Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China
Abstract
:1. Introduction
2. Methodology
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Research Methods
2.3.1. Spatial Expansion Characteristics of ISA
Expansion Dynamics Index
Moran’s Index Method
Hot Spot Analysis
2.3.2. Analysis of ISA Expansion Drivers
Geographically Weighted Random Forest Model
Selection of ISA Expansion Drivers
3. Results and Analysis
3.1. Quantitative Characteristics of ISA Expansion
3.1.1. Overall Characteristics
3.1.2. Analysis of Expansion Speed and Intensity
3.2. Analysis of Spatial Heterogeneity of ISAs
3.2.1. Spatial Pattern Characteristics
3.2.2. Spatial Characteristics of ISA Expansion
3.3. Analysis of Drivers of ISA Expansion
3.3.1. Overall Analysis of Drivers
3.3.2. Spatial Heterogeneity of Drivers
Ecological Environment
Physical Geography
Socio-Economic
Science and Education
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Zhang, Y.; Li, X.; Liu, H. Measuring urban spatial interaction in Wuhan Urban Agglomeration, Central China: A spatially explicit approach. Sustain. Cities Soc. 2017, 32, 569–583. [Google Scholar] [CrossRef]
- Touchaei, A.G.; Akbari, H.; Tessum, C.W. Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada)—Episodic simulation of heat wave in 2005. Atmos. Environ. 2016, 132, 188–206. [Google Scholar] [CrossRef]
- Morabito, M.; Kuehler, R.; Lopez, A. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Liu, Z.; Zhang, W. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Statistical Communiqué of the People’s Republic of China on the 2023 National Economic and Social Development; National Bureau of Statistics of China: Beijing, China, 2023.
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Xu, B. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [Google Scholar] [CrossRef]
- Yin, R.; Liu, Y.; Zhang, L.; Li, X. Automatic framework of mapping impervious surface growth with long-term Landsat imagery based on a temporal deep learning model. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 2020, 238, 110929. [Google Scholar] [CrossRef]
- Mahyoub, S.; Al-Muhtadi, J.; Al-Hadhrami, S. Impervious surface prediction in Marrakech city using artificial neural network. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 183–189. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, L. Mapping impervious surface areas using time-series nighttime light and MODIS imagery. Remote Sens. 2021, 13, 1900. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.W.; Warnemuende, E.; Smith, B. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z. Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Comput. Environ. Urban Syst. 2005, 29, 524–540. [Google Scholar] [CrossRef]
- Zhao, C.; Li, J.; Wang, X.; Zhang, Y. Analysis of changes in the spatiotemporal characteristics of impervious surfaces and their influencing factors in the Central Plains Urban Agglomeration of China from 2000 to 2018. Heliyon 2023, 9, e18849. [Google Scholar] [CrossRef]
- Jian, P.; Zhang, Y.; Yang, Y. Using impervious surfaces to detect urban expansion in Beijing of China in the 2000s. Chin. Geogr. Sci. 2016, 26, 229–243. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, L.; Chen, Y. Impervious surface expansion: A key indicator for environment and urban agglomeration—A case study of Guangdong-Hong Kong-Macao Greater Bay Area using Landsat data. J. Sens. 2020, 2020, 3896589. [Google Scholar] [CrossRef]
- Liu, Y.; Cakmak, S.; Peters, P. Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities. Environ. Pollut. 2020, 256, 113367. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, L.; Wang, J. A hierarchical multiscale super-pixel-based classification method for extracting urban impervious surfaces using deep residual networks from WorldView-2 and LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 210–222. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Wu, C.; Na, X. Spatial and temporal variation of the urban impervious surface and its driving forces in the central city of Harbin. J. Geogr. Sci. 2018, 28, 323–336. [Google Scholar] [CrossRef]
- Gao, C.; Li, X.; Wang, Y. 50-year urban expansion patterns in Shanghai: Analysis using impervious surface data and simulation models. Land 2023, 12, 2065. [Google Scholar] [CrossRef]
- Cao, X.; Li, Y.; Zhang, H. Expansion of urban impervious surfaces in Xining city based on GEE and Landsat time series data. IEEE Access 2020, 8, 147097–147111. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Chen, X.L.; Li, J.M. Temporal and spatial variations of impervious surface landscape pattern and the driving factors in Xiamen City, China. J. Appl. Ecol. 2020, 31, 230–238. [Google Scholar] [CrossRef]
- Lu, S.; Guan, X.; He, C.; Zhang, J. Spatio-Temporal Patterns and Policy Implications of Urban Land Expansion in Metropolitan Areas: A Case Study of Wuhan Urban Agglomeration, Central China. Sustainability 2014, 6, 4723–4748. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, J.; Wang, Y. Spatial scaling of urban impervious surfaces across evolving landscapes: From cities to urban regions. Landsc. Urban Plan. 2018, 175, 50–61. [Google Scholar] [CrossRef]
- Zhu, H.; Ou, X.; Yang, Z.; Yang, Y.; Ren, H.; Tang, L. Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1365. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Tian, S.; Zhang, J. Evaluation of urban human settlements resilience based on the DPSIR model: A case study of the Yangtze River Delta urban systems. Hum. Geogr. 2022, 37, 54–62. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, L.Y.; Wu, X.Q.; Zhang, J. Estimating the environmental Kuznets curve for ecological footprint at the global level: A spatial econometric approach. Ecol. Indic. 2013, 34, 15–21. [Google Scholar] [CrossRef]
- Wu, W.; Li, X.; Zhang, Y.; Liu, J. Change of impervious surface area and its impacts on urban landscape: An example of Shenyang between 2010 and 2017. Ecosyst. Health Sustain. 2020, 6, 1767511. [Google Scholar] [CrossRef]
- Wu, X.; Yang, S.; Yin, S.; Xu, H. Spatial-temporal dynamic characteristics and its driving mechanism of urban built-up area in Yangtze River Delta based on GTWR model. Resour. Environ. Yangtze Basin 2021, 30, 2594–2606. [Google Scholar]
- Brokamp, C.; He, X.; Huang, Y. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef]
- Nilsson, P. Natural amenities in urban space—A geographically weighted regression approach. Landsc. Urban Plan. 2014, 121, 45–54. [Google Scholar] [CrossRef]
- Grekousis, G.; Feng, Z.; Marakakis, I.; Lu, Y.; Wang, R. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health Place 2022, 74, 102744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gu, T.; Sun, D.; Miao, C. Dynamic evolution and influencing mechanism of urban human settlements in the Yellow River Basin from the perspective of “production-living-ecological” function. Acta Geogr. Sin. 2023, 78, 2973–2999. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Rossi, F.; Becker, G. Creating forest management units with Hot Spot Analysis (Getis-Ord Gi*) over a forest affected by mixed-severity fires. Aust. For. 2019, 82, 166–175. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2019, 36, 121–136. [Google Scholar] [CrossRef]
- Santhanam, H.; Majumdar, R. Quantification of green-blue ratios, impervious surface area, and pace of urbanisation for sustainable management of urban lake–land zones in India: A case study from Bengaluru city. J. Urban Manag. 2022, 11, 310–320. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Y.; Fu, Y. Optimization of spatial pattern of urban imperviousness based on the integration of SCS-CN hydrological model and the ant colony algorithm. J. Geo-Inf. Sci. 2017, 19, 1315–1326. [Google Scholar] [CrossRef]
- Meng, L.; Si, W. The driving mechanism of urban land expansion from 2005 to 2018: The case of Yangzhou, China. Int. J. Environ. Res. Public Health 2022, 19, 15821. [Google Scholar] [CrossRef]
- Yan, D.; Yang, J. Change in spatial distribution of population and economy and influencing factors in the Yangtze River Delta. Prog. Geogr. 2017, 36, 820–831. [Google Scholar] [CrossRef]
- Long, F.; Zheng, L.; Song, Z. High-speed rail and urban expansion: An empirical study using a time series of nighttime light satellite data in China. J. Transp. Geogr. 2018, 72, 106–118. [Google Scholar] [CrossRef]
- Song, M.; Wang, S.; Wu, K. Environment-biased technological progress and industrial land-use efficiency in China’s new normal. Ann. Oper. Res. 2018, 268, 425–440. [Google Scholar] [CrossRef]
- Barrichello, A.; dos Santos, E.G.; Morano, R.S. Determinant and priority factors of innovation for the development of nations. Innov. Manag. Rev. 2020, 17, 307–320. [Google Scholar] [CrossRef]
- Tian, Y.; Mao, Q. The effect of regional integration on urban sprawl in urban agglomeration areas: A case study of the Yangtze River Delta, China. Habitat Int. 2022, 130, 102695. [Google Scholar] [CrossRef]
- Meng, L.; Sun, Y.; Zhao, S. Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization. Land Use Policy 2020, 97, 104753. [Google Scholar] [CrossRef]
- Sun, B.; Hua, J.; Li, W.; Zhang, T. Spatial structure change and influencing factors of city clusters in China:From monocentric to polycentric based on population distribution. Prog. Geogr. 2017, 36, 1294–1303. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, M.; Xu, H.; Liu, Y.; Zhou, Y. Spatiotemporal heterogeneity analysis of Yangtze River Delta urban agglomeration: Evidence from nighttime light data (2001–2019). Remote Sens. 2021, 13, 1235. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X. Spatial structure and influencing factors of the Yangtze River Delta urban agglomeration from a multidimensional perspective: Based on NPP-VIIRS nighttime light data and Gaode’s population migration data. Econ. Geogr. 2023, 43, 78–88. [Google Scholar] [CrossRef]
- Zhen, M.; Dang, A.; Kan, C. Study on the Identification of Urban Agglomerations in the Yangtze River Delta Based on Big Data and Network Analysis. Shanghai Urban Plan. Rev. 2019, 6, 8–16. [Google Scholar]
- Zhang, K.M.; Wen, Z.G. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. The Impact of Human Capital on Green Technology Innovation-Moderating Role of Environmental Regulations. Int. J. Environ. Res. Public Health 2023, 20, 4803. [Google Scholar] [CrossRef] [PubMed]
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, C.; Pan, Y.; Yang, T. Coupling coordination and influencing factors of land development intensity and urban resilience of the Yangtze River Delta urban agglomeration. Water 2022, 14, 1083. [Google Scholar] [CrossRef]
- Engin, Z.; van Dijk, J.; Lan, T.; Longley, P.A.; Treleaven, P.; Batty, M.; Penn, A. Data-driven urban management: Mapping the landscape. J. Urban Manag. 2020, 9, 140–150. [Google Scholar] [CrossRef]
- Sun, F.; Liu, M.; Wang, Y.; Wang, H.; Che, Y. The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. J. Clean. Prod. 2020, 258, 120706. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, J.; Bai, Y. China’s Urban Regeneration Evolution from 1949 to 2022: From the Perspective of Governance Mode. Land 2024, 13, 1806. [Google Scholar] [CrossRef]
Criterion | Indicator | Notation | Unit |
---|---|---|---|
Ecological Environment | Green Cover Area in Urban Region | GCUR | ha |
Cultivated Land Area | CLA | 1000 ha | |
Industrial Sulphur Dioxide Emissions | ISDE | t | |
Industrial Fume Removal | IFR | t | |
Physical Geography | Average Elevation | AE | m |
Average Slope | AS | ||
Groundwater Resources | GR | 10 m3 | |
Socio-economic | Population Density | PD | p/km2 |
GDP Growth Rate | GDPGR | % | |
Number of Industrial Enterprises | NIE | No. | |
Proportion of Primary Industry in GDP | PI | % | |
Proportion of Secondary Industry in GDP | SI | % | |
Area of City Paved Roads at Year-end | CPR | 10,000 sq·m | |
Residential Land Area | RL | km2 | |
Science and Education | Number of People in Scientific Research and Technological Services | NPSRT | No. |
Science and Technology Expenditure | STE | 10,000 RMB | |
Number of Patent Applications | PA | No. | |
Number of People in Education | NPE | No. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Wang, Y.; Geng, H.; Jiang, X.; Li, L. Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China. Land 2024, 13, 1951. https://doi.org/10.3390/land13111951
Zhao B, Wang Y, Geng H, Jiang X, Li L. Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China. Land. 2024; 13(11):1951. https://doi.org/10.3390/land13111951
Chicago/Turabian StyleZhao, Bochuan, Yifei Wang, Huizhi Geng, Xuan Jiang, and Lingyue Li. 2024. "Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China" Land 13, no. 11: 1951. https://doi.org/10.3390/land13111951
APA StyleZhao, B., Wang, Y., Geng, H., Jiang, X., & Li, L. (2024). Spatial Expansion Characteristics and Nonlinear Relationships of Driving Factors in Urban Agglomerations: A Case Study of the Yangtze River Delta Urban Agglomeration in China. Land, 13(11), 1951. https://doi.org/10.3390/land13111951