Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Satellite Image Collection and Pre-Processing
2.2.2. Agricultural Area Mapping
2.2.3. Irrigated Area Mapping
- -
- Conversion of spectral and thermal bands of Landsat images for the determination of NDVI and surface temperature (Ts);
- -
- Determination of NDVI and Ts thresholds from seasonal NDVI and Ts profiles derived from the overlay of NDVI and Ts images and irrigated land samples;
- -
- Combining the thresholds through a logic equation;
- ▪ Applying the algorithm to NDVI and Ts images of agricultural areas to differentiate irrigated from rainfed land
2.2.4. The Accuracy Assessment
2.2.5. Evaluation of Changes in Agricultural and Irrigated Areas from 2014 to 2022
3. Results and Discussion
3.1. Distribution of Agricultural Areas for the Periods 2014, 2018, and 2022
3.2. Distribution of Irrigated Land in 2014, 2018, and 2022
3.3. Changes in the Area of Agricultural Land in the ORB from 2014 to 2022
3.4. Factors Contributing to the Expansion of Irrigated Areas
3.5. Advantages and Limitations of the Methodology Employed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INStaD-Benin Croissance Économique En 2022: Le Bénin Confirme Une Fois Encore La Résilience de Son Économie 2023. Available online: https://instad.bj/images/docs/insae-publications/annuelles/Notes-Comptes-Publiques/NOTE_SUR_LES_COMPTES_NATIONAUX_2022_INStaD.pdf (accessed on 10 March 2024).
- Zoundji, G.C.; Zossou, E.; Vissoh, P.; Bognonkpe, G.; Vodouhe, S.D. Analyse genre des effets des changements climatiques sur les moyens d’existence durable des producteurs de riz et stratégies d’adaptation au Nord Bénin. Agron. Afr. 2022, 34, 21–32. [Google Scholar]
- Agnoun, Y.F.; Djagba, J.F.; Saidou, A.; Djihoun, M.; Dégbey, H.; Kossou, D.K.; Huat, J.; Sié, M. Valorisation des Innovations Endogènes en Maîtrise de l’eau pour une Perspective D’amélioration de la Production Agricole au Bénin. Science et Technique—Revue Burkinabé de la Recherche. Série Lettres, Sciences Sociales et Humaines. In Proceedings of the Symposium International sur la Valorisation des Résultats de Recherche et des Innovations en Afrique, Ouagadougou, Burkina-Faso, 24–27 September 2013; p. 75. [Google Scholar]
- Akponikpè, I.; Tovihoudji, P.; Lokonon, B.; Kpadonou, G.E.; Amegnaglo, C.; Segnon, A.; Yegbemey, R.; Hounsou, M.; Wabi, M.; Totin, E.; et al. Etude de Vulnérabilité Sectorielle Face Aux Changements Climatiques Au Bénin, Secteur Agriculture. 2019. Available online: https://www.researchgate.net/profile/Alcade-Segnon/publication/337447880_Etude_de_Vulnerabilite_Sectorielle_face_aux_changements_climatiques_au_Benin_-_Secteur_Agriculture/links/5dd83e4492851c1feda8cb06/Etude-de-Vulnerabilite-Sectorielle-face-aux-changements-climatiques-au-Benin-Secteur-Agriculture.pdf (accessed on 24 February 2024).
- Sagbo, P. Présentation Des Expériences de La Petite Irrigation Au Bénin Présentation Des Expériences de La Petite Irrigation Au Bénin. In Proceedings of the Atelier de Capitalisation D’expériences sur le Développement de la Petite Irrigation Privée pour les Producteurs à Haute Valeur Ajoutée en Afrique de l’Ouest, Ouagadougou, Burkina-Faso, 15–17 June 2010; p. 20. [Google Scholar]
- McAllister, A.; Whitfield, D.; Abuzar, M. Mapping Irrigated Farmlands Using Vegetation and Thermal Thresholds Derived from Landsat and ASTER Data in an Irrigation District of Australia. Photogramm. Eng. Remote Sens. 2015, 81, 229–238. [Google Scholar] [CrossRef]
- Ghebreamlak, A.Z.; Tanakamaru, H.; Tada, A.; Ahmed Adam, B.M.; Elamin, K.A. Satellite-Based Mapping of Cultivated Area in Gash Delta Spate Irrigation System, Sudan. Remote Sens. 2018, 10, 186. [Google Scholar] [CrossRef]
- Gruber, I.; Kloos, J.; Schopp, M. Seasonal Water Demand in Benin’s Agriculture. J. Environ. Manag. 2009, 90, 196–205. [Google Scholar] [CrossRef] [PubMed]
- DG Eau, B. Elaboration Du Schéma Directeur d’Aménagement et de Gestion Des Eaux Du Bassin de l’Ouémé; Ministère de l’Eau et des Mines (MEM): Cotonou, Bénin, 2013; p. 194. [Google Scholar]
- Höllermann, B.; Giertz, S.; Diekkrüger, B. Benin 2025—Balancing Future Water Availability and Demand Using the WEAP ‘Water Evaluation and Planning’ System. Water Resour. Manag. 2010, 24, 3591–3613. [Google Scholar] [CrossRef]
- Sintondji, L.O.; Badou, D.; Hounkpe, J.; Balle, A.; Gaba, C.; Expedie, V.; Ahouansou, M.M. Etude de Vulnérabilité Sectorielle Face Aux Changements Climatiques Au Bénin, Secteur: Ressources En Eau. 2019. Available online: https://www.researchgate.net/publication/337946973_Etude_de_Vulnerabilite_Sectorielle_face_aux_changements_climatiques_au_Benin_Secteur_Ressources_en_Eau (accessed on 24 February 2024).
- Alexandridis, T.K.; Zalidis, G.C.; Silleos, N.G. Mapping Irrigated Area in Mediterranean Basins Using Low Cost Satellite Earth Observation. Comput. Electron. Agric. 2008, 64, 93–103. [Google Scholar] [CrossRef]
- Bendini, H.N.; Fonseca, L.M.G.; Bertolini, C.A.; Mariano, R.F.; Fernandes Filho, A.S.; Fontenelle, T.H.; Ferreira, D.A.C. Irrigated Agriculture Mapping in a Semi-Arid Region in Brazil Based on the Use of Sentinel-2 Data and Random Forest Algorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-1–2023, 33–39. [Google Scholar] [CrossRef]
- Totin, E.; Van Mierlo, B.; Saïdou, A.; Mongbo, R.; Agbossou, E.; Stroosnijder, L.; Leeuwis, C. Barriers and Opportunities for Innovation in Rice Production in the Inland Valleys of Benin. NJAS-Wagening. J. Life Sci. 2012, 60, 57–66. [Google Scholar] [CrossRef]
- Djagba, J.F.; Rodenburg, J.; Zwart, S.J.; Houndagba, C.J.; Kiepe, P. Failure and Success Factors of Irrigation System Developments: A Case Study from the Ouémé and Zou Valleys in Benin. Irrig. Drain. 2014, 63, 328–339. [Google Scholar] [CrossRef]
- Nonvide, G.M.A.; Sarpong, D.B.; Kwadzo, G.T.-M.; Anim-Somuah, H.; Amoussouga Gero, F. Farmers’ Perceptions of Irrigation and Constraints on Rice Production in Benin: A Stakeholder-Consultation Approach. Int. J. Water Resour. Dev. 2018, 34, 1001–1021. [Google Scholar] [CrossRef]
- Frenken, K. L’Irrigation En Afrique En Chiffres: Enquete Aquastat-2005: 29 (Rapports de La Fao Sur L’Eau); Food & Agriculture Org.: Rome, Italy, 2005; Volume 29, ISBN 92-5-205414-6. [Google Scholar]
- Meier, J.; Zabel, F.; Mauser, W. A Global Approach to Estimate Irrigated Areas–a Comparison between Different Data and Statistics. Hydrol. Earth Syst. Sci. 2018, 22, 1119–1133. [Google Scholar] [CrossRef]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely Sensed High Resolution Irrigated Area Mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [PubMed]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef] [PubMed]
- Zurqani, H.A.; Allen, J.S.; Post, C.J.; Pellett, C.A.; Walker, T.C. Mapping and Quantifying Agricultural Irrigation in Heterogeneous Landscapes Using Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2021, 23, 100590. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Massari, C.; Modanesi, S.; Dari, J.; Gruber, A.; De Lannoy, G.J.; Girotto, M.; Quintana-Seguí, P.; Le Page, M.; Jarlan, L.; Zribi, M. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. [Google Scholar] [CrossRef]
- Chandrasekharan, K.M.; Subasinghe, C.; Haileslassie, A. Mapping Irrigated and Rainfed Agriculture in Ethiopia (2015–2016) Using Remote Sensing Methods; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2021; Volume 196, ISBN 92-9090-913-7. [Google Scholar]
- Traoré, F.; Cornet, Y.; Denis, A.; Wellens, J.; Tychon, B. Monitoring the Evolution of Irrigated Areas with Landsat Images Using Backward and Forward Change Detection Analysis in the Kou Watershed, Burkina Faso. Geocarto Int. 2013, 28, 733–752. [Google Scholar] [CrossRef]
- Traoré, F.; Bonkoungou, J.; Compaoré, J.; Kouadio, L.; Wellens, J.; Hallot, E.; Tychon, B. Using Multi-Temporal Landsat Images and Support Vector Machine to Assess the Changes in Agricultural Irrigated Areas in the Mogtedo Region, Burkina Faso. Remote Sens. 2019, 11, 1442. [Google Scholar] [CrossRef]
- Wu, W.; De Pauw, E. A Simple Algorithm to Identify Irrigated Croplands by Remote Sensing. In Proceedings of the Proceedings of the 34th International Symposium on Remote Sensing of Environment (ISRSE), Sydney, Australia, 10–15 April 2011; Arinex: Sydney, NSW, Australia, 2011; pp. 10–15. [Google Scholar]
- Pervez, M.S.; Budde, M.; Rowland, J. Mapping Irrigated Areas in Afghanistan over the Past Decade Using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef]
- Kant, C.; Mishra, M. Irrigated Cropland Identification Using Remote Sensing in India. Int. J. Appl. Remote Sens. GIS 2018, 4, 1–9. [Google Scholar]
- Abuzar, M.; McAllister, A.; Whitfield, D.; Sheffield, K. Remotely-Sensed Surface Temperature and Vegetation Status for the Assessment of Decadal Change in the Irrigated Land Cover of North-Central Victoria, Australia. Land 2020, 9, 308. [Google Scholar] [CrossRef]
- Lamhamedi, B.E.H.; Nassima, J.; Sebari, I.; Benbahria, Z. Extraction Automatique Des Zones Irriguées Dans La Région Du Gharb Par Analyse d’image Basée-Objets Des Images Landsat 8. Rev. Marocaine Des Sci. Agron. Vétérinaires 2017, 5, 170. [Google Scholar]
- Lawin, A.E.; Hounguè, R.; N’Tcha M’Po, Y.; Hounguè, N.R.; Attogouinon, A.; Afouda, A.A. Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin). Hydrology 2019, 6, 72. [Google Scholar] [CrossRef]
- Kodja, D.J.; Vissin, E.; Amoussou, E.; Houndenou, C.; Boko, M.; Mahé, G.; Paturel, J.-E. Analyse fréquentielle des pluies journalières sur le bassin versant de l’Ouémé à l’exutoire de Bonou. In Proceedings of the Risques et Catastrophes Climatiques: Vulnérabilité: Vulnérabilité et Adaptation en Afrique de l’Ouest, Abomey-Calavi, Bénin, 27–30 September 2016; Volume 1, p. 24. [Google Scholar]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Kombate, A.; Folega, F.; Atakpama, W.; Dourma, M.; Wala, K.; Goïta, K. Characterization of Land-Cover Changes and Forest-Cover Dynamics in Togo between 1985 and 2020 from Landsat Images Using Google Earth Engine. Land 2022, 11, 1889. [Google Scholar] [CrossRef]
- Yangouliba, G.I.; Zoungrana, B.J.-B.; Hackman, K.O.; Koch, H.; Liersch, S.; Sintondji, L.O.; Dipama, J.-M.; Kwawuvi, D.; Ouedraogo, V.; Yabré, S.; et al. Modelling Past and Future Land Use and Land Cover Dynamics in the Nakambe River Basin, West Africa. Model. Earth Syst. Environ. 2023, 9, 1651–1667. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Crawley, M.J. Statistics: An Introduction Using R, 1st ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0-470-02297-9. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Velpuri, N.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. Influence of Resolution in Irrigated Area Mapping and Area Estimation. Photogramm. Eng. Remote Sens. 2009, 75, 1383–1395. [Google Scholar] [CrossRef]
- Bernier, B. Introduction à La Macroéconomie; Dunod: Paris, France, 1992. [Google Scholar]
- Bodjrènou, R.; Comandan, F.; Danso, D.K. Assessment of Current and Future Land Use and Land Cover in the Oueme Basin for Hydrological Studies. Sustainability 2023, 15, 2245. [Google Scholar] [CrossRef]
- Annan, E.; Amponsah, W.; Adjei, K.A.; Disse, M.; Hounkpè, J.; Biney, E.; Agbenorhevi, A.E.; Agyare, W.A. Spatio-Temporal Land Use and Land Cover Change Assessment: Insights from the Ouémé River Basin. Sci. Afr. 2024, 25, e02262. [Google Scholar] [CrossRef]
- Pareeth, S.; Karimi, P.; Shafiei, M.; De Fraiture, C. Mapping Agricultural Landuse Patterns from Time Series of Landsat 8 Using Random Forest Based Hierarchial Approach. Remote Sens. 2019, 11, 601. [Google Scholar] [CrossRef]
- Paredes-Gómez, V.; Gutiérrez, A.; Del Blanco, V.; Nafría, D.A. A Methodological Approach for Irrigation Detection in the Frame of Common Agricultural Policy Checks by Monitoring. Agronomy 2020, 10, 867. [Google Scholar] [CrossRef]
- Nhamo, L.; Van Dijk, R.; Magidi, J.; Wiberg, D.; Tshikolomo, K. Improving the Accuracy of Remotely Sensed Irrigated Areas Using Post-Classification Enhancement through UAV Capability. Remote Sens. 2018, 10, 712. [Google Scholar] [CrossRef]
- Sossou, R.; Nassi, K.; Comlan Herve, S.; Gbaguidi, S.; Zandjanakou-Tachin, M. Trajectoire de La Réforme de Territorialisation Du Développement Agricole Au Bénin: Qu’en Disent Les Acteurs? Rev. Int. Du Cherch. 2023, 4, 714–738. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Zuo, L.; Ge, Q. Tracking Spatiotemporal Dynamics of Irrigated Croplands in China from 2000 to 2019 through the Synergy of Remote Sensing, Statistics, and Historical Irrigation Datasets. Agric. Water Manag. 2022, 263, 107458. [Google Scholar] [CrossRef]
- Osseni, A.A.; Dossou-Yovo, H.O.; Gbesso, G.H.F.; Lougbegnon, T.O.; Sinsin, B. Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa). Remote Sens. 2022, 14, 6165. [Google Scholar] [CrossRef]
- Jellason, N.P.; Robinson, E.J.; Chapman, A.S.; Neina, D.; Devenish, A.J.; Po, J.Y.; Adolph, B. A Systematic Review of Drivers and Constraints on Agricultural Expansion in Sub-Saharan Africa. Land 2021, 10, 332. [Google Scholar] [CrossRef]
- INStaD-Benin Projections Demographiques de 2014 à 2063 et Perspectives de La Demande Sociale de 2014 à 2030 Au Bénin 2022. Available online: https://instad.bj/actualites/416-projections-demographiques-de-2014-a-2063-et-perspectives-de-la-demande-sociale-de-2014-a-2030-au-benin (accessed on 3 March 2024).
Main Uses | Satellite Images | Used Bands | Wavelength (um) | GEE Dataset IDs | Spatial Resolution (m) |
---|---|---|---|---|---|
Land use and land cover (LULC) classification | Landsat 7 | Blue: B1 Green: B2 Red: B3 NIR: B4 SWIR1: B5 SWIR2: B7 | 0.45–0.52 0.52–0.60 0.63–0.69 0.77–0.90 1.55–1.75 2.09–2.35 | C01/T1_SR | 30 |
Landsat 8 | Blue: B2 Green: B3 Red: B4 NIR: B5 SWIR1: B5 SWIR2: B7 | 0.45–0.51 0.53–0.59 0.64–0.67 0.85–0.88 1.57–1.65 2.11–2.29 | |||
Landsat 9 | Blue: B2 Green: B3 Red: B4 NIR: B5 SWIR1: B5 SWIR2: B7 | 0.45–0.51 0.53–0.59 0.64–0.67 0.85–0.88 1.57–1.65 2.11–2.29 | |||
NDVI extraction | Landsat 7 | Red: B3 NIR: B4 | 0.63–0.69 0.77–0.90 | C01/T1_SR | 30 |
Landsat 8 | Red: B4 NIR: B5 | 0.64–0.67 0.85–0.88 | |||
Landsat 9 | Red: B4 NIR: B5 | 0.64–0.67 0.85–0.88 | |||
Ts retrieving | Landsat 7 | TIR: B6 | 10.4–12.5 | C01/T1_TOA | 60 |
Landsat 8 | TIR: B10 | 10.6–11.19 | 100 |
N° | Land Cover | Description |
---|---|---|
1 | Water | Water bodies, e.g., temporary and permanent watercourses, wetlands, reservoirs, etc. |
2 | Agricultural area | Land used for seasonal crops, fields, and fallow land under palm trees, areas developed and equipped for irrigation, etc. |
3 | Vegetation | Shrubs, trees, grasslands, natural forests, plantations, savannahs, degraded forests, etc. |
4 | Built-up and bare land | Dwellings, industrial zones and road infrastructures, hills, bare ground, etc. |
Year | Agricultural Land | Precision | ||
---|---|---|---|---|
Area (km2) | Area (%) | OA (%) | Kappa | |
2014 | 16,002.8 | 32.29 | 92.77 | 0.90 |
2018 | 19,732.4 | 39.81 | 93.85 | 0.91 |
2022 | 22,850 | 46.1 | 94.37 | 0.92 |
Year | Irrigated Croplands | Precision | ||
---|---|---|---|---|
Area (km2) | (% of Agricultural Area) | IA (%) | EO (%) | |
2014 | 754.94 | 4.72 | 79.21 | 20.79 |
2018 | 1136.27 | 5.76 | 81.72 | 18.28 |
2022 | 1882.64 | 8.24 | 83.15 | 16.85 |
Periods | 2014–2018 | 2018–2022 | ||
---|---|---|---|---|
Features | Area (km2) | AE (%) | Area (km2) | AE (%) |
Agricultural land | 3729.6 | 5.24 | 3117.6 | 3.67 |
Irrigated land | 381.33 | 10.22 | 746.37 | 12.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahoton, D.H.; Bacharou, T.; Bossa, A.Y.; Sintondji, L.O.; Bonkoungou, B.; Alofa, V.M. Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine. Land 2024, 13, 1926. https://doi.org/10.3390/land13111926
Ahoton DH, Bacharou T, Bossa AY, Sintondji LO, Bonkoungou B, Alofa VM. Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine. Land. 2024; 13(11):1926. https://doi.org/10.3390/land13111926
Chicago/Turabian StyleAhoton, David Houéwanou, Taofic Bacharou, Aymar Yaovi Bossa, Luc Ollivier Sintondji, Benjamin Bonkoungou, and Voltaire Midakpo Alofa. 2024. "Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine" Land 13, no. 11: 1926. https://doi.org/10.3390/land13111926
APA StyleAhoton, D. H., Bacharou, T., Bossa, A. Y., Sintondji, L. O., Bonkoungou, B., & Alofa, V. M. (2024). Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine. Land, 13(11), 1926. https://doi.org/10.3390/land13111926