Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Classification Method
2.3.1. Classification System and Sample Construction
2.3.2. Feature Construction and Optimization
2.3.3. Random Forest Classification
2.3.4. Classification Accuracy Assessment
2.4. Wetland Evolution Analysis
3. Results
3.1. Number of Decisions Tree and Features Tuning
3.2. Classification and Accuracy Evaluation
3.3. Analysis of Changes in Wetland Resources in Gansu Province
3.3.1. Characteristics of Changes in Wetland Area
3.3.2. Characteristics of Changes in Wetland Types
4. Discussion
4.1. Influencing Factors of Wetland Classification
4.2. Changes in Wetlands
4.3. Implications and Improvements of Current Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, Z.; Zhang, H.; Wang, X.; Yao, W.; Zhou, D.; Zhao, K.; Gong, P. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 2012, 57, 2813–2823. [Google Scholar] [CrossRef]
- Kovács, G.M.; Horion, S.; Fensholt, R. Characterizing ecosystem change in wetlands using dense earth observation time series. Remote Sens. Environ. 2022, 281, 113267. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Wetland classification using parcel-level ensemble algorithm based on Gaofen-6 multispectral imagery and Sentinel-1 dataset. J. Hydrol. 2022, 606, 127462. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B.X.; Brown, G.; Meyer, S. Beaver pond identification from multi-temporal and multi-sourced remote sensing data. Geo-Spat. Inf. Sci. 2023, 27, 953–967. [Google Scholar] [CrossRef]
- Sahraei, R.; Ghorbanian, A.; Kanani-Sadat, Y.; Jamali, S.; Homayouni, S. Mangrove plantation suitability mapping by integrating multi criteria decision making geospatial approach and remote sensing data. Geo-Spat. Inf. Sci. 2023, 27, 1290–1308. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Hou, P.; Wu, Z.; Ling, Z.; Wang, X.; Mao, D. Continental-scale wetland mapping: A novel algorithm for detailed wetland types classification based on time series Sentinel-1/2 images. Ecol. Indic. 2023, 148, 110113. [Google Scholar] [CrossRef]
- Davidson, N.C.; Finlayson, C.M. Extent, regional distribution and changes in area of different classes of wetland. Mar. Freshw. Res. 2018, 69, 1525. [Google Scholar] [CrossRef]
- Calhoun, A.J.K.; Mushet, D.M.; Bell, K.P.; Boix, D.; Fitzsimons, J.A.; Isselin-Nondedeu, F. Temporary wetlands: Challenges and solutions to conserving a “disappearing” ecosystem. Biol. Conserv. 2017, 211, 3–11. [Google Scholar] [CrossRef]
- Slagter, B.; Tsendbazar, N.E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Shu, P.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar]
- Jiang, W.; Zhang, Z.; Ling, Z.; Deng, Y. Experience and future research trends of wetland protection and restoration in China. J. Geogr. Sci. 2024, 34, 229–251. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Xia, Q.; Jia, M.; He, T.; Xing, X.; Zhu, L. Effect of tide level on submerged mangrove recognition index using multi-temporal remotely-sensed data. Ecol. Ind. 2021, 131, 108169. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine learning with big data: Challenges and approaches. IEEE Access 2017, 5, 7776–7797. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, S.; Xie, F.; Zhu, S.; Zhang, S. Extraction of long time series wetland information based on Google Earth Engine and random forest algorithm for a plateau lake basin—A case study of Dianchi Lake, Yunnan Province, China. Ecol. Indic. 2023, 146, 109813. [Google Scholar] [CrossRef]
- Han, X.; Pan, J.; Devlin, A.T. Remote sensing study of wetlands in the Pearl River Delta during 1995-2015 with the support vector machine method. Front. Earth Sci. 2018, 12, 521–531. [Google Scholar] [CrossRef]
- Kesikoglu, M.H.; Atasever, U.H.; Dadaser-Celik, F.; Ozkan, C. Performance of ANN, SVM and MLH techniques for land use/cover change detection at Sultan Marshes wetland, Turkey. Water Sci. Technol. 2019, 80, 466–477. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, L.; Zhang, Z.; Zhu, B.; Liu, X.; Yang, Q. Evolution of Small and Micro Wetlands and Their Driving Factors in the Yangtze River Delta—A Case Study of Wuxi Area. Remote Sens. 2023, 15, 1152. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A compre-hensive review. Gisci. Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A random forest-cellular automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Peng, K.F.; Jiang, W.G.; Deng, Y.; Liu, Y.H.; Wu, Z.F.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Guo, X.Y.; Bian, Z.X.; Wang, S.; Wang, Q.B.; Zhang, Y.F.; Zhou, J.; Lin, L. Prediction of the spatial distribution of soil arthropods using a random forest model: A case study in Changtu County, Northeast China. Agric. Ecosyst. Environ. 2020, 292, 106818. [Google Scholar] [CrossRef]
- Ma, H.; Gao, X.; Gu, X. Random forest classification of Landsat 8 imagery for the complex terrain area based on the combi-nation of spectral, topographic and texture information. Int. J. Geogr. Inf. Sci. 2019, 21, 359–371. [Google Scholar]
- Lawrence, R.L.; Moran, C.J. The America View classification methods accuracy comparison project: A rigorous approach for model selection. Remote Sens. Environ. 2015, 170, 115–120. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.; Brisco, B. Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration. Gisci. Remote Sens. 2017, 54, 779–796. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions, and LiDAR-SAR fusion using a random forest classifier, Canadian. Remote Sens. 2013, 39, 290–307. [Google Scholar]
- Yang, H.; Liu, X.; Chen, Q.; Cao, Y. Mapping Dongting Lake Wetland Utilizing Time Series Similarity, Statistical Texture, and Superpixels with Sentinel-1 SAR Data. IEEE J. Sel. Top. 2022, 15, 8235–8244. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Lehner, B.; Rebelo, L.M.; Papa, F.; Hamilton, S.K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 2015, 158, 348–361. [Google Scholar] [CrossRef]
- Yamada, S.; Neshatian, K. Comparison of embedded and wrapper approaches for feature selection in support vector machines. In PRICAI 2019: Trends in Artificial Intelligence: 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Ya-nuca Island, Fiji, 26–30 August 2019; Proceedings, Part II 16; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 149–161. [Google Scholar]
- Cheng, K.; Wang, J.; Yan, X. Mapping forest types in China with 10 m resolution based on spectral–spatial–temporal features. Remote Sens. 2021, 13, 973. [Google Scholar] [CrossRef]
- Fu, B.; Xie, S.; He, H.; Zuo, P.; Sun, J.; Liu, L.; Gao, E. Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm. Ecol. Indic. 2021, 131, 108173. [Google Scholar] [CrossRef]
- Xie, S.; Fu, B.; Li, Y.; Liu, Z.; Zuo, P.; Lan, F.; Fan, D. Classification method on marsh wetlands in Honghe National Nature Reserve based on multi-dimensional remote sensing images. Wetl. Sci. 2021, 19, 1–16. [Google Scholar]
- Wang, J.; Liu, H.; Liu, P.; Chang, G. An evaluation of the spatial rationality of provincial territory: A case study of Gansu Province. Environ. Sci. Pollut. 2023, 30, 18268–18284. [Google Scholar] [CrossRef]
- Xu, W.; Fan, X.; Ma, J.; Pimm, S.L.; Kong, L.; Zeng, Y.; Ouyang, Z. Hidden loss of wetlands in China. Curr. Biol. 2019, 29, 3065–3071. [Google Scholar] [CrossRef]
- Zhu, X.; Jiao, L.; Wu, X.; Du, D.; Wu, J.; Zhang, P. Ecosystem health assessment and comparison of natural and constructed wetlands in the arid zone of northwest China. Ecol. Indic. 2023, 154, 110576. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Wen, X.; Wu, X.; Gao, M. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos. Res. 2017, 197, 132–149. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Su, J.; Sun, W.; Meng, H. Research on a Biodiversity Conservation Value Assessment Method Based on Habitat Suitability of Species: A Case Study in Gansu Province, China. Sustainability 2021, 13, 3007. [Google Scholar] [CrossRef]
- Wang, H.X.; Liu, X.N.; Li, C.B.; Ren, Z.C.; Pan, D.R.; Wei, J.Q. Spatial temporal Distribution of Precipitation in Gansu Province Last 42 Years. Chin. J. Agrometeorol. 2013, 34, 384–389. [Google Scholar]
- Chen, J.; Chen, J. Globe Land 30: Operational global land cover mapping and big-data analysis. Sci. China Earth Sci. 2018, 61, 1533–1534. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global extent of rivers and streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Mulligan, M.; Soesbergen, A.; Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 2020, 7, 31. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Rogan, J.; Li, Z.; Eastman, J.R.; Jones, T.G. Mapping selective logging in mixed deciduous forest. Photogramm. Eng. Remote Sens. 2008, 74, 1201–1211. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]. Environ. Sci. 1973. Available online: https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf (accessed on 18 September 2024).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wang, S.; Baig, M.H.A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A simple enhanced water index (EWI) for percent sur-face water estimation using Landsat data. IEEE J. Sel. Top. Appl. Earth-Observ. Remote Sens. 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Natl. Remote Sens. Bull. 2005, 9, 589–595. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Moore III, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Ji, L.; Geng, X.; Sun, K.; Zhao, Y.; Gong, P. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water 2015, 7, 794–817. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate reso-lution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Ashok, A.; Rani, H.P.; Jayakumar, K.V. Monitoring of dynamic wetland changes using NDVI and NDWI based landsat im-agery. Remote Sens. Appl. Soc. Environ. 2021, 23, 100547. [Google Scholar]
- Tassi, A.; Vizzari, M. Object-oriented lulc classification in google earth engine combining snic, glcm, and machine learning algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Bwangoy, J.R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.; Justice, C.O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Anenkhonov, O.A.; Chepinoga, V.V.; Autrey, B.C.; Liu, H. Comparing pixel and object-based approaches in effectively classifying wetland-dominated landscapes. Remote Sens. 2017, 10, 46. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhang, J.; Qin, F.; Hu, J.; Zhou, Z. Analysis of characteristics and driving factors of wetland landscape pattern change in Henan Province from 1980 to 2015. Land 2021, 10, 564. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands-Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C.; Montgomery, J.; Petrone, R. A physically based terrain morphology and vegetation structural classification for wetlands of the Boreal Plains, Alberta, Canada. Can. J. Remote Sens. 2016, 42, 521–540. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, J.; Yu, J.; Tang, L.; Guo, B. Combination of LiDAR’s Multiple Attributes for Wetland Classification: A Case Study of Yellow River Delta. Can. J. Remote Sens. 2020, 46, 753–764. [Google Scholar] [CrossRef]
- Hoffman-Hall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping remote rural settlements at 30 m spatial reso-lution using geospatial data-fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- Mohammed, I.; Marshall, M.; de Bie, K.; Estes, L.; Nelson, A. A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes. ISPRS J. Photogramm. 2020, 161, 233–245. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Wang, Y. Multi-source remote sensing image fusion for ship target detection and recognition. Remote Sens. 2021, 13, 4852. [Google Scholar] [CrossRef]
- Wu, M.; Huang, W.; Niu, Z.; Wang, C. Generating daily synthetic Landsat imagery by combining Landsat and MODIS data. Sensors 2015, 15, 24002–24025. [Google Scholar] [CrossRef]
- Xu, Q.; Yuan, X.; Ouyang, C. Class-Aware Domain Adaptation for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zhang, X. Study on the Relationship between Human Capital Investment and Economic Growth in Gansu. Ph.D. Dissertation, Xiamen University, Xiamen, China, 2011. (In Chinese). [Google Scholar]
- Zhang, H.G.; Xu, F.Y.; Chen, G.Q. Analysis on Differences between Data of Wetlands in Gansu Province from the Second National Wetland Resources Survey and Those from the Third National Land Survey. Wetl. Sci. 2021, 20, 311–316. (In Chinese) [Google Scholar]
- Li, W.; Liu, Y.J.; Yang, Z. Preliminary strategic environmental assessment of the Great Western Development Strategy: Safe-guarding ecological security for a new western China. Environ. Manag. 2012, 49, 483–501. [Google Scholar] [CrossRef]
- Demarquet, Q.; Rapinel, S.; Dufour, S.; Hubert-Moy, L. Long-term wetland monitoring using the landsat archive: A review. Remote Sens. 2023, 15, 820. [Google Scholar] [CrossRef]
- Wang, M.; Mao, D.; Wang, Y.; Li, H.; Zhen, J.; Xiang, H.; Wang, Z. Interannual changes of urban wetlands in China’s major cities from 1985 to 2022. ISPRS J. Photogramm. 2024, 209, 383–397. [Google Scholar] [CrossRef]
- Deng, Y.; Shao, Z.; Dang, C.; Huang, X.; Wu, W.; Zhuang, Q.; Ding, Q. Assessing urban wetlands dynamics in Wuhan and Nanchang, China. Sci. Total Environ. 2023, 901, 165777. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Jiang, W.; Peng, K.; Deng, Y.; Wang, X. Wetland mapping and landscape analysis for supporting international wet-land cities: Case studies in Nanchang City and Wuhan City. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 8858–8870. [Google Scholar]
- Zhang, M.; Zhang, H.; Yao, B.; Lin, H.; An, X.; Liu, Y. Spatiotemporal changes of wetlands in China during 2000–2015 using Landsat imagery. J. Hydrol. 2023, 621, 129590. [Google Scholar] [CrossRef]
- Qian, H.; Bao, N.; Meng, D.; Zhou, B.; Lei, H.; Li, H. Mapping and classification of Liao River Delta coastal wetland based on time series and multi-source Gao Fen images using stacking ensemble model. Ecol. Inform. 2024, 80, 102488. [Google Scholar] [CrossRef]
Year | Satellite | Landsat Product Name | Number | |
---|---|---|---|---|
Total | Cloud ≤ 10% | |||
1987 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 960 | 663 |
1990 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 1494 | 982 |
1995 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 1395 | 958 |
2000 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 1599 | 1134 |
2005 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 1541 | 997 |
2010 | Landsat5 TM | LANDSAT/LT05/C02/T1_L2 | 1375 | 933 |
2015 | Landsat8 OLI | LANDSAT/LT08/C02/T1_L2 | 1873 | 1264 |
2020 | Landsat8 OLI | LANDSAT/LT08/C02/T1_L2 | 1919 | 1251 |
Product Name | Date | Resolution | Data Resource | References |
---|---|---|---|---|
GlobalLand30 | 2000/2010/2020 | 30 m | http://globeland30.org/ (accessed on 7 July 2023) | [44] |
GLC_FCS30 | 1985–2020 | 30 m | https://data.casearth.cn/ (accessed on 8 July 2023) | [11] |
JRC-GSW | 1984–2020 | 30 m | https://developers.google.com/earth-engine/datasets/ (accessed on 10 July 2023) | [15] |
Hydro LAKES | — | 1:24,000 | http://www.hydrosheds.org (accessed on 7 July 2023) | [45] |
GWRL | — | 30 m | https://zenodo.org/ (accessed on 15 July 2023) | [46] |
GLWD | — | 1 km | https://www.worldwildlife.org/ (accessed on 20 June 2023) | [17] |
SDSMW | 2015 | 30 m | http://www.geodata.cn (accessed on20 July 2023) | [47] |
GOODD | 2020 | https://www.globaldamwatch.org/directory (accessed on 26 July 2023) | [48] | |
Reservoir statistics | — | — | http://www.stats.gov.cn/ (accessed on 27 June 2023) | — |
Category I | Category II | Description | Landsat Image Example |
---|---|---|---|
Natural wetlands | Lake | Natural depressions in the ground, varying in size and form, are filled with bodies of water. | |
River | A naturally occurring linear body of water, such as a river or stream. | ||
Marsh | The surface or subsurface soils are often excessively wet, and swampy plants grow on the surface | ||
Constructed wetlands | Reservoir/pond | Artificial water storage facilities are constructed for irrigation, hydropower, flood control, and other purposes. | |
Non-wetlands | Grassland | Land dominated by herbaceous vegetation. | |
Forest | Biomes dominated by woody plants. | ||
Agriculture | Land cultivated for growing crops. | ||
Settlement | Surfaces created by artificial construction activities. | ||
Bare area | Essentially bare ground with no plant cover. | ||
Permanent snow | Land permanently covered by snow. |
Year | Lake/Constructed Wetland | River | Marsh | Grassland | Forest | Agriculture | Settlement | Bare Area | Permanent Snow |
---|---|---|---|---|---|---|---|---|---|
1987 | 355/152 | 360/154 | 358/153 | 358/153 | 356/153 | 368/158 | 336/144 | 442/190 | 162/69 |
1990 | 356/152 | 358/154 | 358/154 | 357/153 | 354/152 | 369/158 | 346/148 | 440/188 | 161/69 |
1995 | 357/153 | 361/155 | 359/154 | 356/152 | 356/153 | 368/158 | 347/149 | 441/189 | 164/70 |
2000 | 358/153 | 361/155 | 357/153 | 356/153 | 356/152 | 370/159 | 344/148 | 444/190 | 163/70 |
2005 | 355/152 | 360/154 | 358/154 | 357/153 | 355/152 | 370/158 | 344/147 | 441/189 | 158/68 |
2010 | 350/150 | 359/154 | 357/153 | 359/154 | 356/153 | 369/158 | 347/149 | 444/190 | 168/72 |
2015 | 349/150 | 358/154 | 358/153 | 356/152 | 358/154 | 370/158 | 342/147 | 448/192 | 155/67 |
2020 | 363/155 | 358/153 | 360/154 | 357/153 | 361/155 | 368/158 | 340/146 | 440/188 | 169/72 |
Feature Types | Indicators | Description or Formula | References |
---|---|---|---|
Spectral features | BLUE, GREEN, RED, NIR, SWIR1, SWIR2 | Spectral bands | ___ |
Index features | NDVI | (NIR − RED)/(NIR + RED) | [50] |
EVI | 2.5 × (NIR − RED)/((NIR + 6 × RED − 7.5 × BLUE) + 1) | [51] | |
RVI | (NIR − RED)/(NIR + RED) | [52] | |
SAVI | (NIR − RED) × 1.5/(NIR + RED + 0.5) | [53] | |
MSAVI | (2 × NIR+1 − sqrt ((2 × NIR + 1) − 8 × (NIR − RED)))/2 | [54] | |
NDWI | (GREEN − NIR)/(GREEN + NIR) | [55] | |
EWI | (Green + NIR + SWIR1)/(Green – NIR − SWIR1) | [56] | |
MNDWI | (GREEN − SWIR)/(GREEN + SWIR) | [57] | |
LSWI | (NIR − SWIR)/(NIR + SWIR) | [58] | |
AWEI | 4 × (GREEN − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) | [59] | |
MAWEI | 5 × (GREEN − NIR) + BLUE + RED + 4 × SWIR2 | [60] | |
NDBI | (SWIR − NIR)/(SWIR + NIR) | [61] | |
NDSI | (GREEN − SWIR)/(GREEN + SWIR) | [62] | |
BRIGHTNESS, GREENNESS, WETNESS | Tasseled cap transformation | [63] | |
Seasonal features | Four-season averages (NDWI, NDVI, MNDWI, LSWI, EVI) _SP/SU/FA/WI | Time series characteristics | [64] |
Textural features | ASM, CONTRAST, CORR, MAXCORR, VAR, IDM, SAVG, SVAR, SENT, ENT, DVAR, DENT, IMCORR1, IMCORR2, INTERIA, DISS, PROM, SHADE | GLCM | [65] |
Topographic features | ELEVATION, SLOPE, ASPECT | SRTM | [66] |
1987 | Lake | River | Constructed Wetland | Marsh | Grassland | Forest | Agriculture | Settlement | Bare Area | Permanent Snow | |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | |||||||||||
Lake | 120.26 | 0.00 | 0.00 | 20.71 | 12.95 | 0.25 | 1.55 | 0.06 | 15.04 | 9.36 | |
River | 0.02 | 120.13 | 6.80 | 26.23 | 216.40 | 64.29 | 10.42 | 1.02 | 200.70 | 124.09 | |
Constructed wetland | 0.00 | 39.09 | 183.38 | 16.84 | 103.90 | 14.08 | 22.54 | 0.10 | 208.00 | 42.09 | |
Marsh | 5.17 | 22.80 | 5.85 | 4057.94 | 2876.34 | 337.40 | 1151.19 | 12.70 | 427.12 | 94.72 | |
Grassland | 5.13 | 130.66 | 77.60 | 4404.40 | 97,126.30 | 2447.67 | 4552.63 | 57.24 | 35,915.00 | 3262.84 | |
Forest | 0.25 | 121.97 | 6.37 | 4583.36 | 203,86.80 | 48,353.40 | 194.68 | 0.82 | 147.84 | 56.89 | |
Agriculture | 0.81 | 12.68 | 1.94 | 795.74 | 3893.70 | 46.62 | 12,496.80 | 29.29 | 3952.90 | 24.34 | |
Settlement | 1.16 | 14.28 | 0.89 | 168.97 | 634.93 | 17.89 | 928.67 | 822.54 | 448.04 | 0.09 | |
Bare area | 2.71 | 22.62 | 10.40 | 11.61 | 1583.74 | 3.13 | 68.84 | 1.12 | 158,971.00 | 1999.61 | |
Permanent snow | 0.21 | 48.85 | 21.58 | 39.94 | 541.89 | 26.77 | 0.62 | 0.00 | 1018.63 | 4323.35 |
Year | Average Annual Precipitation (mm) | GDP (Billion RMB) | Reservoir Capacity (Billion m3) | Large and Medium-Sized Reservoirs |
---|---|---|---|---|
1991 | 233.5 | 271.39 | 31.2852 | 16 |
1995 | 250.3 | 557.76 | 40.32751 | 28 |
2000 | 247.1 | 1052.88 | 35.2401 | 28 |
2005 | 281.2 | 1864.63 | 39.203 | 29 |
2010 | 263.9 | 3943.73 | 39.048 | 29 |
2015 | 251.4 | 6556.55 | 36.105 | 29 |
2020 | 317.6 | 9016.7 | 46.33 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, X.; Qin, Y.; Fan, Y.; Cheng, S. Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China. Land 2024, 13, 1527. https://doi.org/10.3390/land13091527
Zhang J, Liu X, Qin Y, Fan Y, Cheng S. Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China. Land. 2024; 13(9):1527. https://doi.org/10.3390/land13091527
Chicago/Turabian StyleZhang, Jian, Xiaoqian Liu, Yao Qin, Yaoyuan Fan, and Shuqian Cheng. 2024. "Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China" Land 13, no. 9: 1527. https://doi.org/10.3390/land13091527
APA StyleZhang, J., Liu, X., Qin, Y., Fan, Y., & Cheng, S. (2024). Wetlands Mapping and Monitoring with Long-Term Time Series Satellite Data Based on Google Earth Engine, Random Forest, and Feature Optimization: A Case Study in Gansu Province, China. Land, 13(9), 1527. https://doi.org/10.3390/land13091527