Assessing the Interaction Impacts of Multi-Scenario Land Use and Landscape Pattern on Water Ecosystem Services in the Greater Bay Area by Multi-Model Coupling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Simulation Analysis of Land Use and Landscape Pattern
2.3.1. PLUS Model
2.3.2. Landscape Indices
2.4. WESs Assessment
2.4.1. WY Capacity Assessment
2.4.2. WP Capacity Assessment
2.5. Geographic Detector
2.5.1. Factor Detection
2.5.2. Interaction Detection
3. Results
3.1. Changes in Land Use and Landscape Pattern During 2000–2050
3.1.1. Historical Land Use Analysis
3.1.2. Multi-Scenario Land-Use Change Modelling
3.1.3. Changes in Landscape Pattern at the Class Level
3.1.4. Changes in Landscape Pattern at the Landscape Level
3.1.5. Analysis of Spatial and Temporal Variations in Landscape Indices Under a Moving Window
3.2. Changes in WESs from 2000 to 2050
3.3. Analysis of Single Factor Detection Results
3.3.1. Single-Factor Detection Results of Land Use Impact on WESs
3.3.2. Single-Factor Detection Results of Landscape Pattern Impact on WESs
3.4. Analysis of Interaction Detection Results
3.4.1. Interaction Detection Results of Land Use Impact on WESs
3.4.2. Interaction Detection Results of Landscape Pattern Impact on WESs
4. Discussion
4.1. Land Use and Landscape Interactions on WES
4.2. Effect of Land Use and Landscape on WESs in Multiple Scenarios
4.3. Policies and Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Land Use Type | Scenarios | Year | NP | PD | LPI | TE | ED | LSI | PAFRAC | DIVISION | SPLIT | AI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forest | EDS | 2030–2040 | 66.32 | 66.31 | −0.55 | 3.51 | 3.51 | 4.35 | 1.96 | 0.05 | 1.58 | −0.19 |
2040–2050 | 20.91 | 20.91 | −0.83 | 16.34 | 16.34 | 16.94 | 2.50 | 0.15 | 3.84 | −0.67 | ||
2030–2050 | 101.09 | 101.09 | −1.38 | 20.43 | 20.43 | 22.02 | 4.51 | 0.20 | 5.47 | −0.85 | ||
EPS | 2030–2040 | −7.24 | −7.24 | 1.22 | 4.42 | 4.42 | 3.48 | 0.73 | −0.24 | −4.19 | −0.12 | |
2040–2050 | −9.37 | −9.37 | 0.76 | 0.05 | 0.05 | −0.52 | 0.10 | −1.76 | −23.40 | 0.05 | ||
2030–2050 | −15.94 | −15.94 | 1.98 | 4.47 | 4.47 | 2.95 | 0.83 | −1.99 | −26.61 | −0.07 | ||
NDS | 2030–2040 | 130.61 | 130.60 | 0.79 | 91.19 | 91.19 | 91.02 | 10.71 | −0.07 | −1.65 | −3.97 | |
2040–2050 | 10.87 | 10.87 | 5.35 | 7.60 | 7.60 | 8.41 | 0.90 | −0.37 | −8.33 | −0.80 | ||
2030–2050 | 155.67 | 155.68 | 6.18 | 105.72 | 105.72 | 107.09 | 11.71 | −0.45 | −9.84 | −4.73 | ||
Cropland | EDS | 2030–2040 | 27.08 | 27.07 | −15.64 | 8.89 | 8.89 | 12.86 | 1.39 | 0.00 | 40.33 | −2.45 |
2040–2050 | 16.19 | 16.19 | −1.94 | −0.54 | −0.54 | 2.27 | 0.66 | 0.01 | 20.79 | −0.90 | ||
2030–2050 | 47.65 | 47.65 | −17.28 | 8.30 | 8.30 | 15.42 | 2.06 | 0.01 | 69.50 | −3.33 | ||
EPS | 2030–2040 | 78.96 | 78.96 | −7.25 | 5.27 | 5.26 | 8.93 | 0.99 | 0.01 | 35.57 | −1.81 | |
2040–2050 | 31.76 | 31.75 | −7.35 | −1.11 | −1.11 | 1.55 | 0.03 | 0.00 | 19.97 | −0.70 | ||
2030–2050 | 135.79 | 135.79 | −14.06 | 4.09 | 4.09 | 10.62 | 1.02 | 0.01 | 62.64 | −2.49 | ||
NDS | 2030–2040 | 75.21 | 75.21 | −7.15 | 43.60 | 43.60 | 48.84 | 5.78 | 0.00 | 16.44 | −10.06 | |
2040–2050 | 5.78 | 5.78 | −11.12 | 5.41 | 5.41 | 8.41 | 0.73 | 0.01 | 26.11 | −3.66 | ||
2030–2050 | 85.35 | 85.35 | −17.48 | 51.36 | 51.36 | 61.35 | 6.54 | 0.01 | 46.84 | −13.35 | ||
Grassland | EDS | 2030–2040 | 16.61 | 16.62 | −10.81 | 2.61 | 2.61 | 5.55 | 1.68 | 0.00 | 16.34 | −1.37 |
2040–2050 | 8.66 | 8.66 | −1.89 | 1.85 | 1.85 | 4.25 | 1.17 | 0.00 | 7.60 | −1.17 | ||
2030–2050 | 26.71 | 26.72 | −12.50 | 4.51 | 4.51 | 10.03 | 2.87 | 0.00 | 25.18 | −2.52 | ||
EPS | 2030–2040 | 10.93 | 10.92 | 6.87 | 5.44 | 5.45 | 4.21 | 0.44 | 0.00 | −21.80 | −0.99 | |
2040–2050 | 8.11 | 8.11 | 29.52 | 5.82 | 5.82 | 3.76 | 0.41 | 0.00 | −17.58 | −0.60 | ||
2030–2050 | 19.93 | 19.92 | 38.41 | 11.58 | 11.58 | 8.13 | 0.85 | 0.00 | −35.54 | −1.59 | ||
NDS | 2030–2040 | 76.39 | 76.39 | 19.13 | 46.34 | 46.34 | 55.58 | 8.67 | 0.00 | 17.80 | −19.14 | |
2040–2050 | 2.88 | 2.88 | −31.82 | −1.04 | −1.04 | 2.34 | 0.50 | 0.00 | 39.59 | −3.42 | ||
2030–2050 | 81.47 | 81.46 | −18.77 | 44.81 | 44.81 | 59.22 | 9.21 | 0.00 | 64.43 | −21.90 | ||
Urban | EDS | 2030–2040 | 8.04 | 8.04 | 19.28 | 13.76 | 13.76 | 7.49 | 1.53 | −0.22 | −28.89 | −0.25 |
2040–2050 | 3.03 | 3.03 | 6.01 | 11.61 | 11.61 | 7.06 | 1.20 | −0.13 | −14.34 | −0.43 | ||
2030–2050 | 11.31 | 11.31 | 26.46 | 26.97 | 26.97 | 15.07 | 2.74 | −0.35 | −39.09 | −0.67 | ||
EPS | 2030–2040 | −0.57 | −0.55 | 0.00 | 0.01 | 0.01 | 0.01 | 0.50 | 0.00 | 0.00 | 0.00 | |
2040–2050 | −0.41 | −0.39 | 0.00 | 0.02 | 0.02 | 0.02 | 0.56 | 0.00 | 0.00 | 0.00 | ||
2030–2050 | −0.97 | −0.94 | 0.00 | 0.03 | 0.03 | 0.03 | 1.06 | 0.00 | 0.00 | 0.00 | ||
NDS | 2030–2040 | 27.65 | 27.65 | 17.52 | 22.45 | 22.45 | 15.21 | 2.72 | −0.26 | −39.21 | −1.18 | |
2040–2050 | 15.19 | 15.18 | 10.12 | 16.72 | 16.72 | 11.67 | 1.64 | −0.12 | −15.98 | −1.05 | ||
2030–2050 | 47.04 | 47.04 | 29.41 | 42.93 | 42.93 | 28.65 | 4.41 | −0.38 | −48.92 | −2.21 | ||
Water | EDS | 2030–2040 | 19.64 | 19.64 | −40.11 | 1.60 | 1.60 | 4.21 | 1.74 | 0.05 | 133.05 | −0.81 |
2040–2050 | 8.03 | 8.02 | −5.94 | 1.14 | 1.14 | 3.27 | 1.08 | 0.00 | 11.77 | −0.68 | ||
2030–2050 | 29.24 | 29.24 | −43.66 | 2.76 | 2.76 | 7.62 | 2.84 | 0.05 | 160.48 | −1.48 | ||
EPS | 2030–2040 | 6.21 | 6.21 | 2.26 | 5.14 | 5.14 | 3.27 | 0.65 | 0.00 | −4.46 | −0.19 | |
2040–2050 | −7.76 | −7.76 | −0.72 | 0.28 | 0.28 | −0.83 | −0.14 | 0.00 | 1.06 | 0.25 | ||
2030–2050 | −2.03 | −2.03 | 1.52 | 5.43 | 5.43 | 2.42 | 0.51 | 0.00 | −3.45 | 0.05 | ||
NDS | 2030–2040 | 44.37 | 44.37 | 1.38 | 17.34 | 17.34 | 19.02 | 4.02 | −0.01 | −2.27 | −3.98 | |
2040–2050 | 7.60 | 7.60 | 29.33 | 1.19 | 1.19 | 2.99 | 0.66 | −0.02 | −32.97 | −1.16 | ||
2030–2050 | −2.03 | −2.03 | 1.52 | 5.43 | 5.43 | 2.42 | 0.51 | 0.00 | −3.45 | 0.05 | ||
Other | EDS | 2030–2040 | 55.06 | 51.72 | 0.00 | −5.08 | −4.97 | 8.45 | 3.52 | 0.00 | 64.67 | −10.99 |
2040–2050 | 25.71 | 27.27 | 0.00 | −14.69 | −14.71 | −6.44 | −1.18 | 0.00 | 15.98 | −1.76 | ||
2030–2050 | 94.94 | 93.10 | 0.00 | −19.02 | −18.94 | 1.47 | 2.30 | 0.00 | 90.99 | −12.56 | ||
EPS | 2030–2040 | 46.02 | 43.75 | 0.00 | −10.93 | −11.05 | 2.30 | 1.28 | 0.00 | 91.40 | −9.52 | |
2040–2050 | 12.06 | 13.04 | 0.00 | −11.38 | −11.44 | −3.63 | −0.67 | 0.00 | 21.82 | −2.30 | ||
2030–2050 | 63.64 | 62.50 | 0.00 | −21.06 | −21.22 | −1.41 | 0.60 | 0.00 | 133.16 | −11.60 | ||
NDS | 2030–2040 | 52.66 | 51.61 | 0.00 | −6.82 | −6.92 | 8.44 | 3.55 | 0.00 | 78.83 | −12.30 | |
2040–2050 | 43.41 | 42.55 | 0.00 | −7.66 | −7.77 | 0.22 | 0.36 | 0.00 | 6.72 | −5.00 | ||
2030–2050 | 118.93 | 116.13 | 0.00 | −13.96 | −14.15 | 8.68 | 3.92 | 0.00 | 90.84 | −16.69 |
Landscape Indices | 2000–2010 | 2010–2020 | 2000–2020 |
---|---|---|---|
NP | 5.65 | −17.60 | −12.95 |
PD | 5.29 | −17.53 | −13.17 |
LPI | −0.96 | −5.21 | −6.12 |
TE | 0.01 | −3.55 | −3.55 |
ED | −0.34 | −3.47 | −3.80 |
LSI | −0.20 | −3.28 | −3.47 |
PAFRAC | −0.67 | 1.84 | 1.17 |
CONTAG | −1.88 | −0.41 | −2.28 |
DIVISION | 0.05 | 0.40 | 0.45 |
SPLIT | 1.10 | 9.19 | 10.39 |
SHDI | 3.51 | 1.15 | 4.70 |
SHEI | 3.51 | 1.15 | 4.70 |
AI | 0.01 | 0.12 | 0.13 |
References
- Sahle, M.; Saito, O.; Fürst, C.; Yeshitela, K. Quantifying and mapping of water-related ecosystem services for enhancing the security of the food-water-energy nexus in tropical data–sparse catchment. Sci. Total Environ. 2019, 646, 573–586. [Google Scholar] [CrossRef] [PubMed]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, H.M.; Zhang, J.X.; Liu, G.; Fang, Z.; Wang, D.D. Exploring interactions in water-related ecosystem services nexus in Loess Plateau. J. Environ. Manag. 2023, 336, 117550. [Google Scholar] [CrossRef] [PubMed]
- Plieninger, T.; Thapa, P.; Bhaskar, D.; Nagendra, H.; Torralba, M.; Zoderer, B.M. Disentangling ecosystem services perceptions from blue infrastructure around a rapidly expanding megacity. Landsc. Urban Plan. 2022, 222, 104399. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Fu, H.; Gaüzère, P.; Molinos, J.G.; Zhang, P.; Zhang, H.; Zhang, M.; Niu, Y.; Yu, H.; Brown, L.E.; Xu, J. Mitigation of urbanization effects on aquatic ecosystems by synchronous ecological restoration. Water Res. 2021, 204, 117587. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a pen-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef]
- Muhammad, R.; Zhang, W.Y.; Abbas, Z.; Guo, F.; Gwiazdzinski, L. Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land 2022, 11, 419. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Ren, L.; Lü, H.; Zhao, W.; Yuan, F.; Xu, M. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: Problems and strategies. Ecol. Eng. 2016, 94, 629–637. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y.; Piao, S.; Zhao, F.; Engels, M.; Ciais, P. Disappearing lakes in semiarid Northern China: Drivers and environmental impact. Environ. Sci. Technol. 2013, 47, 12107–12114. [Google Scholar] [CrossRef]
- Ren, L.; Song, S.; Zhou, Y. Evaluation of river ecological status in the plain river network area in the context of urbanization: A case study of 21 Rivers’ ecological status in Jiangsu Province, China. Ecol. Indic. 2022, 142, 109172. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Yu, H.; Kung, H. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Mitchell, M.G.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, L.; Bai, X. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol. Indic. 2018, 93, 111–122. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, S.; Gong, J.-W.; Chu, L.; Wang, L.-J. A coupling effect of landscape patterns on the spatial and temporal distribution of water ecosystem services: A case study in the Jianghuai ecological economic zone, China. Ecol. Indic. 2023, 151, 110299. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.C.; Guo, J.; Zhang, M.; Xing, X.Y.; Yang, D.; Xu, B.; Jiang, L.W. Dynamic of land use, landscape, and their impact on ecological quality in the northern sand-prevention belt of China. J. Environ. Manag. 2022, 317, 115351. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Gou, A. Research on the evolution characteristics, driving mechanisms and multi-scenario simulation of habitat quality in the Guangdong-Hong Kong-Macao Greater Bay based on multi-model coupling. Sci. Total Environ. 2024, 924, 171263. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The impact of multi-scenario land use change on the water conservation in central Yunnan urban agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T.; Forkuo, E.K.; Harris, E.; Agyekum, J.; Terlabie, J.L. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena 2019, 182, 104129. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Gao, L.A.; Tao, F.; Liu, R.R.; Wang, Z.L.; Leng, H.J.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Ma, Y.; Bai, X.; Huang, L.; Cheng, S.; Yang, H.; Guo, W. Spatiotemporal dislocation of ecosystem supply and demand services from habitat quality under different development scenarios. Ecol. Indic. 2023, 157, 111230. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area. Environ. Plan. B Plan Des. 1997, 24, 247–261. [Google Scholar] [CrossRef]
- Ma, J.J.; Mei, Z.X.; Wang, X.Y.; Li, S.C.; Liang, J.S. Ecological Security Pattern Construction and Multi-Scenario Risk Early Warning (2020–2035) in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Land 2024, 13, 1267. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, F.; Johnson, V.C.; Duan, P.; Kung, H.-T. Spatio-temporal variation of oasis landscape pattern in arid area: Human or natural driving? Ecol. Indic. 2021, 125, 107495. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S.; Feng, D.; Cao, E. Dynamic changes in landscape pattern in a large-scale opencast coal mine area from 1986 to 2015: A complex network approach. Catena 2020, 194, 104738. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 205–216. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, X.; Ma, J.; Xu, S. Scale effects on the relationships of water-related ecosystem services in Guangdong Province, China. J. Hydrol. Reg. Stud. 2022, 44, 101278. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Ji, J.; Ji, Z.; Kassaye, A.Y.; Lai, S.; Yang, Y. Ecosystem services dynamics and their influencing factors: Synergies/tradeoffs interactions and implications, the case of upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2024, 938, 173524. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bao, Y.; Wang, Z.T.; Chen, X.T.; Lin, X. Trade-offs and synergies of ecosystem services in karst multi-mountainous cities. Ecol. Indic. 2024, 159, 111637. [Google Scholar] [CrossRef]
- Börjesson, P.; Tufvesson, L.M. Agricultural crop-based biofuels—Resource efficiency and environmental performance including direct land use changes. J. Clean. Prod. 2011, 19, 108–120. [Google Scholar] [CrossRef]
- Hu, W.M.; Li, G.; Gao, Z.H.; Jia, G.Y.; Wang, Z.C.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.C.; Xu, Q.L.; Yi, J.H.; Jin, L.J. Study on the threshold relationship between landscape pattern and water quality considering spatial scale effect-a case study of Dianchi Lake Basin in China. Environ. Sci. Pollut. Res. 2022, 29, 44103–44118. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, J.; Xu, Z.; Wang, X.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef]
- Wang, Z.M.; Mao, D.H.; Li, L.; Jia, M.M.; Dong, Z.Y.; Miao, Z.H.; Ren, C.Y.; Song, C.C. Quantifying changes in multiple ecosystem services during 1992–2012 in the Sanjiang Plain of China. Sci. Total Environ. 2015, 514, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed]
- Harmácková, Z.V.; Vackár, D. Modelling regulating ecosystem services trade-offs across landscape scenarios in Trebonsko Wetlands Biosphere Reserve, Czech Republic. Ecol. Model. 2015, 295, 207–215. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wei, X.H.; Chen, X.Z.; Zhou, P.; Liu, X.D.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.Y.D.; Han, L.S.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Lyu, R.F.; Zhao, W.P.; Tian, X.L.; Zhang, J.M. Non-linearity impacts of landscape pattern on ecosystem services and their trade-offs: A case study in the City Belt along the Yellow River in Ningxia, China. Ecol. Indic. 2022, 136, 108608. [Google Scholar] [CrossRef]
- Lou, Y.Y.; Yang, D.; Zhang, P.Y.; Zhang, Y.; Song, M.L.; Huang, Y.C.; Jing, W.L. Multi-Scenario Simulation of Land Use Changes with Ecosystem Service Value in the Yellow River Basin. Land 2022, 11, 992. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.J.; Wu, D.F.; Yang, H. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.M. Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective. Land Use Policy 2022, 119, 106219. [Google Scholar] [CrossRef]
- Yu, P.H.; Fennell, S.; Chen, Y.Y.; Liu, H.; Xu, L.; Pan, J.W.; Bai, S.Y.; Gu, S.X. Positive impacts of farmland fragmentation on agricultural production efficiency in Qilu Lake watershed: Implications for appropriate scale management. Land Use Policy 2022, 117, 106108. [Google Scholar] [CrossRef]
- Labib, S.M.; Lindley, S.; Huck, J.J. Spatial dimensions of the influence of urban green-blue spaces on human health: A systematic review. Environ. Res. 2020, 180, 108869. [Google Scholar] [CrossRef] [PubMed]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Wang, R.S.; Zhou, T.; Hu, D.; Li, F.; Liu, J.R. Cultivating eco-sustainability: Social-economic-natural complex ecosystem case studies in China. Ecol. Complex. 2011, 8, 273–283. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Li, D.Z.; Feng, H.B.; Zhang, N. The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecol. Indic. 2023, 147, 109959. [Google Scholar] [CrossRef]
- Wang, R.S.; Li, F.; Hu, D.; Li, B.L. Understanding eco-complexity: Social-Economic-Natural Complex Ecosystem approach. Ecol. Complex. 2011, 8, 15–29. [Google Scholar] [CrossRef]
Data Type | Data Name | Resolution | Data Source |
---|---|---|---|
natural data | land use | 1000 m | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences |
soil type | 1000 m | ||
precipitation | 1000 m | WorldClimv2.1 | |
temperature | 1000 m | ||
evapotranspiration | 1000 m | National Tibetan Plateau Scientific Data Center | |
DEM | 30 m | Geospatial data cloud | |
socio-economic data | population | 1000 m | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences |
GDP | 1000 m | ||
distance to primary, secondary and tertiary roads | 30 m | National Center for Basic Geographic Information | |
distance to the highway | |||
distance to the building | |||
distance to the railroad | |||
distance to the river |
Type | Landscape Indices |
---|---|
Area-edge | Edge density (ED) |
Largest patch index (LPI) | |
Total edge (TE) | |
Shape | Perimeter-area fractal represents dimension (PAFRAC) |
Aggregation | Aggregation index (AI) |
Contagion index (CONTAG) | |
Landscape shape index (LSI) | |
Subdivision | Number of patches (NP) |
Patch density (PD) | |
Splitting Index (SPLIT) | |
Landscape division index (DIVISION) | |
Diversity | Shannon’s diversity index (SHDI) |
Shannon’s evenness index (SHEI) |
Year | 2000 | 2010 | 2020 | |
---|---|---|---|---|
Land Use Types | ||||
Cropland | 14,439.94 | 12,632.43 | 12,092.92 | |
Forest | 30,607.81 | 30,021.74 | 29,674.57 | |
Grassland | 1221.88 | 1096.62 | 1182.57 | |
Water | 4384.05 | 4057.09 | 4012.72 | |
Urban | 4456.31 | 7314.19 | 8308.04 | |
Unused land | 23.43 | 11.36 | 6.54 |
Land Use Type | Year | NP | PD | LPI | TE | ED | LSI | PAFRAC | DIVISION | SPLIT | AI |
---|---|---|---|---|---|---|---|---|---|---|---|
Forest | 2000–2010 | 15.94 | 15.55 | −0.96 | −1.03 | −1.37 | −0.23 | −1.49 | 0.06 | 1.57 | −0.01 |
2010–2020 | −19.64 | −19.57 | −5.21 | −1.44 | −1.36 | −0.63 | 2.28 | 0.38 | 9.44 | 0.00 | |
Cropland | 2000–2010 | 22.69 | 22.34 | −24.68 | −5.01 | −5.34 | 1.48 | −0.73 | 0.06 | 87.96 | −0.43 |
2010–2020 | −18.24 | −18.18 | −33.61 | −5.03 | −4.95 | −2.95 | 2.86 | 0.03 | 57.96 | 0.04 | |
Grassland | 2000–2010 | 4.53 | 4.10 | −0.81 | −5.32 | −5.65 | −0.27 | −0.74 | 0.00 | 27.81 | −0.46 |
2010–2020 | −4.80 | −4.72 | 0.41 | 4.92 | 5.01 | 1.24 | 0.63 | 0.00 | −14.60 | 0.22 | |
Urban | 2000–2010 | −8.54 | −8.85 | 503.5 | 20.98 | 20.57 | −6.04 | 0.29 | −0.12 | −94.23 | 1.63 |
2010–2020 | −17.82 | −17.77 | −12.85 | −10.49 | −10.41 | −14.98 | −2.38 | 0.02 | 18.66 | 0.87 | |
Water | 2000–2010 | 3.81 | 3.48 | −12.76 | −2.27 | −2.60 | 0.80 | 0.23 | 0.04 | 31.17 | −0.24 |
2010–2020 | −20.70 | −20.67 | 10.12 | 0.69 | 0.78 | 1.79 | 2.49 | −0.02 | −17.41 | −0.22 | |
Other | 2000–2010 | −10.77 | −16.67 | −50.00 | −36.24 | −36.58 | −4.57 | −2.31 | 0.00 | 310.52 | −2.43 |
2010–2020 | −24.14 | −20.00 | −81.82 | −19.92 | −19.50 | 0.71 | 6.33 | 0.00 | 516.25 | −3.44 |
Landscape Indices | EDS | EPS | NDS | ||||||
---|---|---|---|---|---|---|---|---|---|
2030–2040 | 2040–2050 | 2030–2050 | 2030–2040 | 2040–2050 | 2030–2050 | 2030–2040 | 2040–2050 | 2030–2050 | |
NP | 17.32 | 8.24 | 26.99 | 13.52 | 5.03 | 19.23 | 61.43 | 9.78 | 77.22 |
PD | 17.32 | 8.24 | 26.99 | 13.52 | 5.03 | 19.23 | 61.43 | 9.78 | 77.22 |
LPI | −0.55 | −0.83 | −1.38 | 1.22 | 0.76 | 1.98 | 0.79 | 5.35 | 6.18 |
TE | 8.70 | 7.92 | 17.31 | 4.56 | 0.08 | 4.64 | 45.94 | 8.04 | 57.68 |
ED | 8.70 | 7.92 | 17.31 | 4.56 | 0.08 | 4.64 | 45.94 | 8.04 | 57.68 |
LSI | 8.53 | 7.78 | 16.98 | 4.45 | 0.07 | 4.53 | 45.17 | 7.95 | 56.71 |
PAFRAC | 1.63 | 1.38 | 3.03 | 1.03 | 0.21 | 1.25 | 5.77 | 0.94 | 6.76 |
CONTAG | −0.75 | −0.90 | −1.64 | −0.03 | 0.25 | 0.22 | −6.26 | −1.37 | −7.55 |
DIVISION | −0.10 | 0.01 | −0.09 | −0.24 | −1.75 | −1.99 | −0.35 | −0.54 | −0.88 |
SPLIT | −2.37 | 0.27 | −2.10 | −3.99 | −22.33 | −25.43 | −6.84 | −9.74 | −15.91 |
SHDI | −0.25 | −0.33 | −0.58 | −0.63 | −0.42 | −1.04 | −0.24 | −0.25 | −0.49 |
SHEI | −0.26 | −0.32 | −0.58 | −0.63 | −0.42 | −1.05 | −0.25 | −0.25 | −0.50 |
AI | −0.73 | −0.73 | −1.46 | −0.32 | −0.01 | −0.32 | −4.52 | −1.21 | −5.67 |
WESs | 2000 | 2010 | 2020 | 2050 (NDS) | 2050 (EDS) | 2050 (EPS) |
---|---|---|---|---|---|---|
WY(×108 m3) | 529.4 | 606.9 | 530.5 | 579.8 | 584.5 | 541.9 |
WN(t) | 27,939.05 | 27,011.02 | 26,942.56 | 24,250.72 | 25,563.06 | 21,541.79 |
WP(t) | 2200.42 | 2280.44 | 2350.38 | 2390.39 | 2537.63 | 1920.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Guo, J.; Zhu, H. Assessing the Interaction Impacts of Multi-Scenario Land Use and Landscape Pattern on Water Ecosystem Services in the Greater Bay Area by Multi-Model Coupling. Land 2024, 13, 1927. https://doi.org/10.3390/land13111927
Jin Y, Guo J, Zhu H. Assessing the Interaction Impacts of Multi-Scenario Land Use and Landscape Pattern on Water Ecosystem Services in the Greater Bay Area by Multi-Model Coupling. Land. 2024; 13(11):1927. https://doi.org/10.3390/land13111927
Chicago/Turabian StyleJin, Yuhao, Jiajun Guo, and Hengkang Zhu. 2024. "Assessing the Interaction Impacts of Multi-Scenario Land Use and Landscape Pattern on Water Ecosystem Services in the Greater Bay Area by Multi-Model Coupling" Land 13, no. 11: 1927. https://doi.org/10.3390/land13111927
APA StyleJin, Y., Guo, J., & Zhu, H. (2024). Assessing the Interaction Impacts of Multi-Scenario Land Use and Landscape Pattern on Water Ecosystem Services in the Greater Bay Area by Multi-Model Coupling. Land, 13(11), 1927. https://doi.org/10.3390/land13111927