Using a Light Gradient-Boosting Machine–Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue–Green Space Landscape Spatial Patterns and Carbon Sequestration
Abstract
:1. Introduction
- Explore the complex correlation between UBGSPs and carbon sequestration efficiency.
- Identify key landscape metrics influencing carbon sequestration in UBGSs.
- Propose spatial patterns for high carbon sequestration UBGSs, providing scientific references for optimizing UBGSs configurations and enhancing carbon sequestration potential.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pretreatment
2.2.1. Remote Sensing
2.2.2. NPP
2.2.3. Land Use and Blue–Green Spatial Data
2.3. Methods
2.3.1. Landscape Metrics
2.3.2. Selection of Optimal Grain Size and the Moving Window Method
2.3.3. LightGBM-SHAP Model
3. Results
3.1. Spatiotemporal Variation in NPP
3.2. Variation in Blue–Green Space Spatial Pattern
3.3. The Correlation Between UBGSs and Carbon Sequestration Based on LightGBM-SHAP
3.3.1. Global Interpretation
3.3.2. Local Interpretation
- (1)
- Patch and class level analyses
- (2)
- Landscape level analyses
4. Discussion
4.1. Impact of Green Space and Blue Space Spatial Patterns on Carbon Sequestration
4.2. Impact of Blue–Green Space Spatial Patterns on Carbon Sequestration
4.3. Optimization Strategies for UBGSP
- (1)
- Enhancing the aggregation and connectivity of UBGSs
- (2)
- Optimizing the shape and structure of UBGSs
- (3)
- Establishing a multi-scale integrated UBGS network
4.4. Limitations and Future Research Directions
5. Conclusions
- (1)
- The relationship between UBGSPs and carbon sequestration was nonlinear, with different landscape metrics demonstrating varying effects at different levels. At the patch and class levels, PLAND, CONTIG, FRAC, and LPI had a more significant effect on carbon sequestration; at the landscape level, DIVISION, LSI, and CONTAG played an important role in carbon sequestration.
- (2)
- Compared to single green or blue spaces, the synergistic effects of blue–green spaces had a more positive impact on carbon sequestration. UBGSPs with high connectivity (CONTAG) and large areas (AREA_MN) were positively correlated with NPP, while the aggregation index (AI) specifically exhibited a significant threshold effect, with NPP reaching its maximum within the [71,72] range. Conversely, higher values of DIVISION and LSI (>3) were negatively correlated with NPP, indicating that fragmented and irregular blue–green space patches were unfavorable for carbon sequestration.
- (3)
- Large-scale, high-density, and highly aggregated UBGSs were typical high-carbon sink areas. Under the premise of ensuring appropriate aggregation and connectivity, optimizing patch shape and improving the connectivity and stability of the ecological network helped enhance carbon sequestration capacity of UBGSs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Years | Spatial Type | FRAC | CIRCLE | CONTIG | |||
---|---|---|---|---|---|---|---|
Maximum Value | Average Value | Maximum Value | Average Value | Maximum Value | Average Value | ||
2001 | Green space | 1.445 | 1.030 | 0.927 | 0.326 | 0.877 | 0.181 |
Blue space | 1.286 | 1.028 | 0.986 | 0.332 | 0.939 | 0.170 | |
2006 | Green space | 1.449 | 1.041 | 0.951 | 0.381 | 0.901 | 0.244 |
Blue space | 1.281 | 1.029 | 0.988 | 0.336 | 0.942 | 0.177 | |
2011 | Green space | 1.455 | 1.035 | 0.939 | 0.341 | 0.896 | 0.205 |
Blue space | 1.287 | 1.027 | 0.987 | 0.317 | 0.931 | 0.161 | |
2016 | Green space | 1.449 | 1.041 | 0.951 | 0.381 | 0.901 | 0.244 |
Blue space | 1.281 | 1.029 | 0.988 | 0.336 | 0.942 | 0.177 | |
2021 | Green space | 1.429 | 1.037 | 0.931 | 0.372 | 0.877 | 0.230 |
Blue space | 1.271 | 1.027 | 0.987 | 0.333 | 0.937 | 0.172 |
Years | Spatial Type | PLAND (%) | LPI (%) | ED (m/ha) |
---|---|---|---|---|
2001 | Green space | 65.695 | 29.361 | 78.443 |
Blue space | 6.836 | 3.468 | 9.690 | |
2006 | Green space | 50.690 | 13.196 | 76.890 |
Blue space | 6.522 | 2.497 | 7.609 | |
2011 | Green space | 53.583 | 18.598 | 75.921 |
Blue space | 7.528 | 3.640 | 12.064 | |
2016 | Green space | 50.690 | 13.196 | 76.890 |
Blue space | 6.523 | 2.497 | 7.609 | |
2021 | Green space | 57.086 | 23.775 | 67.911 |
Blue space | 7.471 | 3.859 | 10.743 |
Years | LSI | DIVISION | AREA_MN (ha) | PAFRAC | CONTAG (%) | AI (%) |
---|---|---|---|---|---|---|
2001 | 118.467 | 0.826 | 10.5776 | 1.470 | 38.343 | 79.341 |
2006 | 119.613 | 0.922 | 16.857 | 1.464 | 34.678 | 79.142 |
2011 | 122.224 | 0.918 | 12.1365 | 1.480 | 33.143 | 78.680 |
2016 | 119.615 | 0.922 | 16.857 | 1.464 | 34.678 | 79.142 |
2021 | 109.462 | 0.879 | 12.203 | 1.472 | 35.683 | 80.937 |
References
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Cai, B.F.; Guo, H.X.; Cao, L.B.; Guan, D.B.; Bai, H.T. Local strategies for China’s carbon mitigation: An investigation of Chinese city-level CO2 emissions. J. Clean. Prod. 2018, 178, 890–902. [Google Scholar] [CrossRef]
- Cheng, S.L.; Fan, W.; Meng, F.X.; Chen, J.D.; Cai, B.F.; Liu, G.Y.; Liang, S.; Song, M.L.; Zhou, Y.; Yang, Z.F. Toward low-carbon development: Assessing emissions-reduction pressure among Chinese cities. J. Environ. Manag. 2020, 271, 111036. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Bai, X.M.; Shi, P.J.; Liu, Y.S. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef]
- Bai, J.D.; Chang, I.S.; Zhang, C.D.; Wu, J. Allocation of CO2 emission target in China under the “1+N” policy: Considering natural carbon sinks and wind-solar-hydropower endowments. Environ. Impact Assess. Rev. 2024, 106, 107472. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, J.; Xu, Y.M.; Liu, Y.H.; Yao, M.M. Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review. Urban For. Urban Green. 2023, 86, 128037. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.H.; Shi, M.X.; Hu, S.S.; Xu, D.W. Urban blue-green space landscape ecological health assessment based on the integration of pattern, process, function and sustainability. Sci. Rep. 2022, 12, 7707. [Google Scholar] [CrossRef]
- China Mineral Resources 2023. Available online: https://www.gov.cn/lianbo/bumen/202403/content_6935394.htm (accessed on 9 November 2024).
- Statistical Communiqué of the People’s Republic of China on the 2023 National Economic and Social Development. Available online: https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html (accessed on 10 November 2024).
- China Urban Construction Statistical Yearbook 2023. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/index.html (accessed on 10 November 2024).
- Donati, G.F.A.; Bolliger, J.; Psomas, A.; Maurer, M.; Bach, P.M. Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. J. Environ. Manag. 2022, 316, 115254. [Google Scholar] [CrossRef]
- Yu, Z.W.; Yang, G.Y.; Zuo, S.D.; Jorgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.Y.; Li, Z.H.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Hua, T.; Zhao, Y.H.; Li, Y.P.; Wang, Y.; Wang, F.; Sun, J.; Sun, J. Divergent effects of moderate grazing duration on carbon sequestration between temperate and alpine grasslands in China. Sci. Total Environ. 2023, 858, 159621. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Krause-Jensen, D. Export from Seagrass Meadows Contributes to Marine Carbon Sequestration. Front. Mar. Sci. 2017, 4, 13. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L.; Bonito, A. Carbon sequestration of four urban parks in Rome. Urban For. Urban Green. 2016, 19, 184–193. [Google Scholar] [CrossRef]
- Jo, H.K.; Kim, J.Y.; Park, H.M. Carbon reduction and planning strategies for urban parks in Seoul. Urban For. Urban Green. 2019, 41, 48–54. [Google Scholar] [CrossRef]
- Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef]
- Godwin, C.; Chen, G.; Singh, K.K. The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration. Landsc. Urban Plan. 2015, 136, 97–109. [Google Scholar] [CrossRef]
- Cardille, J.A.; Carpenter, S.R.; Coe, M.T.; Foley, J.A.; Hanson, P.C.; Turner, M.G.; Vano, J.A. Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. J. Geophys. Res.-Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Gianotti, D.J.S.; Entekhabi, D. Local and General Patterns of Terrestrial Water-Carbon Coupling. Geophys. Res. Lett. 2024, 51, e2024GL109625. [Google Scholar] [CrossRef]
- Gómez-Gener, L.; Hotchkiss, E.R.; Laudon, H.; Sponseller, R.A. Integrating Discharge-Concentration Dynamics Across Carbon Forms in a Boreal Landscape. Water Resour. Res. 2021, 57, e2020WR028806. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.R.; He, N.P. Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage. Ecol. Eng. 2013, 57, 366–374. [Google Scholar] [CrossRef]
- Whitaker, K.; Rogers, K.; Saintilan, N.; Mazumder, D.; Wen, L.; Morrison, R.J. Vegetation persistence and carbon storage: Implications for environmental water management for Phragmites australis. Water Resour. Res. 2015, 51, 5284–5300. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Sun, Y.C.; Liu, Y.Q.; Li, X.H. Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustain. Cities Soc. 2023, 98, 104831. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Liu, Y.; Sun, Y.; Li, C. The impact of landscape spatial morphology on green carbon sink in the urban riverfront area. Cities 2024, 148, 104919. [Google Scholar] [CrossRef]
- Holdaway, R.J.; McNeill, S.J.; Mason, N.W.H.; Carswell, F.E. Propagating Uncertainty in Plot-based Estimates of Forest Carbon Stock and Carbon Stock Change. Ecosystems 2014, 17, 627–640. [Google Scholar] [CrossRef]
- Jie, M.; Li, X.T.; Jia, B.Q.; Liu, X.P.; Tong, L.; Wen, Z.; Liu, W.R. Spatial variation analysis of urban forest vegetation carbon storage and sequestration in built-up areas of Beijing based on i-Tree Eco and Kriging. Urban For. Urban Green. 2021, 66, 127413. [Google Scholar] [CrossRef]
- Lin, B.Q.; Ge, J.M. Valued forest carbon sinks: How much emissions abatement costs could be reduced in China. J. Clean. Prod. 2019, 224, 455–464. [Google Scholar] [CrossRef]
- Velasco, E.; Perrusquia, R.; Jiménez, E.; Hernández, F.; Camacho, R.; Rodríguez, S.; Retama, A.; Molina, L.T. Sources and sinks of carbon dioxide in a neighborhood of Mexico City. Atmos. Environ. 2014, 97, 226–238. [Google Scholar] [CrossRef]
- Zhuang, Q.W.; Shao, Z.F.; Gong, J.Y.; Li, D.R.; Huang, X.; Zhang, Y.; Xu, X.D.; Dang, C.Y.; Chen, J.L.; Altan, O.; et al. Modeling carbon storage in urban vegetation: Progress, challenges, and opportunities. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103058. [Google Scholar] [CrossRef]
- Xiao, J.F.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.J.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Influence of land urbanization on carbon sequestration of urban vegetation: A temporal cooperativity analysis in Guangzhou as an example. Sci. Total Environ. 2018, 635, 26–34. [Google Scholar] [CrossRef]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A.S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Wang, S.Q.; Huang, Y. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Glob. Change Biol. 2020, 26, 3163–3173. [Google Scholar] [CrossRef]
- Xu, X.H.; Wang, C.; Sun, Z.K.; Hao, Z.Z.; Day, S. How do urban forests with different land use histories influence soil organic carbon? Urban For. Urban Green. 2023, 83, 127918. [Google Scholar] [CrossRef]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130. [Google Scholar] [CrossRef]
- Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Greenwell, B.M. pdp: An R Package for Constructing Partial Dependence Plots. R J. 2017, 9, 421–436. [Google Scholar] [CrossRef]
- Visani, G.; Bagli, E.; Chesani, F.; Poluzzi, A.; Capuzzo, D. Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models. J. Oper. Res. Soc. 2022, 73, 91–101. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Li, J.B.; Huang, X.J.; Kwan, M.P.; Yang, H.; Chuai, X.W. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Territory Spatial Planning of Yangzhou. Available online: http://zrzy.jiangsu.gov.cn/gtapp/nrglIndex.action?catalogID=2c9082b55b60eafb015b614ffd610155&type=2&messageID=2c9082b58c56ec5a018c9f9e219e349f (accessed on 23 November 2023).
- Geospatial Data Cloud. Available online: https://www.gscloud.cn/ (accessed on 9 February 2023).
- Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sens. 2019, 11, 105. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Johnson, D.M.; Lyon, J.G.; Crotwell, J. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens. Environ. 2004, 89, 444–454. [Google Scholar] [CrossRef]
- Hao, L.N.; He, S.; Zhou, J.L.; Zhao, Q.; Lu, X. Prediction of the landscape pattern of the Yancheng Coastal Wetland, China, based on XGBoost and the MCE-CA-Markov model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- The Land Processes Distributed Active Archive Center. Available online: https://lpdaac.usgs.gov/ (accessed on 13 December 2023).
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- Kang, Q.; Shi, L.; Zhou, M.C.; Wang, X.S.; Wu, Q.D.; Wei, Z. A Distance-Based Weighted Undersampling Scheme for Support Vector Machines and Its Application to Imbalanced Classification. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4152–4165. [Google Scholar] [CrossRef]
- China’s Current Land Use Classification. Available online: https://openstd.samr.gov.cn/bzgk/gb/index (accessed on 19 November 2024).
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Tang, S.Q.; Zhang, J.Q.; Guo, W. Quantifying the relationship between urban blue-green landscape spatial pattern and carbon sequestration: A case study of Nanjing’s central city. Ecol. Indic. 2023, 154, 110483. [Google Scholar] [CrossRef]
- Shi, N.; Yu, Y.; Liang, S.T.; Ren, Y.C.; Liu, M.Q. Effects of urban green spaces landscape pattern on carbon sink among urban ecological function areas at the appropriate scale: A case study in Xi’an. Ecol. Indic. 2024, 158, 111427. [Google Scholar] [CrossRef]
- Wu, J.G. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Fang, S.; Zhao, Y.H.; Han, L.; Ma, C.Q. Analysis of Landscape Patterns of Arid Valleys in China, Based on Grain Size Effect. Sustainability 2017, 9, 2263. [Google Scholar] [CrossRef]
- Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 205–216. [Google Scholar] [CrossRef]
- Ai, J.W.; Yu, K.Y.; Zeng, Z.; Yang, L.Q.; Liu, Y.F.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, C.; Zhang, H.; Wu, Z.H.; Zhang, J.M.; Dai, G.J.; Babiloni, F.; Kong, W.Z. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification. Comput. Intell. Neurosci. 2019, 2019, 3761203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.Y.; Wang, Z.; Wang, X.L.; Guo, R.; Zhang, Z.; Xiang, X.W.; Wu, Y.Q. Deciphering the nonlinear and synergistic role of building energy variables in shaping carbon emissions: A LightGBM- SHAP framework in office buildings. Build. Environ. 2024, 266, 112035. [Google Scholar] [CrossRef]
- Wen, X.; Xie, Y.C.; Wu, L.T.; Jiang, L.M. Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP. Accid. Anal. Prev. 2021, 159, 106261. [Google Scholar] [CrossRef]
- Agasiev, T.; Karpenko, A. Exploratory Landscape Validation for Bayesian Optimization Algorithms. Mathematics 2024, 12, 426. [Google Scholar] [CrossRef]
- Chen, J.L.; Shao, Z.F.; Huang, X.; Zhuang, Q.W.; Dang, C.Y.; Cai, B.W.; Zheng, X.K.; Ding, Q. Assessing the impact of drought-land cover change on global vegetation greenness and productivity. Sci. Total Environ. 2022, 852, 158499. [Google Scholar] [CrossRef]
- Xu, C.R.; Li, C.H.; Bourque, C. Correlation between Landscape Pattern and Net Primary Productivity of Vegetation: A Case Study in the Arid and Semi-Arid Regions of Northwest China. Land 2023, 12, 2004. [Google Scholar] [CrossRef]
- Zhu, N.Y.; Ai, J.W.; Zeng, Z.; Zhou, C.H. Exploring the Spatial Relationship between the Ecological Topological Network and Carbon Sequestration Capacity of Coastal Urban Ecosystems: A Case Study of Yancheng City, China. Remote Sens. 2023, 15, 4007. [Google Scholar] [CrossRef]
- Tao, P.Y.; Lin, Y.; Wang, X.; Li, J.Y.; Ma, C.; Wang, Z.K.; Dong, X.Y.; Yao, P.; Shao, M. Optimization of Green Spaces in Plain Urban Areas to Enhance Carbon Sequestration. Land 2023, 12, 1218. [Google Scholar] [CrossRef]
- Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.O.; Diekmann, M.; et al. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Hortua, D.; Nagelkerken, I.; Estupinan-Suarez, L.M.; Gillis, L.G. Effects of connectivity on carbon and nitrogen stocks in mangrove and seagrass ecosystems. Sci. Total Environ. 2023, 896, 164829. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E.; Hall, R.O.; Lininger, K.B.; Sutfin, N.A.; Walters, D.M. Carbon dynamics of river corridors and the effects of human alterations. Ecol. Monogr. 2017, 87, 379–409. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Yue, D.X.; Guo, J.J.; Chen, G.G.; Wang, D. Spatial correlations between landscape patterns and net primary productivity: A case study of the Shule River Basin, China. Ecol. Indic. 2021, 130, 108067. [Google Scholar] [CrossRef]
- Wang, G.; Yue, D.P.; Yu, Q.; Yang, D.; Xu, C.L.; Wang, F. Study on Forest and Grassland Ecological Space Structure in Eyu Mining Area and Potential Alternatives for Enhancing Carbon Sequestration. Forests 2023, 14, 1587. [Google Scholar] [CrossRef]
- Hinshaw, S.; Wohl, E. Quantitatively Estimating Carbon Sequestration Potential in Soil and Large Wood in the Context of River Restoration. Front. Earth Sci. 2021, 9, 708895. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O. The Utility of Sentinel-2 Spectral Data in Quantifying Above-Ground Carbon Stock in an Urban Reforested Landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhu, Y.X.; Jia, P.H. Ecological Protection Redlines’ Positive Impact on Terrestrial Carbon Storage in Hainan Island, China. Land 2024, 13, 1292. [Google Scholar] [CrossRef]
- Qiu, S.; Yu, Q.; Niu, T.; Fang, M.Z.; Guo, H.Q.; Liu, H.J.; Li, S. Study on the Landscape Space of Typical Mining Areas in Xuzhou City from 2000 to 2020 and Optimization Strategies for Carbon Sink Enhancement. Remote Sens. 2022, 14, 4185. [Google Scholar] [CrossRef]
- Tan, T.T.; Kong, F.H.; Yin, H.W.; Cook, L.M.; Middel, A.; Yang, S.Q. Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods. Renew. Sustain. Energy Rev. 2023, 182, 113412. [Google Scholar] [CrossRef]
- Brilli, L.; Chiesi, M.; Brogi, C.; Magno, R.; Arcidiaco, L.; Bottai, L.; Tagliaferri, G.; Bindi, M.; Maselli, F. Combination of ground and remote sensing data to assess carbon stock changes in the main urban park of Florence. Urban For. Urban Green. 2019, 43, 126377. [Google Scholar] [CrossRef]
Classification | Metrics | Abbreviations | Formula | Description |
---|---|---|---|---|
Patch level | Dimensionality index | FRAC | Quantifying the shape complexity of patches. | |
Related circumscribing circle | CIRCLE | Assessing the degree of circularity of patches. | ||
Proximity index | CONTIG | Reflecting the spatial connectivity between patches. | ||
Class level | Area proportion | PLAND | Patch area percentage, with the largest patch representing the dominant landscape. | |
Maximum plaque index | LPI | The proportion of the largest patch to the total landscape area. | ||
Edge density | ED | Characterizing the complexity of patch edges. | ||
Landscape level | Separation index | DIVISION | Indicates the degree of fragmentation of the landscape; a higher value signifies greater fragmentation. | |
Perimeter-area fractal dimension | PAFRAC | Measures the complexity of landscape boundaries and the irregularity of shapes. | ||
Aggregation index | AI | The degree of landscape patch aggregation, with higher aggregation aiding in maintaining ecological connectivity. | ||
Landscape Shape Indicators | LSI | Indicates the complexity of the overall shape of blue–green space; a higher value signifies increased complexity. | ||
Average patch size | AREA_MN | Calculates the average size of patches. | ||
Contagion index | CONTAG | Characterizes the aggregation and connectivity of different patches within the landscape. |
UBGS Characteristics | 5 km × 5 km Unit | Green Space Patch and Class-Level Metrics | Blue Space Patch and Class-Level Metrics | Blue–Green Space LANDSCAPE-Level Metrics |
---|---|---|---|---|
Large-scale UBGSs | West Suburb Forest Park | 1.00 < FRAC < 1.16 0.36 < CIRCLE < 0.68 0.41 < CONTIG < 0.8 PLAND = 75.47 LPI = 75.35 ED = 70.67 | 1.00 < FRAC < 1.11 0.36 < CIRCLE < 0.71 0.41 < CONTIG < 0.49 PLAND = 1.28 LPI = 0.16 ED = 6.27 | LSI = 10.42 AREA_MN = 8.40 PAFRAC = 1.47 CONTAG = 50.69 DIVISION = 0.43 AI = 81.40 |
High-density UBGSs | Shaobo Lake | 1.00 < FRAC < 1.29 0.43 < CIRCLE < 0.79 0.17 < CONTIG < 0.85 PLAND = 50.19 LPI = 33.64 ED = 68.25 | 1.00 < FRAC < 1.22 0.49 < CIRCLE < 0.83 0.13 < CONTIG < 0.91 PLAND = 24.12 LPI = 10.65 ED = 34.85 | LSI = 13.12 AREA_MN = 9.30 PAFRAC = 1.51 CONTAG = 23.55 DIVISION = 0.86 AI = 76.17 |
Highly aggregated UBGSs | Slender West Lake | 1.00 < FRAC < 1.24 0.36 < CIRCLE < 0.85 0.08 < CONTIG < 0.82 PLAND = 25.05 LPI = 8.50 ED = 53.77 | 1.00 < FRAC < 1.17 0.56 < CIRCLE < 0.90 0.27 < CONTIG < 0.74 PLAND = 3.92 LPI = 2.21 ED = 8.65 | LSI = 8.70 AREA_MN = 2.78 PAFRAC = 1.44 CONTAG = 50.20 DIVISION = 0.47 AI = 84.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Luo, M.; Ding, S.; Han, Q. Using a Light Gradient-Boosting Machine–Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue–Green Space Landscape Spatial Patterns and Carbon Sequestration. Land 2024, 13, 1965. https://doi.org/10.3390/land13111965
Wu Y, Luo M, Ding S, Han Q. Using a Light Gradient-Boosting Machine–Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue–Green Space Landscape Spatial Patterns and Carbon Sequestration. Land. 2024; 13(11):1965. https://doi.org/10.3390/land13111965
Chicago/Turabian StyleWu, Yuting, Mengya Luo, Shaogang Ding, and Qiyao Han. 2024. "Using a Light Gradient-Boosting Machine–Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue–Green Space Landscape Spatial Patterns and Carbon Sequestration" Land 13, no. 11: 1965. https://doi.org/10.3390/land13111965
APA StyleWu, Y., Luo, M., Ding, S., & Han, Q. (2024). Using a Light Gradient-Boosting Machine–Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue–Green Space Landscape Spatial Patterns and Carbon Sequestration. Land, 13(11), 1965. https://doi.org/10.3390/land13111965