [CrossRef]
- Tape, K.D.; Jones, B.M.; Arp, C.D.; Nitze, I.; Grosse, G. Tundra be dammed: Beaver colonization of the Arctic. Glob. Change Biol. 2018, 24, 4478–4488. [Google Scholar] [CrossRef]
- Smith, D.W.; Jenkins, S.H. Seasonal Change in Body Mass and Size of Tail of Northern Beavers. J. Mammal. 1979, 78, 869–876. [Google Scholar] [CrossRef]
- Gore, J.A.; Baker, W.W. Beavers Residing in Caves in Northern Florida. J. Mammal. 1989, 70, 677–678. [Google Scholar] [CrossRef]
- Karran, D.J.; Westbrook, C.J.; Wheaton, J.M.; Johnston, C.A.; Bedard-Haughn, A. Rapid surface-water volume estimations in beaver ponds. Hydrol. Earth Syst. Sci. 2017, 21, 1039–1050. [Google Scholar] [CrossRef]
- Somorowska, U. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century. Sci. Total Environ. 2022, 812, 151465. [Google Scholar] [CrossRef] [PubMed]
- Brandyk, A.; Oleszczuk, R.; Urbański, J. Estimation of Organic Soils Subsidence in the Vicinity of Hydraulic Structures- Case Study of a Subirrigation System in Central Poland. J. Ecol. Eng. 2020, 21, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Berglund, Ö.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil. Biol. Bioch 2011, 43, 923–931. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.; Vogt, J.; Ma, W. Greenhouse gas emissions from peatlands under manipulated warming, nitrogen addition, and vegetation composition change: A review and data synthesis. Environ. Rev. 2020, 28, 428–437. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Stachowicz, M.; Manton, M.; Abramchuk, M.; Banaszuk, P.; Jarašius, L.; Kamocki, A.; Povilaitis, A.; Samerkhanova, A.; Schäfer, A.; Sendžikaitė, J.; et al. To store or to drain—To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin. Sci. Total Environ. 2022, 829, 154560. [Google Scholar] [CrossRef]
- Schneider, P.; Fauk, T.; Mihai, F.C.; Junker, H.; Ettmer, B.; Lüderitz, V. Natural Climate Protection through Peatland Rewetting: A Future for the Rathsbruch Peatland in Germany. Land 2024, 13, 581. [Google Scholar] [CrossRef]
- Urbański, J.; Bajkowski, S.; Siwicki, P.; Oleszczuk, R.; Brandyk, A.; Popek, Z. Laboratory Tests of Water Level Regulators in Ditches of Irrigation Systems. Water 2022, 14, 1259. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hov, Ø.; Okruszko, T. Climate Change and Its Impact on Selected Sectors in Poland; Ridero IT Publishing: Poznań, Poland, 2017. [Google Scholar]
- Łachacz, A.; Kalisz, B.; Sowiński, P.; Smreczak, B.; Niedźwiecki, J. Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland. Agriculture 2023, 13, 634. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Zając, E.; Urbański, J.; Jadczyszyn, J. Variation of Moisture and Soil Water Retention in a Lowland Area of Central Poland—Solec Site Case Study. Atmosphere 2022, 13, 1372. [Google Scholar] [CrossRef]
- Liu, H.; Rezanezhad, F.; Lennartz, B. Impact of land management on available water capacity and water storage of peatlands. Geoderma 2022, 406, 115521. [Google Scholar] [CrossRef]
- Larsen, A.; Larsen, J.R.; Lane, S.N. Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Sci. Rev. 2021, 218, 103623. [Google Scholar] [CrossRef]
- Dewey, C.; Fox, P.M.; Bouskill, N.J.; Dwivedi, D.; Nico, P.; Fendorf, S. Beaver dams overshadow climate extremes in controlling riparian hydrology and water quality. Nat. Commun. 2022, 13, 6509. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.; Vehkaoja, M.; Pellikka, J.; Nummi, P. Ecosystem services provided by beavers Castor spp. Mammal. Rev. 2021, 51, 25–39. [Google Scholar] [CrossRef]
- Dellicour, M.; Goret, T.; Piqueray, J.; Fayolle, A.; Bindelle, J.; Mahy, G. Success of passive and active restoration of lowland hay meadows with regard to current and historical references. Front. Ecol. Evol. 2023, 11, 1136206. [Google Scholar] [CrossRef]
- Moore, J.L.; Runge, M.C. Combining structured decision making and value-of-information analyses to identify robust management strategies. Conserv. Biol. 2012, 26, 810–820. [Google Scholar] [CrossRef]
- Bryła, M.; Czaja, U.; Konieczny, R.; Kotlarz, M.; Krasowski, W.; Maciejewski, M.; Myszkiewicz, P.; Ozga-Zieliński, B.; Popielewska, E.; Rogowski, T.; et al. Metody Obliczania Przepływu Średniego Niskiego SNQ; Seria publikacji naukowo-badawczych IMGW-PIB; Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy: Warszawa, Poland, 2022; Volume 107, ISBN 978-83-64979-47-7. [Google Scholar]
- Stachy, J. (Ed.) Atlas Hydrologiczny Polski. Tom I; Instytut Meteorologii i Gospodarki Wodnej, Wydawnictwa Geologiczne: Warszawa, Poland, 1987. [Google Scholar]
- Kaca, E. Model Matematyczny Procesu Podnoszenia się Zwierciadła Wody Gruntowej przy Nawodnieniu Podsiąkowym. Ph.D. Thesis, Instytut Melioracji i Gospodarki Wodnej, SGGW-AR, Warszawa, Poland, 1981; pp. 1–192. [Google Scholar]
- Prończuk, J. Typologiczne zasady różnicowania trwałych użytków zielonych na przykładzie wydzielonych typów florystycznych w dolinach rzek niżu. In Zastosowanie Metody Fitosocjologicznej i Typologicznej do Badania i Ekspertyz Łąkarskich; Biblioteczka, Wiadomości IMUZ”, PWRiL: Warszawa, Poland, 1962. [Google Scholar]
- Ellenberg, H.; Leuschner, C. Zeigerwerte der Pflanzen Mitteleuropas (Indicator values of vascular plants in Central Europe). In Vegetation Mitteleuropas mit den Alpen (Vegetation of Central Europe Including the Alps), 6th ed.; Ellenberg, H., Leuschner, C., Eds.; Eugen Ulmer Verlag: Stuttgart, Germany, 2010. [Google Scholar]
- Oleszczuk, R.; Urbański, J.; Pawluśkiewicz, B.; Bajkowski, S.; Małuszyński, M.J.; Małuszyńska, I.; Jadczyszyn, J.; Hewelke, E. Impact of beaver dams on surface channel capacity and phytocoenoses diversity of Łąki Soleckie (PLH140055). J. Water Land. Dev. 2024, 61, 96–105. [Google Scholar] [CrossRef]
- Buckley, M.; Souhlas, T.; Niemi, E.; Warren, E.; Reich, S. The Economic Value of Beaver Ecosystem Services: Escalante River Basin; EcoNorthwest: Eugene, OR, USA, 2011. [Google Scholar]
- Puttock, A.; Graham, H.A.; Cunliffe, A.M.; Elliott, M.; Brazier, R.E. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Sci. Total Environ. 2017, 576, 430–443. [Google Scholar] [CrossRef]
- PZO 2023 Plan Zadań Ochronnych. 2023. Available online: https://edziennik.mazowieckie.pl/WDU_W/2023/14806/oryginal/akt.pdf (accessed on 27 September 2024).
- Bashinskiy, I.V. Beavers in lakes: A review of their ecosystem impact. Aquat. Ecol. 2020, 54, 1097–1120. [Google Scholar] [CrossRef]
- Grudzinski, B.P.; Cummins, H.; Vang, T.K. Beaver canals and their environmental effects. Progress. Phys. Geogr. Earth Environ. 2020, 44, 189–211. [Google Scholar] [CrossRef]
- Yi, S.; Wang, H.; Xie, L.; Wang, C.; Huang, X. Spatio-Temporal Dynamics and Drivers of Ecosystem Service Bundles in the Altay Region: Implications for Sustainable Land Management. Land 2024, 13, 805. [Google Scholar] [CrossRef]
- Bylak, A.; Kochman-Kędziora, N.; Kukuła, E.; Kukuła, K. Beaver-related restoration: An opportunity for sandy lowland streams in a human-dominated landscape. J. Environ. Manag. 2024, 351, 119799. [Google Scholar] [CrossRef] [PubMed]
- Gusarov, A.V.; Sharifullin, A.G.; Beylich, A.A.; Lisetskii, F.N. Features of the Distribution of Beaver Dams and Ponds along Small Rivers: The Volga-Kama Region, European Russia. Hydrology 2024, 11, 53. [Google Scholar] [CrossRef]
- Rurek, M. Characteristics of Beaver Ponds and Landforms Induced by Beaver Activity, S Part of the Tuchola Pinewoods, Poland. Water 2021, 13, 3641. [Google Scholar] [CrossRef]
- Połeć, K.; Grzywna, A.; Tarkowska-Kukuryk, M.; Bronowicka-Mielniczuk, U. Changes in the Ecological Status of Rivers Caused by the Functioning of Natural Barriers. Water 2022, 14, 1522. [Google Scholar] [CrossRef]
- Nazarov, N.G.; Prokhorov, V.E.; Sharifullin, A.G.; Gusarov, A.V.; Lisetskii, F.N. The Influence of Eurasian Beaver (Castor fiber L.) Activity on the Transformation and Functioning of Riparian Phytocoenoses in the Southern Boreal Zone (European Russia). Earth 2023, 4, 384–397. [Google Scholar] [CrossRef]
- Orazi, V.; Hagge, J.; Gossner, M.M.; Müller, J.; Heurich, M. A Biodiversity Boost From the Eurasian Beaver (Castor fiber) in Germany’s Oldest National Park. Front. Ecol. Evol. 2022, 10, 873307. [Google Scholar] [CrossRef]
No. | Phase | Classification Criterion | Number of Cross-Section | Total | Frequency (%) | |||
---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||||
1 | F1 | Zi(R-29) > ZSi and ZSi < Zi(R-27) | 5 | 1 | 0 | 1 | 7 | 0.97 |
2 | F2 | Zi(R-29) < ZSi and ZSi > Zi(R-27) | 108 | 149 | 164 | 143 | 564 | 78.33 |
3 | F3 | Zi(R-29) ≥ ZSi and ZSi > Zi(R-27) | 41 | 19 | 7 | 31 | 98 | 13.61 |
4 | F4 | Zi(R-29) < ZSi and ZSi ≤ Zi(R-27) | 26 | 11 | 9 | 5 | 51 | 7.08 |
Species | 2014–2015 | 2023–2024 | ||
---|---|---|---|---|
Coverage (%) | Stability | Coverage (%) | Stability | |
Deschampsia caespitosa (L.) P.B. | 24.6 | V | 31.9 | V |
Holcus lanatus L. | 20.1 | V | 7.7 | V |
Poa trivialis L. | 6.0 | V | 1.7 | III |
Ranunculus repens L. | 5.2 | V | 0.0 | - |
Festuca rubra L. | 12.3 | IV | 4.8 | V |
Festuca pratensis Huds. | 6.2 | III | 8.3 | IV |
Veronica longifolia L. | 5.8 | III | 21.3 | V |
Plantago lanceolata L. | 3.2 | V | 3.7 | V |
Anthoxanthum odoratum L. | 2.4 | V | 1.4 | V |
Equisetum palustre L. | 2.4 | V | 0.0 | - |
Veronica chamaedrys L. | 1.4 | V | 0.8 | II |
Potentilla anserina L. | 1.0 | III | 1.4 | IV |
Alopecurus pratensis L. | 0.2 | III | 0.2 | I |
Urtica dioica L. | 2.4 | II | 0.1 | II |
Juncus effusus L. | 1.2 | II | 2.0 | III |
Carex hirta L. | 0.3 | II | 1.1 | I |
Lythrum salicaria L. | 0.1 | I | 1.8 | IV |
Festuca arundinacea Schreb. | 0.0 | - | 4.4 | III |
Galium mollugo L. | 0.0 | - | 3.4 | III |
Other species * | 5.2 | 4.0 | ||
Total | 100.0 | 100.0 | ||
Number of species in the transect (in a plant patch) | 37 (9–18) | 35 (10–17) | ||
Phytoindicators: | ||||
Light conditions (L) | 5.46 ± 1.15SD moderate shade | 6.26 ± 0.50SD moderate light | ||
Habitat humidity (F) | 6.05 ± 0.74SD humid | 6.34 ± 0.84SD humid | ||
Habitat fertility (N) | 3.26 ± 0.97SD poor | 3.59 ± 0.68SD moderately rich |
Parameter | Parameter Value | Parameter Evaluation | ||
---|---|---|---|---|
2014–2015 | 2023–2024 | 2014–2015 | 2023–2024 | |
Spatial structure of habitat patches | uniform meadow surface, no fragmentation | medium degree of fragmentation, due to the formation of bushes | FV | U1 |
Characteristic species | Festuca rubra (“+” −45%) *, Plantago lanceolata (5–15%), Poa pratensis (“+” −10%), Arrhenatherum elatius (+). | Festuca rubra (5–15%), Plantago lanceolata (5–10%), Poa pratensis (<5%), Galium mullugo (5–20%). | U1 | U1 |
Dominant species | Deschampsia caespitose (5–70%), Holcus lanatus (10–60%) | Deschampsia caespitose (5–60%) Veronica longifolia (5–70%) | U2 | U2 |
Invasive alien species | lack | lack | FV | FV |
Expansive species of herbaceous plants | D. caespitose (as above), Urtica dioica (5–20%), Galium aprine (<1%). Total in the transect < 50 | Deschampsia caespitose (as above), Urtica dioica (+), Galium aprine (<5%) Total in the transect < 50 | U1 | U1 |
Expansion of shrubs and offshoots | coverage < 1% on transect | coverage 1–5% on transect | FV | U1 |
Share of well-preserved habitat patches | patches not typical, medium rich | plant patches in the transect are poorly preserved | U1 | U2 |
Felt | <2 cm | 2–5 cm | FV | U1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleszczuk, R.; Bajkowski, S.; Urbański, J.; Pawluśkiewicz, B.; Małuszyński, M.J.; Małuszyńska, I.; Jadczyszyn, J.; Hewelke, E. The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510. Land 2024, 13, 1902. https://doi.org/10.3390/land13111902
Oleszczuk R, Bajkowski S, Urbański J, Pawluśkiewicz B, Małuszyński MJ, Małuszyńska I, Jadczyszyn J, Hewelke E. The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510. Land. 2024; 13(11):1902. https://doi.org/10.3390/land13111902
Chicago/Turabian StyleOleszczuk, Ryszard, Sławomir Bajkowski, Janusz Urbański, Bogumiła Pawluśkiewicz, Marcin J. Małuszyński, Ilona Małuszyńska, Jan Jadczyszyn, and Edyta Hewelke. 2024. "The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510" Land 13, no. 11: 1902. https://doi.org/10.3390/land13111902
APA StyleOleszczuk, R., Bajkowski, S., Urbański, J., Pawluśkiewicz, B., Małuszyński, M. J., Małuszyńska, I., Jadczyszyn, J., & Hewelke, E. (2024). The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510. Land, 13(11), 1902. https://doi.org/10.3390/land13111902