Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Sources and Soil Sample Data
2.3. Workflow
2.4. Feature Extraction
2.5. Soil Salinization Mapping and Classification Methods
2.5.1. Soil Salinity Classification Criteria and Classification Systems
2.5.2. Support Vector Machine (SVM)
2.5.3. Classification and Regression Tree (CART)
2.5.4. Classification Accuracy Assessment
2.6. Land-Use Transfer Matrix
2.7. Geographical Detector
3. Result
3.1. Mapping of Soil Salinization
3.1.1. Classification Accuracy Evaluation
3.1.2. Classification Comparison
3.2. Spatiotemporal Distribution Characteristics of Soil Salinization
3.3. Spatiotemporal Transfer Analysis of Soil Salinization
3.4. The Dominant Factors in the Process of Salinization Evolution
3.4.1. Single Factors
3.4.2. Dominant Interactive Factor
4. Discussion
4.1. Dominant Factors in the Spatiotemporal Evolution of Modern Yutian Oasis Soil Salinization
4.2. Limitations and Prospects
5. Conclusions
- (1)
- The classification accuracy of the CART model was significantly higher than that of the SVM model, with an average improvement of 5.3%. The CART model exhibited superior detail-capturing ability in complex salinized regions, particularly in distinguishing between highly salinized soil and bare land. It was able to utilize spectral features to better reflect the actual salinization conditions, whereas the SVM model performed poorly in these areas. This finding supports the applicability of using the CART model for spatiotemporal dynamic monitoring of soil salinization.
- (2)
- From 2001 to 2021, the area affected by soil salinization decreased by 26.76%, from 825.97 km2 to 604.97 km2, with significant improvements, particularly in heavily salinized areas. The alleviation of secondary salinization was mainly concentrated in the cultivated lands within the oasis, while the expansion of cultivated land at the oasis periphery also significantly reduced the spread of salinization. This improvement was attributed to the promotion of modern agricultural irrigation technologies and the enhancement of land use efficiency.
- (3)
- The results of the Geo Detector analysis indicated that NDVI (Normalized Difference Vegetation Index) was the primary factor influencing soil salinization dynamics, with the highest q-value reaching 0.53. Additionally, factors such as NDWI (Normalized Difference Water Index) and CSI (Comprehensive Salinity Index) also significantly impacted the spatial distribution of salinization. Interaction analysis showed that the interaction between NDVI and NDWI explained the major drivers of spatiotemporal changes in salinization, indicating that vegetation cover and soil moisture jointly determine the dynamic evolution of soil salinization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Deng, C.; Liu, Y.; Niu, Z.; Li, Y. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. Sci. Total Environ. 2018, 621, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Song, C.; Ren, H.; Huang, C. Estimating Soil Salinity in the Yellow River Delta, Eastern China-An Integrated Approach Using Spectral and Terrain Indices with the Generalized Additive Model. Pedosphere 2016, 26, 626–635. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhao, G.X.; Li, Y.H.; Wang, D.Y.; Ma, Y. Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data. Nat. Hazards Earth Syst. Sci. 2019, 19, 1499–1508. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth 2013, 55–57, 43–52. [Google Scholar] [CrossRef]
- Ahmed, Z.; Iqbal, J. Evaluation of Landsat TM5 Multispectral Data for Automated Mapping of Surface Soil Texture and Organic Matter in GIS. Eur. J. Remote Sens. 2014, 47, 557–573. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Yu, X.Y.; Xin, P.; Hong, L. Effect of evaporation on soil salinization caused by ocean surge inundation. J. Hydrol. 2021, 597, 126200. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Xu, Y.; Wang, X.H. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, Eastern China. J. Soils Sediments 2019, 19, 3699–3707. [Google Scholar] [CrossRef]
- Dong, F.; Tang, Y.J.; Xing, X.R.; Liu, Z.H.; Xing, L.T. Formation and Evolution of Soil Salinization in Shouguang City Based on PMS and OLI/TM Sensors. Water 2019, 11, 345. [Google Scholar] [CrossRef]
- Mu, Q.; Shengbin, Z.; Lei, L.U.; Junjie, Y.A.N.; Heping, L.I. Temporal and spatial changes of soil salinization and improved countermeasures of Tarim Basin Irrigation District in recent 25 a. Arid Land Geogr. 2011, 34, 604–613. [Google Scholar]
- Zhang, Z.M.; Fan, Y.G.; Zhang, A.Z.; Jiao, Z.J. Baseline-Based Soil Salinity Index (BSSI): A Novel Remote Sensing Monitoring Method of Soil Salinization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 202–214. [Google Scholar] [CrossRef]
- Ma, Y.X.; Tashpolat, N. Remote Sensing Monitoring of Soil Salinity in Weigan River-Kuqa River Delta Oasis Based on Two-Dimensional Feature Space. Water 2023, 15, 1694. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Vermeulen, D.; Van Niekerk, A. Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma 2017, 299, 1–12. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Yang, W.; Yang, X.; Ding, J. Comparison of machine learning algorithms for soil salinity predictions in three dryland oases located in Xinjiang Uyghur Autonomous Region (XJUAR) of China. Eur. J. Remote Sens. 2019, 52, 256–276. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Salem, O.H.; Jia, Z. Evaluation of Different Soil Salinity Indices Using Remote Sensing Techniques in Siwa Oasis, Egypt. Agronomy 2024, 14, 723. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Z.; Li, X.; Yan, X. Assessment of dynamic evolution on soil salinization of an oasis in Turkmenistan of Central Asia. Arid Land Geogr. 2013, 36, 571–578. [Google Scholar]
- Rukhovich, D.I.; Pankova, E.I.; Chernousenko, G.I.; Koroleva, P.V. Long-term salinization dynamics in irrigated soils of the Golodnaya Steppe and methods of their assessment on the basis of remote sensing data. Eurasian Soil Sci. 2010, 43, 682–692. [Google Scholar] [CrossRef]
- Stasyuk, N.V. Temporal dynamics of soil cover salinization in the Terek delta. Russ. J. Ecol. 2001, 32, 22–28. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, G.X.; Li, T.; Zhou, X.; Li, J.M. Soil salinization of cultivated land in Shandong Province, China-Dynamics during the past 40 years. Land Degrad. Dev. 2019, 30, 426–436. [Google Scholar] [CrossRef]
- Tran, T.V.; Tran, D.X.; Myint, S.W.; Huang, C.-y.; Pham, H.V.; Luu, T.H.; Vo, T.M.T. Examining spatiotemporal salinity dynamics in the Mekong River Delta using Landsat time series imagery and a spatial regression approach. Sci. Total Environ. 2019, 687, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, M.T.; Zhou, J.X. Assessment of Soil Salinity Risk on the Agricultural Area in Basrah Province, Iraq: Using Remote Sensing and GIS Techniques. J. Earth Sci. 2012, 23, 881–891. [Google Scholar] [CrossRef]
- Howari, F.M.; Goodell, P.C.; Miyamoto, S. Spectral properties of salt crusts formed on saline soils. J. Environ. Qual. 2002, 31, 1453–1461. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Y.F.; Fan, J.F.; Lu, M.; Zang, W.Q.; Liu, C.; Wang, B.Y.; Huang, X.Z.; Lai, J.B.; Wu, H.W. The salinization process and its response to the combined processes of climate change-human activity in the Yellow River Delta between 1984 and 2022. Catena 2023, 231, 107301. [Google Scholar] [CrossRef]
- Song, Y.; Gao, M.; Wang, Z.; Gong, T.; Chen, W. Spatio-Temporal Variability Characteristics of Coastal Soil Salinization and Its Driving Factors Detection. Water 2022, 14, 3326. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, J.; Luo, J.; Dou, H.; Zhang, Y. Analyzing Driving Factors of Soil Alkalinization Based on Geodetector-A Case in Northeast China. Sustainability 2023, 15, 1538. [Google Scholar] [CrossRef]
- Duan, Y.; Ma, L.; Abuduwaili, J.; Liu, W.; Saparov, G.; Smanov, Z. Driving Factor Identification for the Spatial Distribution of Soil Salinity in the Irrigation Area of the Syr Darya River, Kazakhstan. Agronomy 2022, 12, 1912. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, X.; Li, Y.; Wang, B.; Sun, Y.; Cui, G.; Liang, Z. Analysis of spatial-temporal variation of the saline-sodic soil in the west of Jilin Province from 1989 to 2019 and influencing factors. Catena 2022, 217, 106492. [Google Scholar] [CrossRef]
- Ilyas, N.; Shi, Q.; Abdulla, A.; Xia, N.; Wang, J. Quantitative evaluation of soil salinization risk in Keriya Oasis based on grey evaluation model. Trans. Chin. Soc. Agric. Eng. 2019, 35, 176–184. [Google Scholar]
- Du, M.; Li, L.; Luo, G.; Dong, K.; Shi, Q. Effects of Climate and Land Use Change on Agricultural Water Consumption in Yutian Oasis. Bull. Soil Water Conserv. 2020, 40, 103–109. [Google Scholar]
- Zaytungul, Y.; Mamat, S.; Abdusalam, A.; Zhang, D. Soil salinity inversion in Yutian Oasis based on PALSAR radar data. Resour. Sci. 2018, 40, 2110–2117. [Google Scholar]
- Zhu, C.M.; Ding, J.L.; Zhang, Z.P.; Wang, J.J.; Chen, X.Y.; Han, L.J.; Shi, H.B.; Wang, J.Z. Soil salinity dynamics in arid oases during irrigated and non-irrigated seasons. Land Degrad. Dev. 2023, 34, 3823–3835. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity; Modeling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2007. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publications: Washington, DC, USA, 1974. [Google Scholar]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land using Simulated Data of Advanced Land Imaging (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; pp. 3014–3016. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. In Proceedings of the Earth Observing Systems X, San Diego, CA, USA, 31 July–4 August 2005; pp. 136–142. [Google Scholar]
- Becker, F.; Li, Z.-L. Temperature-independent spectral indices in thermal infrared bands. Remote Sens. Environ. 1990, 32, 17–33. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM plus canopy reflectance. Remote Sens. Environ. 2015, 169, 335–343. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H. Advance in Wetland Classification and Wetland Landscape Classification Researches. Wetl. Sci. 2014, 12, 102–108. [Google Scholar]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Wang, X.; Peng, K. Refined wetland classification of international wetland cities based on the random forest algorithm and knowledge-driven rules:A case study of Changde city, China. Natl. Remote Sens. Bull. 2023, 27, 1426–1440. [Google Scholar]
- Jia, T.; Hu, X. Spatiotemporal Dynamic Evolution Characteristics of Land Use in China’s Two Screens and Three Belts’Ecological Barrier Areas from 1985 to 2020. Res. Soil Water Conserv. 2024, 31, 348–363. [Google Scholar]
- He-ping, L.I.; Chang-yan, T.; Mu, Q.; Shi-xin, W.U. On remote sensing data interpretation key and index of saline soil of arable land in Xinjiang. Agric. Res. Arid Areas 2009, 27, 218–222. [Google Scholar]
- Mamat, Z.; Yimit, H.; Lv, Y. Spatial Distributing Pattern of Salinized Soils and their Salinity in Typical Area of Yutian Oasis. J. Soil Sci. 2013, 44, 1314–1320. [Google Scholar]
- Zhao, J.; Nurmemet, I.; Muhetaer, N.; Xiao, S.; Abulaiti, A. Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data. Sustainability 2023, 15, 7452. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, P.Y.; Qian, H.; Fang, Y. Assessment of soil salinization based on a low-cost method and its influencing factors in a semi-arid agricultural area, northwest China. Environ. Earth Sci. 2014, 71, 3465–3475. [Google Scholar] [CrossRef]
- Xiao, S.; Ilyas, N.; Nuerbiye, M.; Zhao, J.; Adilai, A. Spatial and temporal analysis of soil salinity in Yutian Oasis by combined optical and radar multi-source remote sensing. Arid Zone Res. 2023, 40, 59–68. [Google Scholar]
- Yang, J.S.; Yao, R.J. Spatial Variability of Soil Water and Salt Characteristics in the Yellow River Delta. Sci. Geogr. Sin. 2007, 27, 348–353. [Google Scholar]
- Yuan, Y.-y.; Halik, W.; Guan, J.-y.; Lu, L.-h.; Zhang, Q.-q. Spatial differentiation and impact factors of Yutian Oasis’ s soil surface salt based on GWR model. Chin. J. Appl. Ecol. 2016, 27, 3273–3282. [Google Scholar] [CrossRef]
- Zhuang, Q.W.; Shao, Z.F.; Huang, X.; Zhang, Y.; Wu, W.F.; Feng, X.X.; Lv, X.W.; Ding, Q.; Cai, B.W.; Altan, O. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Xu, J.; Shen, Y.; Xing, X.; Xie, T.; Li, Z.; Yang, L.; Xi, H.; Zhu, C.; et al. Changes and Protection Suggestions in Water Resources and Ecological Environment in Arid Region of Northwest China. Bull. Chin. Acad. Sci. 2023, 38, 385–393. [Google Scholar]
- Jiang, F.-q.; Yu, Z.-y.; Zeng, D.-h.; Zhu, J.-j. The Three-North Shelter Forest Program needs ecological civilization. Chin. J. Ecol. 2009, 28, 1673–1678. [Google Scholar]
- Guo, X.; Chang, Q.; Liu, X.; Bao, H.; Zhang, Y.; Tu, X.; Zhu, C.; Lv, C.; Zhang, Y. Multi-dimensional eco-land classification and management for implementing the ecological redline policy in China. Land Use Policy 2018, 74, 15–31. [Google Scholar] [CrossRef]
- Tengberg, A.; Radstake, F.; Zhang, K.; Dunn, B. Scaling up of Sustainable Land Management in the Western People’s Republic of China: Evaluation of a 10-Year Partnership. Land Degrad. Dev. 2016, 27, 134–144. [Google Scholar] [CrossRef]
- Abulaiti, A.; Nurmemet, I.; Muhetaer, N.; Xiao, S.; Zhao, J. Monitoring of Soil Salinization in the Keriya Oasis Based on Deep Learning with PALSAR-2 and Landsat-8 Datasets. Sustainability 2022, 14, 2666. [Google Scholar] [CrossRef]
- Du, B.; Cheng, Y.; Wu, L. Analysis of negative correlation between vegetation and soil salinization in Junggar Basin. Acta Ecol. Sin. 2021, 41, 9364–9376. [Google Scholar]
- Yang, H.; Chen, Y.; Zhang, F. Evaluation of comprehensive improvement for mild and moderate soil salinization in arid zone. PLoS ONE 2019, 14, e0224790. [Google Scholar] [CrossRef]
- Liang, Z.W.; Zou, T.; Liu, X.C.; Liu, G.Y.; Liu, Z. Collaborative operation and application influence of sprinkler drip irrigation: A systematic progress review. Int. J. Agric. Biol. Eng. 2023, 16, 12–27. [Google Scholar] [CrossRef]
- Incrocci, L.; Malorgio, F.; Della Bartola, A.; Pardossi, A. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Sci. Hortic. 2006, 107, 365–372. [Google Scholar] [CrossRef]
- Ma, G.; Qu, Z.; Wang, L.; Jia, Y.; Liu, Z. Spatial variation characteristics of soil salinity and organic matter in typical demonstration area of Hetao irrigation area. Soil Fertil. Sci. China 2022, 17–28. [Google Scholar] [CrossRef]
- Su, Y.; Li, T.X.; Cheng, S.K.; Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. 2020, 156, 105961. [Google Scholar] [CrossRef]
- Akter, F.; Bishop, T.F.A.; Vervoort, W. Space-time modelling of groundwater level and salinity. Sci. Total Environ. 2021, 776, 145865. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liao, T.K.; Wang, Y.; Qian, X.M.; Liu, X.C.; Li, C.M.; Li, S.W.; Guan, Z.L.; Zhu, L.J.; Zhou, X.Y.; et al. Fine-grained wetland classification for national wetland reserves using multi-source remote sensing data and Pixel Information Expert Engine (PIE-Engine). Giscience Remote Sens. 2023, 60, 2286746. [Google Scholar] [CrossRef]
- Chen, Y.F.; Niu, Z.G.; Johnston, C.A.; Hu, S.J. A Unifying Approach to Classifying Wetlands in the Ontonagon River Basin, Michigan, Using Multi-temporal Landsat-8 OLI Imagery. Can. J. Remote Sens. 2018, 44, 373–389. [Google Scholar] [CrossRef]
- He, Y.J.; Yin, H.Y.; Chen, Y.W.; Xiang, R.; Zhang, Z.T.; Chen, H.Y. Soil Salinity Estimation Based on Sentinel-1/2 Texture Features and Machine Learning. IEEE Sens. J. 2024, 24, 15302–15310. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Rudra, R.R.; Sohan, A.R.; Das, P.C.; Ekram, K.M.M.; Talukdar, S.; Rahman, A.; Alam, E.; Islam, M.K.; Islam, A. Coupling of machine learning and remote sensing for soil salinity mapping in coastal area of Bangladesh. Sci. Rep. 2023, 13, 17056. [Google Scholar] [CrossRef]
- Wu, W.C.; Zucca, C.; Muhaimeed, A.S.; Al-Shafie, W.M.; Al-Quraishi, A.M.F.; Nangia, V.; Zhu, M.Q.; Liu, G.P. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad. Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- Li, K.; Ding, J.; Han, L.; Ge, X.; Gu, Y.; Zhou, Q.; Lyu, Y. Digital mapping of soil salinization in a typical oasis based on PlanetScope images. Arid Land Geogr. 2023, 46, 1291–1302. [Google Scholar]
- Tan, J.; Ding, J.; Han, L.; Ge, X.; Wang, X.; Wang, J.; Wang, R.; Qin, S.; Zhang, Z.; Li, Y. Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases. Remote Sens. 2023, 15, 1066. [Google Scholar] [CrossRef]
- Xiao, S.T.; Nurmemet, I.; Zhao, J. Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China. Plant Soil 2024, 498, 451–469. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.E.; Badreldin, N. Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions. Remote Sens. 2023, 15, 1751. [Google Scholar] [CrossRef]
- Yang, L.; Ren, J.; Wang, Y.; Zhang, J.; Wang, T.; Li, K. Soil Salinity Estimation Model in Juyanze Based on Multi-source Remote Sensing Data. Trans. Chin. Soc. Agric. Mach. 2022, 53, 226–235. [Google Scholar]
- Jiang, Z.; Hao, Z.; Ding, J.; Miao, Z.; Zhang, Y.; Alimu, A.; Jin, X.; Cheng, H.; Ma, W. Weighted Variable Optimization-Based Method for Estimating Soil Salinity Using Multi-Source Remote Sensing Data: A Case Study in the Weiku Oasis, Xinjiang, China. Remote Sens. 2024, 16, 3145. [Google Scholar] [CrossRef]
Image Collection | Time | Resolution |
---|---|---|
Landsat7 ETM+ | 30 June 2001 | 30 m |
Landsat5 TM | 22 July 2006 | |
Landsat 5 TM | 5 August 2011 | |
Landsat8 OLI | 15 June 2016 | |
Landsat8 OLI | 15 July 2021 |
Index | Calculation Methods | Reference |
---|---|---|
Spectral features for classification | ||
Normalized Difference Vegetation Index NDVI | [40] | |
Normalized Difference Water Index NDWI | [41] | |
Salinity Index 1 S1 | [39] | |
Salinity Index 2 S2 | [39] | |
Salinity Index SI2 | [42] | |
Driving factor | ||
Salinity Index SI-T | [43] | |
Salinity Index SI1 | [42] | |
Normalized Difference Salinity Index NDSI | [44] | |
Comprehensive Salinity Index CSI | ||
Land Surface Temperature LST | ||
[45] | ||
[46] | ||
[47] | ||
as Radiance, Calculable via the USGS Website. | ||
Albedo | [48] | |
Desertification Difference Index DDI | a is the intercept of the linear fit of NDVI and Albedo | [49] |
Temperature Vegetation Drought Index TVDI | is the minimum surface temperature for a specific NDVI value, representing the “wet edge” | [50] |
Annotation | correspond to the blue, green, red, near-infrared 1, near-infrared 2, and thermal infrared bands of the Landsat satellite. |
Ec (dS/m) | Classification | Surface Feature Characterization | Landscape |
---|---|---|---|
Non- salinization | Water body | Salt lakes, rivers, reservoirs, wetlands | |
Bare land, desert, and building | Desert, bare land, buildings, wasteland, gobi | ||
Vegetation | High vegetation coverage, farmland, orchard inter-planting | ||
2–4 | Low salinization | Growing degraded plants, low shrubs, and drought-tolerant vegetation, 10–20% vegetation coverage, salt crust not obvious | |
4–8 | Moderately salinization | Mixed white spots, 5–10% vegetation coverage, brownish-white banding, thin salt crust visible | |
>8 | Highly salinization | 0–5% vegetation coverage, white patches, clear salt spots, and salt crust |
Method | YEAR | CLASS | PA | UA | Method | YEAR | CLASS | PA | US |
---|---|---|---|---|---|---|---|---|---|
CART | 2001 | BB | 94.33 | 97.4 | SVM | 2001 | BB | 80.39 | 94.31 |
WB | 96.66 | 95.24 | WB | 91.62 | 90.53 | ||||
VG | 98.47 | 99.78 | VG | 80.01 | 61.43 | ||||
SS | 66.6 | 72.08 | SS | 37.31 | 72.12 | ||||
MS | 94.6 | 93.25 | MS | 65.03 | 56.5 | ||||
HS | 94.69 | 71.7 | HS | 85.42 | 66.24 | ||||
CART | 2006 | BB | 99.17 | 73.65 | SVM | 2006 | BB | 91.89 | 63.55 |
WB | 89.4 | 99.6 | WB | 96.83 | 94.77 | ||||
VG | 98.45 | 99.27 | VG | 96.97 | 98.67 | ||||
SS | 71.31 | 67.95 | SS | 61.18 | 91.36 | ||||
MS | 75.95 | 71.85 | MS | 88.19 | 72.01 | ||||
HS | 57.94 | 98.07 | HS | 35.61 | 93.18 | ||||
CART | 2011 | BB | 93.58 | 93.95 | SVM | 2011 | BB | 95.8 | 96.9 |
WB | 79.81 | 96 | WB | 76.52 | 94.31 | ||||
VG | 96.73 | 99.77 | VG | 91.27 | 86.1 | ||||
SS | 90.11 | 48.78 | SS | 96.15 | 66.52 | ||||
MS | 99.26 | 70.98 | MS | 51.87 | 92.19 | ||||
HS | 93.57 | 80.86 | HS | 98.6 | 74.78 | ||||
CART | 2016 | BB | 95.64 | 94.14 | SVM | 2016 | BB | 96 | 99.08 |
WB | 89.89 | 84.31 | WB | 88.59 | 92.51 | ||||
VG | 81.89 | 84.31 | VG | 89.95 | 97.47 | ||||
SS | 45.22 | 35.45 | SS | 44.52 | 50 | ||||
MS | 90.57 | 89.22 | MS | 86.87 | 89.12 | ||||
HS | 89.29 | 98.12 | HS | 99.16 | 78.28 | ||||
CART | 2021 | BB | 88.91 | 83.35 | SVM | 2021 | BB | 94.99 | 89.82 |
WB | 93.84 | 90.63 | WB | 83.09 | 92.79 | ||||
VG | 91.64 | 98.27 | VG | 99.1 | 95.55 | ||||
SS | 71.53 | 77.69 | SS | 53.59 | 43.53 | ||||
MS | 83.42 | 92.31 | MS | 84.08 | 84.16 | ||||
HS | 79.6 | 68.23 | HS | 88.51 | 91.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Nurmemet, I.; Seydehmet, J.; Lv, X.; Aili, Y.; Yu, X. Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China. Land 2024, 13, 1941. https://doi.org/10.3390/land13111941
Li S, Nurmemet I, Seydehmet J, Lv X, Aili Y, Yu X. Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China. Land. 2024; 13(11):1941. https://doi.org/10.3390/land13111941
Chicago/Turabian StyleLi, Shiqin, Ilyas Nurmemet, Jumeniyaz Seydehmet, Xiaobo Lv, Yilizhati Aili, and Xinru Yu. 2024. "Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China" Land 13, no. 11: 1941. https://doi.org/10.3390/land13111941
APA StyleLi, S., Nurmemet, I., Seydehmet, J., Lv, X., Aili, Y., & Yu, X. (2024). Spatiotemporal Dynamics and Driving Factors of Soil Salinization: A Case Study of the Yutian Oasis, Xinjiang, China. Land, 13(11), 1941. https://doi.org/10.3390/land13111941