Exploring the Impact of Climate Variables and Scenario Simulation on Ecosystem Service Value Profits and Losses in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Calculation of the Ecological Contribution of LUC to ESV Profits and Losses
2.4. Multi-Scenario Land Use Projections for 2030
2.5. Deep Learning Simulation of the Impact of Climate Variables on ESV Profits and Losses
3. Results
3.1. Analysis of Driving Factors in Scenario Forecasting of LUC in China
3.2. Multi-Scenario Simulation of LUC in China from 1990 to 2030
3.3. Multi-Scenario Simulation of ESV in China from 1990 to 2030
3.4. Multi-Scenario Simulation of ESV Profit and Loss
3.5. Multi-Scenario Simulation of the Effect of LUC on ESV Profit and Loss
3.6. Impact of Climate Variables on ESV Profits and Losses
4. Discussion
4.1. Ecological Impacts of LUC on ESV Under Multiple Scenarios
4.2. Spatiotemporal Characteristics of ESV Profit and Loss
4.3. Impact of Climate Change on ESV Profits and Losses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, H.Z.; Zhang, L.; Cong, C.; Deal, B.; Wang, Y.T. A dynamic and spatially explicit modeling approach to identify the ecosystem service implications of complex urban systems interactions. Ecol. Indic. 2019, 102, 426–436. [Google Scholar] [CrossRef]
- Gu, L.; Gong, Z.W.; Du, Y.X. Evolution characteristics and simulation prediction of forest and grass landscape fragmentation based on the “Grain for Green” projects on the. Ecol. Indic. 2021, 131, 13. [Google Scholar] [CrossRef]
- Hou, Y.Z.; Zhao, W.W.; Liu, Y.X.; Yang, S.Q.; Hu, X.P.; Cherubini, F. Relationships of multiple landscape services and their influencing factors on the Qinghai-Tibet Plateau. Landsc. Ecol. 2021, 36, 1987–2005. [Google Scholar] [CrossRef]
- Morgado, R.; Ribeiro, P.F.; Santos, J.L.; Rego, F.; Beja, P.; Moreira, F. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 2022, 225, 11. [Google Scholar] [CrossRef]
- Meng, Q.X.; Zhang, L.K.; Wei, H.J.; Cai, E.X.; Xue, D.; Liu, M.X. Linking Ecosystem Service Supply-Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land 2021, 10, 26. [Google Scholar] [CrossRef]
- Chen, W.X.; Zeng, J.; Li, N. Change in land-use structure due to urbanisation in China. J. Clean Prod. 2021, 321, 14. [Google Scholar] [CrossRef]
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 16. [Google Scholar] [CrossRef]
- Kefalas, G.; Kalogirou, S.; Poirazidis, K.; Lorilla, R.S. Landscape transition in Mediterranean islands: The case of Ionian islands, Greece 1985–2015. Landsc. Urban Plan. 2019, 191, 19. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 15. [Google Scholar] [CrossRef]
- Osborne, P.E.; Alvares-Sanches, T. Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput. Environ. Urban Syst. 2019, 76, 80–90. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J.F. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 16. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.R.; Xu, Y.D.; Zhao, J.Y.; Zhao, H.L.; Zhang, G.L.; Peng, D.L.; Gong, P. Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Sci. Total Environ. 2022, 825, 15. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lechner, A.M.; Yang, Y.J.; Baumgartl, T.; Wu, J.S. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Sci. Total Environ. 2020, 717, 15. [Google Scholar] [CrossRef]
- Marull, J.; Cunfer, G.; Sylvester, K.; Tello, E. A landscape ecology assessment of land-use change on the Great Plains-Denver (CO, USA) metropolitan edge. Reg. Environ. Chang. 2018, 18, 1765–1782. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.M.; Li, X.M.; Bao, Z.C.; Zhou, Z.L. An insight into land-cover changes and their impacts on ecosystem services before and after the implementation of a comprehensive experimental zone plan in Pingtan island, China. Land Use Policy 2019, 82, 631–642. [Google Scholar] [CrossRef]
- Jin, Z.H.; Xiong, C.S.; Luan, Q.L.; Wang, F. Dynamic Evolutionary Analysis of Land Use/Cover and Ecosystem Service Values on Hainan Island. Int. J. Environ. Res. Public Health 2023, 20, 18. [Google Scholar] [CrossRef]
- Watson, L.; Straatsma, M.W.; Wanders, N.; Verstegen, J.A.; de Jong, S.M.; Karssenberg, D. Global ecosystem service values in climate class transitions. Environ. Res. Lett. 2020, 15, 15. [Google Scholar] [CrossRef]
- Yang, H.J.; Gou, X.H.; Yin, D.C. Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies 2021, 2, 19. [Google Scholar] [CrossRef]
- Wilkes, L.N.; Barner, A.K.; Keyes, A.A.; Morton, D.; Byrnes, J.E.K.; Dee, L.E. Quantifying co-extinctions and ecosystem service vulnerability in coastal ecosystems experiencing climate warming. Glob. Chang. Biol. 2024, 30, 17. [Google Scholar] [CrossRef]
- Asmus, M.L.; Nicolodi, J.; Anello, L.S.; Gianuca, K. The risk to lose ecosystem services due to climate change: A South American case. Ecol. Eng. 2019, 130, 233–241. [Google Scholar] [CrossRef]
- Leal, W.; Azeiteiro, U.M.; Balogun, A.L.; Setti, A.F.F.; Mucova, S.A.R.; Ayal, D.; Totin, E.; Lydia, A.M.; Kalaba, F.K.; Oguge, N.O. The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci. Total Environ. 2021, 779, 13. [Google Scholar]
- Zhang, Y.; Wu, T.; Song, C.S.; Hein, L.; Shi, F.Q.; Han, M.C.; Ouyang, Z.Y. Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin. Ecosyst. Serv. 2022, 58, 9. [Google Scholar] [CrossRef]
- Sharma, R.; Malaviya, P. Ecosystem services and climate action from a circular bioeconomy perspective. Renew. Sust. Energ. Rev. 2023, 175, 16. [Google Scholar] [CrossRef]
- Rahim, N.H.; Razak, S.A.; Chang, X.; Saun, F.C.; Khan, M.N.; Hamzah, S.N.; Rohman, F.; Ali, B.; Kaplan, A.; Iqbal, M.; et al. Review Ecosystem Services by Urban Forest (UF) towards Climate Change Adaptation: A Review. Pol. J. Environ. Stud. 2024, 33, 3503–3513. [Google Scholar] [CrossRef]
- Lu, C.; Qi, X.; Zheng, Z.S.; Jia, K. PLUS-Model Based Multi-Scenario Land Space Simulation of the Lower Yellow River Region and Its Ecological Effects. Sustainability 2022, 14, 17. [Google Scholar] [CrossRef]
- Zhu, X.L.; Qie, R.Q.; Luo, C.; Zhang, W.Q. Assessment and Driving Factors of Wetland Ecosystem Service Function in Northeast China Based on InVEST-PLUS Model. Water 2024, 16, 19. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.Y.; Sun, D.Q. A Coupled InVEST-PLUS Model for the Spatiotemporal Evolution of Ecosystem Carbon Storage and Multi-Scenario Prediction Analysis. Land 2024, 13, 24. [Google Scholar] [CrossRef]
- Wu, Z.J.; Cui, N.B.; Zhang, W.J.; Liu, C.W.; Jin, X.L.; Gong, D.Z.; Xing, L.W.; Zhao, L.; Wen, S.L.; Yang, Y.N. Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models. J. Hydrol. 2024, 637, 14. [Google Scholar] [CrossRef]
- Deng, C.; Yin, X.; Zou, J.C.; Wang, M.M.; Hou, Y.K. Assessment of the impact of climate change on streamflow of Ganjiang River catchment via LSTM-based models. J. Hydrol.-Reg. Stud. 2024, 52, 15. [Google Scholar] [CrossRef]
- Yang, S.; Tan, M.L.; Song, Q.X.; He, J.; Yao, N.; Li, X.G.; Yang, X.Y. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin. J. Environ. Manag. 2023, 330, 13. [Google Scholar] [CrossRef]
- Wang, C.; Sheng, Q.Q.; Zhu, Z.L. Exploring Ecological Quality and Its Driving Factors in Diqing Prefecture, China, Based on Annual Remote Sensing Ecological Index and Multi-Source Data. Land 2024, 13, 19. [Google Scholar] [CrossRef]
- Airiken, M.; Li, S.C. The Dynamic Monitoring and Driving Forces Analysis of Ecological Environment Quality in the Tibetan Plateau Based on the Google Earth Engine. Remote Sens. 2024, 16, 15. [Google Scholar] [CrossRef]
- Huang, F.Y.; Zhang, X.Y. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP. Environ. Sci. Pollut. Res. 2024, 31, 23896–23908. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.L.; Mei, S.L. Explainable highway performance degradation prediction model based on LSTM. Adv. Eng. Inform. 2024, 61, 12. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.H.; Xu, Y.P.; Teegavarapu, R.S.V.; Guo, Y.X.; Nie, H.; Xie, H.W.; Zhang, L.Q. River ecological flow early warning forecasting using baseflow separation and machine learning in the Jiaojiang River Basin, Southeast China. Sci. Total Environ. 2023, 882, 14. [Google Scholar] [CrossRef]
- Xu, X.L.; Wang, S.Y.; Rong, W.Z. Construction of ecological network in Suzhou based on the PLUS and MSPA models. Ecol. Indic. 2023, 154, 15. [Google Scholar] [CrossRef]
- Ding, W.F.; Sun, H.H. Prediction of PM2.5 concentration based on the weighted RF-LSTM model. Earth Sci. Inform. 2023, 16, 3023–3037. [Google Scholar] [CrossRef]
- Yang, Y.L.; Shi, M.C.; Liu, B.J.; Yi, Y.; Wang, J.Y.; Zhao, H.Y. Contribution of ecological restoration projects to long-term changes in PM2.5. Ecol. Indic. 2024, 159, 13. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.Y.; Yang, J.X.; Li, S.C.; Tang, W.W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public Health 2017, 14, 21. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Ai, M.S.; Chen, X.; Yu, Q. Spatial correlation analysis between human disturbance intensity (HDI) and ecosystem services value (ESV) in the Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 158, 18. [Google Scholar] [CrossRef]
- Li, J.; Qiu, J.; Amani-Beni, M.; Wang, Y.Y.; Yang, M.; Chen, J.W. A Modified Equivalent Factor Method Evaluation Model Based on Land Use Changes in Tianfu New Area. Land 2023, 12, 22. [Google Scholar] [CrossRef]
- Chang, Y.X.; Zou, T.H.; Yoshino, K.; Luo, S.Z.; Zhou, S.G. Ecological policy benefit valuation based on public feedback: Forest ecosystem services in Wuyishan nature reserve, China. Sci. Total Environ. 2019, 673, 622–630. [Google Scholar] [CrossRef]
- Popak, A.E.; Markwith, S.H. Economic Valuation of Bee Pollination Services for Passion Fruit (Malpighiales: Passifloraceae) Cultivation on Smallholding Farms in Sao Paulo, Brazil, Using the Avoided Cost Method. J. Econ. Entomol. 2019, 112, 2049–2054. [Google Scholar] [CrossRef]
- Pelorosso, R.; Apollonio, C.; Rocchini, D.; Petroselli, A. Effects of Land Use-Land Cover Thematic Resolution on Environmental Evaluations. Remote Sens. 2021, 13, 26. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Ban, Y.F.; Haas, J. Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data. Remote Sens. Appl.-Soc. Environ. 2019, 13, 234–246. [Google Scholar] [CrossRef]
- Bidone, F. Driving governance beyond ecological modernization: REDD plus and the Amazon Fund. Environ. Policy Gov. 2022, 32, 110–121. [Google Scholar] [CrossRef]
- Moore, C.M.; CateIla, S.A.; Abbott, K.C. Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback. Ecol. Model. 2018, 368, 191–197. [Google Scholar] [CrossRef]
- Moller, S.G.; Rajan, S.; Moller-Hansen, S.; Kragholm, K.; Ringgren, K.B.; Folke, F.; Hansen, C.M.; Lippert, F.K.; Kober, L.; Gislason, G.; et al. Pre-hospital factors and survival after out-of-hospital cardiac arrest according to population density, a nationwide study. Resusc. Plus 2020, 4, 9. [Google Scholar] [CrossRef]
- Hontecillas-Prieto, L.; García-Domínguez, D.J.; Palazón-Carrión, N.; García-Sancho, A.M.; Nogales-Fernández, E.; Jiménez-Cortegana, C.; Sánchez-León, M.L.; Silva-Romeiro, S.; Flores-Campos, R.; Carnicero-González, F.; et al. CD8+NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front. Immunol. 2024, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; He, D.M. The dynamic impact of land use change on ecosystem services as the fast GDP growth in Guiyang city. Ecol. Indic. 2023, 157, 12. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, G.H.; Ao, J.F.; Wang, C.L.; Kang, R.H.; Wu, Y.L. Multi-information PointNet plus plus fusion method for DEM construction from airborne LiDAR data. Geocarto Int. 2023, 38, 18. [Google Scholar] [CrossRef]
- Jiang, M.J.; Lu, Y.X.; Wang, H.N.; Chen, Y.R. Multi-field coupling analysis of mechanical responses in methane hydrate exploitation with a practical numerical approach combining T plus H with DEM. Comput. Geotech. 2024, 166, 18. [Google Scholar] [CrossRef]
- Tu, W.F.; Li, L.P.; Li, S.C.; Zhou, Z.Q.; Lei, T.; Sun, S.Q. VC plus plus Software Development and Stability Analysis of a Slope Based on the Slice-Free Method. Geotech. Geol. Eng. 2020, 38, 1311–1322. [Google Scholar] [CrossRef]
- Reheman, R.; Kasimu, A.; Duolaiti, X.; Wei, B.H.; Zhao, Y.Y. Research on the Change in Prediction of Water Production in Urban Agglomerations on the Northern Slopes of the Tianshan Mountains Based on the InVEST-PLUS Model. Water 2023, 15, 19. [Google Scholar] [CrossRef]
- Nazemi, R.; Daryasafar, A.; Bazyari, A.; Najafi, S.A.S.; Ashoori, S. Modeling asphaltene precipitation in live crude oil using cubic plus association (CPA) equation of state. Pet. Sci. Technol. 2020, 38, 257–265. [Google Scholar] [CrossRef]
- Kaus, A.; Michalski, S.; Hänfling, B.; Karthe, D.; Borchardt, D.; Durka, W. Fish conservation in the land of steppe and sky: Evolutionarily significant units of threatened salmonid species in Mongolia mirror major river basins. Ecol. Evol. 2019, 9, 3416–3433. [Google Scholar] [CrossRef]
- Braziene, A.; Vencloviene, J.; Tamosiunas, A.; Dedele, A.; Luksiene, D.; Radisauskas, R. The influence of proximity to city parks and major roads on the development of arterial hypertension. Scand. J. Public Health 2018, 46, 667–674. [Google Scholar] [CrossRef]
- Assadhan, B.; Bashaiwth, A.; Binsalleeh, H. Enhancing Explanation of LSTM-Based DDoS Attack Classification Using SHAP With Pattern Dependency. IEEE Access 2024, 12, 90707–90725. [Google Scholar] [CrossRef]
- Song, H.L.; Li, Y.T.; Zou, X.F.; Hu, P.; Liu, T.B. Elite male table tennis matches diagnosis using SHAP and a hybrid LSTM-BPNN algorithm. Sci. Rep. 2023, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, R.J.; Feng, K.L.; An, T.; Cheng, P.J.; Wei, L.C.; Zhao, Z.H.; Xu, X.Y.; Zhu, L. Enhanced Insights into Effluent Prediction in Wastewater Treatment Plants: Comprehensive Deep Learning Model Explanation Based on SHAP. ACS EST Water 2024, 4, 1904–1915. [Google Scholar] [CrossRef]
- Li, Q.X.; Ji, Y.J.; Zhu, M.R.; Zhu, X.Y.; Sun, L.J. Unsupervised feature selection using chronological fitting with Shapley Additive explanation (SHAP) for industrial time-series anomaly detection. Appl. Soft. Comput. 2024, 155, 18. [Google Scholar] [CrossRef]
- Cruz-Victoria, J.C.; Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, E. Long Short-Term Memory and Bidirectional Long Short-Term Memory Modeling and Prediction of Hexavalent and Total Chromium Removal Capacity Kinetics of Cupressus lusitanica Bark. Sustainability 2024, 16, 25. [Google Scholar] [CrossRef]
- Aryal, K.; Ojha, B.R.; Maraseni, T. Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal. Land Use Policy 2021, 106, 12. [Google Scholar] [CrossRef]
- Liu, D.D.; Guo, S.L.; Liu, P.; Zou, H.; Hong, X.J. Rational Function Method for Allocating Water Resources in the Coupled Natural-Human Systems. Water Resour. Manag. 2019, 33, 57–73. [Google Scholar] [CrossRef]
- Kane, D.S.; Pope, K.L.; Koupal, K.D.; Pegg, M.A.; Chizinski, C.J.; Kaemingk, M.A. Natural resource system size can be used for managing recreational use. Ecol. Indic. 2022, 145, 7. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Lu, B.; Jia, W.; Huang, C.J.; Ma, Y.Q. The conflict between natural resource use and welfare supply-Natural resources is a bless or a curse? Resour. Policy 2023, 82, 9. [Google Scholar] [CrossRef]
- Vande Velde, K.; Huge, J.; Friess, D.A.; Koedam, N.; Dahdouh-Guebas, F. Stakeholder discourses on urban mangrove conservation and management. Ocean Coast. Manag. 2019, 178, 11. [Google Scholar] [CrossRef]
- Carbone, J.C.; Bui, L.T.M.; Fullerton, D.; Paltsev, S.; Wing, I.S. When and How to Use Economy-Wide Models for Environmental Policy Analysis. Annu. Rev. Resour. Econ. 2022, 14, 447–465. [Google Scholar] [CrossRef]
- Boonman, H.; Verstraten, P.; van der Weijde, A.H. Macroeconomic and environmental impacts of circular economy innovation policy. Sustain. Prod. Consump. 2023, 35, 216–228. [Google Scholar] [CrossRef]
- Li, W.Q.; Zinda, J.A.; Zhang, Z.M. Does the “Returning Farmland to Forest Program” Drive Community-Level Changes in Landscape Patterns in China? Forests 2019, 10, 25. [Google Scholar] [CrossRef]
- Jiang, H.Q.; Wu, W.J.; Wang, J.N.; Yang, W.S.; Gao, Y.M.; Duan, Y.; Ma, G.X.; Wu, C.S.; Shao, J.C. Mapping global value of terrestrial ecosystem services by countries. Ecosyst. Serv. 2021, 52, 10. [Google Scholar] [CrossRef]
- Li, J.W.; Dong, S.C.; Li, Y.; Wang, Y.S.; Li, Z.H.; Li, F.J. Effects of land use change on ecosystem services in the China-Mongolia-Russia economic corridor. J. Clean Prod. 2022, 360, 14. [Google Scholar] [CrossRef]
- Austhof, E.; Warner, S.; Helfrich, K.; Pogreba-Brown, K.; Brown, H.E.; Klimentidis, Y.C.; Walter, E.S.; Jervis, R.H.; White, A.E. Exploring the association of weather variability on Campylobacter—A systematic review. Environ. Res. 2024, 252, 11. [Google Scholar] [CrossRef]
- Swenson, L.M. Can Simple Metrics Identify the Process(es) Driving Extreme Precipitation? Climate 2023, 11, 22. [Google Scholar] [CrossRef]
- Yao, H.; Peng, H.J.; Hong, B.; Ding, H.W.; Hong, Y.T.; Zhu, Y.X.; Wang, J.; Cai, C. Seasonal and diurnal variation in ecosystem respiration and environmental controls from an alpine wetland in arid northwest China. J. Plant Ecol. 2022, 15, 933–946. [Google Scholar] [CrossRef]
Data Type | Data Source | Format | Resolution | Time Range | Pre-Processing Steps |
---|---|---|---|---|---|
Land use data | Chinese Academy of Sciences Resource and Environment Science Data Center (http://www.resdc.cn/ (accessed on 20 January 2024)) | Raster | 1 km | 1990, 2000, 2010, 2020 | Reclassified into six categories: farmland, forest, grassland, water, built-up land, and unused land using ArcGIS 10.8. |
Agricultural statistics data | China Rural Statistical Yearbook (https://www.stats.gov.cn/ (accessed on 20 January 2024)) | Table | - | 1990, 2000, 2010, 2020 | Standardized data processing, including grain production, prices, and planting areas. |
Digital elevation model | http://www.gscloud.cn/ (accessed on 20 January 2024) | Raster | 1 km | - | Generated slope data, unified resolution to 1 km. |
Annual precipitation | http://www.geodata.cn/ (accessed on 20 January 2024) | Raster | 1 km | - | Resampled data, unified resolution to 1 km. |
Annual mean temperature | http://www.geodata.cn/ (accessed on 20 January 2024) | Raster | 1 km | - | Resampled data, unified resolution to 1 km. |
Population density | http://www.resdc.cn/ (accessed on 20 January 2024) | Raster | 1 km | - | Resampled data, unified resolution to 1 km. |
Regional average gross domestic product | http://www.resdc.cn/ (accessed on 20 January 2024) | Raster | 1 km | - | Resampled data, unified resolution to 1 km. |
River data | http://www.resdc.cn/ (accessed on 20 January 2024) | Vector | - | - | - |
Major road data | http://www.resdc.cn/ (accessed on 20 January 2024) | Vector | - | - | - |
Railway data | http://www.resdc.cn/ (accessed on 20 January 2024) | Vector | - | - | - |
Distance to rivers, major roads, and railways | - | Raster | 1 km | - | Calculated Euclidean distance using ArcGIS 10.8 based on 1 km × 1 km grid to determine the distance from each grid centroid to the nearest river, road, and railway. |
Function | Farmland | Forest | Grassland | Water | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|
FP | 175.78 | 40.17 | 37.12 | 69.47 | 0.00 | 0.80 |
RM | 38.97 | 92.27 | 54.62 | 38.71 | 0.00 | 2.39 |
WS | −207.60 | 47.72 | 30.23 | 691.47 | 0.00 | 1.59 |
GR | 141.58 | 303.45 | 191.96 | 151.13 | 0.00 | 10.34 |
CR | 73.97 | 907.95 | 507.47 | 340.96 | 0.00 | 7.95 |
ED | 21.48 | 266.06 | 167.57 | 493.68 | 0.00 | 32.61 |
HA | 237.83 | 594.17 | 371.72 | 7084.40 | 0.00 | 19.09 |
SC | 82.72 | 369.47 | 233.85 | 171.81 | 0.00 | 11.93 |
NC | 24.66 | 28.24 | 18.03 | 13.26 | 0.00 | 0.80 |
BD | 27.04 | 336.46 | 212.64 | 553.07 | 0.00 | 11.14 |
AL | 11.93 | 147.55 | 93.86 | 355.81 | 0.00 | 4.77 |
Aggregate | 628.37 | 3133.49 | 1919.04 | 9963.76 | 0.00 | 103.40 |
Driving Factor | Rationale | Processing and Application in PLUS Model |
---|---|---|
Population density | Population density is a key driver of urbanization and land use change; high-density areas experience significant land changes [49,50]. | Input to random forest algorithm to generate development probabilities for different land use types. |
Regional average gross domestic product | Economic development level directly influences land use; areas with high GDP are more likely to undergo land development [51,52]. | Input to random forest algorithm to generate development probabilities for different land use types. |
Digital elevation model | Elevation affects the distribution of land types; low elevation areas are more suitable for agriculture and construction [53,54]. | Input to random forest algorithm to generate development probabilities for different land use types. |
Slope | Slope is a crucial determinant of hydrological characteristics, affecting land usability [55,56]. | Data input to random forest algorithm to generate development probabilities for different land use types. |
Annual precipitation | Precipitation affects ecosystem functions and biodiversity; high precipitation areas are usually forests and grasslands [57]. | Data input to random forest algorithm to generate development probabilities for different land use types. |
Distance to major rivers | Proximity to rivers influences water resource availability; areas close to rivers are suitable for agriculture and construction [58]. | Used in random forest algorithm to generate land development probabilities, simulating dependence on rivers. |
Distance to major roads | Proximity to roads affects accessibility and economic activity; areas with high traffic accessibility are easier to develop [59]. | Used in random forest algorithm to generate land development probabilities, simulating the impact of transportation accessibility. |
Type | Natural Development Scenario | Ecological Protection Scenario | Urban Development Scenario | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | I | II | III | IV | V | VI | I | II | III | IV | V | VI | |
I | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
II | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
III | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
IV | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
V | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
VI | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; You, C. Exploring the Impact of Climate Variables and Scenario Simulation on Ecosystem Service Value Profits and Losses in China. Land 2024, 13, 1924. https://doi.org/10.3390/land13111924
Yu D, You C. Exploring the Impact of Climate Variables and Scenario Simulation on Ecosystem Service Value Profits and Losses in China. Land. 2024; 13(11):1924. https://doi.org/10.3390/land13111924
Chicago/Turabian StyleYu, Dahai, and Chang You. 2024. "Exploring the Impact of Climate Variables and Scenario Simulation on Ecosystem Service Value Profits and Losses in China" Land 13, no. 11: 1924. https://doi.org/10.3390/land13111924
APA StyleYu, D., & You, C. (2024). Exploring the Impact of Climate Variables and Scenario Simulation on Ecosystem Service Value Profits and Losses in China. Land, 13(11), 1924. https://doi.org/10.3390/land13111924